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Abstract: The modified Totient function of Carmichael λ(.) is revisited, where important properties
have been highlighted. Particularly, an iterative scheme is given for calculating the λ(.) function.
A comparison between the Euler ϕ and the reduced totient λ(.) functions aiming to quantify the
reduction between is given.

Keywords: Euler theorem; Euler’s totient function; prime numbers

1. Introduction

More than a century ago, Robert D. Carmichael (1879–1967) [1] introduced a function
λ(.) known as Carmichael’s function. This λ(n) is spread as the reduced totient function
which can be seen as the smallest divisor of Euler’s totient function verifying
Euler’s theorem. This Totient function is deeply related to prime numbers and integer
orders [2–5], mainly used for primality testing. Furthermore, the reader may cross in the
literature that the Carmichael function represents the exponent (λ(n) represents the order
of the largest cyclic subgroup of (Z/ nZ)∗) of the group (Z/ nZ)∗.

In this paper, we aim to analyse λ(.) and we present some of its important properties.
Mainly, we give in Lemma 3 a suitable iterative scheme for calculating the values of λ(n).
In addition, we prove the following estimation

λ(n) ≤ 1
2N−1 ϕ(n), N is the number of odd prime divisors of n,

which could be considered an indicator of reduction of the modified totient function and
we can easily duduce that

lim sup
n→∞

ϕ(n)
λ(n)

= +∞.

The complexity of finding the inverse function of Carmichael λ(.) is more complex
than finding the inverse of Euler function.

2. Preliminaries

In the literature, Carmichael’s new totient function named λ is defined as follows: For
the prime decomposition of a given natural integer

n =
k

∏
i=1

pki
i , λ(n) = LCM

[
λ(pk1

1 ), . . . , λ(pkk
k )
]
,
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where (LCM denotes the least common multiple.) we have:

λ(pki
i ) =

{
2ki − 2 If pi = 2 and ki > 2,
pki−1

i (pi − 1) otherwise.

We refer to [1,2,6,7] and references therein for the properties of the function λ.
Figures 1 and 2 produce the first thousand values of λ(p) and ϕ(p). The points on the

top lines represent λ(p) = p− 1 = ϕ(p), when p is a prime number.

Figure 1. The first 1000 values of the Carmichael function.

Figure 2. The first 1000 values of the Euler function.

In this section, we show how we built the modified Totient function λ.
Euler theorem [1] states that if n and m are co-prime positive integers, then

mϕ(n) ≡ 1(mod n),

where ϕ(.) is Euler’s Totient function. It is known that for any prime number p, we
have ϕ(p) = p− 1 since all the positive integers less than p are co-prime with p.
If p and q are two different primes, then

mk1(p−1) ≡ 1 (mod p) ∀k1 ∈ N, gcd(m, p) = 1.

mk2(q−1) ≡ 1 (mod q) ∀k2 ∈ N, gcd(m, q) = 1.
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The two integers k1 and k2 can be chosen in such a way that

k1(p− 1) = k2(q− 1),

then we obtain: 
mk1(p−1)+1 ≡ m (mod p) ∀k1 ∈ N, ∀m ∈ N.

mk2(q−1)+1 ≡ m (mod q) ∀k2 ∈ N, ∀m ∈ N.

We can also conclude the following

mk1(p−1)+1 ≡ mk2(q−1)+1 ≡ m (mod p q). (1)

In the next definition, we introduce a new function related to the Totient function of Euler
given as follows:

Definition 1. Let n = p q

λ(n) = min{k1(p− 1) : k1(p− 1) = k2(q− 1)}
= min{k1 ϕ(p) : k1 ϕ(p) = k2 ϕ(q)}. (2)

According to the above definition, we will have:

mλ(p q)+1 ≡ m (mod p q), ∀m ∈ N, (3)

and by using previous results, we can conclude the following Lemma.

Lemma 1. Let p and q two different primes

• If gcd(m, p q) = 1, then 
mϕ(n) ≡ 1 (mod p q)

mλ(n) ≡ 1 (mod p q).

• For all integer m, then 
mϕ(n)+1 ≡ m (mod p q)

mλ(n)+1 ≡ m (mod p q).

Let us generalize the previous Lemma for n = ΠN
i=1 pi, ∀N ∈ N, but the function

λ
(

n = ΠN
i=1 pi

)
needs also to be generalized.

From Euler theorem, we can write
mki(pi−1)+1 ≡ m (mod pi) ∀(m, ki) ∈ N2

mki(pi−1) ≡ 1 (mod pi) ∀ki ∈ N, gcd(m, pi) = 1.

Then, the function λ at n = ΠN
i=1 pi should be defined as follows:

λ
(

ΠN
i=1 pi

)
= min{k1(p1 − 1) : ki(pi − 1) = k1(p1 − 1), i = 1, 2, · · · , N}
= min{k1 ϕ(p1) : ki ϕ(pi) = k1 ϕ(p1), i = 1, 2, · · · , N}.
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Example 1. If n = 105 = 3× 5× 7, then

λ(n) = min{2k1 : 2k1 = 4k2 = 6k3} = 12,

so, 
m12k0+1 ≡ m (mod 3× 5× 7) ∀(m, k0) ∈ N2

m12k0 ≡ 1 (mod 3× 5× 7) ∀k0 ∈ N, gcd(m, 3× 5× 7) = 1.

The following proposition provides a recursive scheme to evaluate the λ(n) for different
situations.

Proposition 1. λ(n) can be calculated by a recursive way:

λ(p1 p2) =
(p1 − 1)(p2 − 1)

gcd(p1 − 1; p2 − 1)
. (4)

λ(p1 p2 p3) =
λ(p1 p2)(p3 − 1)

gcd(λ(p1 p2); p3 − 1)
. (5)

and

λ(Πi
j=1 pj) =

λ(Πi−1
j=1 pj)(pi − 1)

gcd(λ(Πi−1
j=1 pj); pi − 1)

. (6)

Again, we generalize our Lemma 1 result for n = pk
i , where k ≥ 2, as follows:

Lemma 2. If n = ΠN
i=1 pni

i and K = maxi{ni}, then

λ(n) = min
{

k1 ϕ(pn1
1 ) : ki ϕ(

ni
i ) = k1 ϕ(pn1

1 ), i = 1, 2, · · · , N
}

,
mk φ(n) ≡ 1 (mod n) ∀k ∈ N, gcd(m, n) = 1,

mk λ(n)+K ≡ mK (mod n) ∀m, k ∈ N,

Proof.

• If gcd(n, m) = 1, then 
mpk

i−pk−1
i ≡ 1 (mod pk

i )

mpk
i−pk−1

i +1 ≡ m (mod pk
i ).

• For k ≥ 2, we have

pk
i − pk−1

i + 1 = pk−1
i (pi − 1) + 1 ≥ 2k−1 + 1 ≥ k.

• It concludes that

– If gcd(m, n) = 1, then

mpk
i−pk−1

i +1 ≡ m (mod pk
i ).

– If pi|m, then

mpk
i−pk−1

i +1 ≡ ml k+r ≡ ml k mr ≡ 0 (mod pk
i ) 6= m (mod pk

i ),

where pk
i − pk−1

i + 1 = l k + r.
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– Therefore,

mki(pk
i−pk−1

i )+k ≡ mk (mod pk
i ), ∀m ∈ N,

we can say that if n = ΠN
i=1 pni

i and K = maxi{ni}, then

mki(pk
i−pk−1

i )+K ≡ mK (mod pni
i ), ∀m ∈ N, ∀ki ∈ N.

�

Proposition 2.

λ(pn1
1 pn2−1

2 ) =
(pn1

1 − pn1−1
1 )(pn2

2 − pn2−1
2 )

gcd
(

pn1
1 − pn1−1

1 ; pn2
2 − pn2−1

2

) , (7)

and

λ(Πi
j=1 p

nj
j ) =

λ(Πi−1
j=1 p

nj
j )(pni

i − pni−1
i )

gcd
(

λ(Πi−1
j=1 p

nj
j ) ; pni

i − pni−1
i

) . (8)

Proof. The proof will be given after Lemma 5.

Lemma 3.

λ(Πi
j=1 p

nj
j ) =

(
pn1

1 − pn1−1
1

)
LCM

({
pnk

k − pnk−1
k

gcd(pnk
k − pnk−1

k ; pn1
1 − pn1−1

1 )
: 2 ≤ k ≤ i.

})
(9)

Proof. According to the definition of λ:

λ(Πi
j=1 p

nj

j ) := min
{

k1(pn1
1 − pn1−1

1 ) : ∃ kj, k1(pn1
1 − pn1−1

1 ) = kj(p
nj

j − p
nj−1
j ), 2 ≤ j ≤ i.

}
:= min

{
k1(pn1

1 − pn1−1
1 ) : ∀2 ≤ j ≤ i : kj, (p

nj

j − p
nj−1
j )

∣∣∣k1(pn1
1 − pn1−1

1 )
}

and using the fact that

I f a
∣∣bc⇐⇒ a

gcd(a, b)
∣∣c,

we obtain

λ(Πi
j=1 p

nj
j ) = min

k1(pn1
1 − pn1−1

1 ) : ∀ 2 ≤ j ≤ i,
p

nj
j − p

nj−1
j

gcd(p
nj
j − p

nj−1
j ; pn1

1 − pn1−1
1 )

∣∣∣ k1

,

and the smallest k1 satisfying the above relation is the least common multiple (LCM) of

p
nj
j − p

nj−1
j

gcd(p
nj
j − p

nj−1
j ; pn1

1 − pn1−1
1 )

, which completes the proof.

Lemma 4.

λ(Πi+1
j=1 p

nj
j ) = λ(Πi

j=1 p
nj
j )×

pni+1
i+1 − pni+1−1

i+1

gcd(pni+1
i+1 − pni+1−1

i+1 ; pn1
1 − pn1−1

1 )× gcd(Ai+1 ; B1)
(10)

where

Ai+1 =
pni+1

i+1 − pni+1−1
i+1

gcd(pni+1
i+1 − pni+1−1

i+1 ; pn1
1 − pn1−1

1 )
, B1 =

λ(Πi
j=1 p

nj
j )

pn1
1 − pn1−1

1

.
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Proof. We will use the following two results:

LCM(a1, · · · , ai+1) = LCM(LCM(a1, · · · , ai), ai+1), (11)

and
LCM(a, b) =

a b
gcd(x, y)

. (12)

According to Lemma 3 and (11), we have by setting

dj = gcd(p
nj
j − p

nj−1
j ; pn1

1 − pn1−1
1 ):

λ(Πi+1
j=1 p

nj
j ) =

(
pn1

1 − pn1−1
1

)
LCM

LCM

 p
nj
j − p

nj−1
j

dj
: 2 ≤ j ≤ i.


 ; Ai+1


which is equivalent to

λ(Πi+1
j=1 p

nj
j ) =

(
pn1

1 − pn1−1
1

)
LCM

 λ(Πi
j=1 p

nj
j )

pn1
1 − pn1−1

1

; Ai+1

.

Furthermore, according to (12), we obtain:

λ(Πi+1
j=1 p

nj
j ) =

λ(Πi
j=1 p

nj
j )× Ai+1

gcd

 λ(Πi
j=1 p

nj
j )

pn1
1 − pn1−1

1

; Ai+1

 ,

which proves Lemma 4.

Lemma 5.

gcd(z ; x y) = gcd(z ; x) gcd
(

z
gcd(z ; x)

; y
)

. (13)

Proof. Let d = gcd(z; x), then z = d c and x = d a where gcd(a, c) = 1. Thus

gcd(z; x y) = gcd(d c ; d a y) = d gcd(c ; a y) = d× gcd(c ; y) = gcd(z ; x) gcd
(

z
gcd(z ; x)

; y
)

.

Proof of Proposition 2. By applying Lemma 5 to the denominator of the expression in
Lemma 4, with x = pn1

1 − pn1−1
1 , y = Bi and z = pni+1

i+1 − pni+1−1
i+1 we will obtain:

λ(Πi+1
j=1 p

nj
j ) =

λ(Πi
j=1 p

nj
j )
(

pni+1
i+1 − pni+1−1

i+1

)
gcd
(

pni+1
i+1 − pni+1−1

i+1 ; λ(Πi
j=1 p

nj
j )
) .

The Carmichael and Euler functions are a very important theoretic functions having a
deep relationship with prime numbers. Figures 1 and 2 shows the first thousand values of
λ(n) and ϕ(n), respectively, where the Euler function has been defined as ϕ(n) = (pn1

1 −
pn1−1

1 ). · · · .(pnk
k − pnk−1

k ), where pn1
1 . · · · .pnk

k is the prime factorization of the integer n.

3. Properties of λ(.)

In this section, we present some properties of the new Totient function λ(.).

1.
∀k ∈ N, ∀ prime p : λ(pk) = ϕ(pk) = pk − pk−1.
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2. If n = 2 Πk
i=1 pki

i , pi are odd primes and k is any positive integer, then

λ(n) = λ(n/2).

3. If n = 2 p, where p is an odd prime, then λ(2 p) = ϕ(p);
4. If n = 2k, k > 2, then λ(2k) = ϕ(2k)/2.
5. If n > 5 then λ(n) is an even number.
6. If p and q are two odd primes, and k and l are any natural numbers, then

λ(pk ql) ≤ 1
2

ϕ(pk ql).

7. If m, p, and q are three odd primes, and k, l and s are any natural numbers, then

λ(mk pl qr) ≤ 1
4

ϕ(mk pl qr).

8. Let (pi)i be an increasing sequence of primes, then:

λ

(
k

∏
i=1

pni
i

)
=

λ
(

∏k−1
i=1 pni

i

) (
pnk

k − pnk−1
k

)
gcd
[
λ
(

∏k−1
i=1 pni

i

)
, pk − 1

] .

9.

λ

(
k

∏
i=1

pni
i

)
=

λ
(

∏k
j=1, j 6=i p

nj
j

) (
pni

i − pni−1
i

)
gcd
[
λ
(

∏k
j=1, j 6=i p

nj
j

)
, pni

i − pni−1
i

] .

Proof.

1. From the definition of the function λ(n), we can conclude the following:

∀ k ∈ N, ∀prime p : λ(pk) = ϕ(pk) = pk − pk−1.

2. If n = 2Πk
i=1 pki

i , pi are primes and k is any integer, then λ(n) = λ(n/2). Indeed,

λ(n) =
λ
(

Πk
i=1 pki

i

)
(2− 1)

GCD
(

Πk
i=1 pki

i , 2− 1
) = λ

(
Πk

i=1 pki
i

)
.

3. For all odd primes p, we have: λ(2p) = λ(p) = p− 1. Indeed,

λ(2p) = λ(p) (from P2)
= ϕ(p) (from P1)
= p− 1 (from def. of ϕ(p)).

4. If n = 2k, k > 2, then λ(2k) = ϕ(2k)/2.
We note the following

m2k−2k−1 − 1 = (m2k−2−2k−3 − 1)(m2k−2−2k−3
+ 1)(m2k−1−2k−2

+ 1).

Therefore, for any odd number m, we have(
m2k−2−2k−3 − 1

)(
m2k−2−2k−3

+ 1
)
≡ 0 (mod(23) ).
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If k > 3, we can factor more the term

m2k−2k−1 − 1 = (x4 + 1)(x2 + 1)(x + 1)(x− 1), x = m2k−3−2k−4
.

By the Euler theorem, we have m2k−2k−1 − 1 ≡ 0 (mod(25) ).
By induction, we can easily prove that for any odd integer m and for all integer k > 2
the following statement is true:

m2k−1−2k−2 − 1 = 0 (mod(2k) ).

Thus,
λ(2k) = 2k−1 − 2k−2 = ϕ(2k)/2.

5. For n > 5, we have the following:

• λ(3) = 2, λ(2) = 1.
• λ(4) = 22−1(2− 1) = 2.
• λ(5) = 4.
• λ(p) = p− 1, which is even for any odd prime p.
• λ(pk) = pk−1(p− 1), which is even for any odd prime p.
•

λ
(

pk1
1 pk2

2

)
=

λ(pk1
1 ) (pk2

2 − pk2−1
2

GCD
(

λ(pk1
1 ), pk2

2 − pk2−1
2

)

=
pk1−1

1 (p1 − 1) pk2−1
2 (p2 − 1)

GCD
(

pk1−1
1 (p1 − 1), pk2−1

2 (p2 − 1)
)

(a) For some integer l, if 2l divides GCD
(

pk1−1
1 (p1 − 1), pk2−1

2 (p2 − 1)
)

,

then 2l
∣∣∣pk2−1

2 (p2 − 1).

(b) p1 − 1 is an even number.

(a) and (b) imply that λ
(

pk1
1 pk2

2

)
is even.

6. According to Lemma 3, we have:

λ
(

pk ql
)

=
λ(pk) (ql − ql−1)

GCD
(
λ(pk), ql − ql−1

)
≤ λ(pk) (ql − ql−1)

2
, Property 5.

≤
ϕ
(

pk ql
)

2
, Property 1.

7. According to Lemma 3, we have:

λ
(

mk pr qs
)

=
λ(mk pr) (qs − qs−1)

GCD
(
λ(mk pr), qs − qs−1

)
≤ λ(mk pr) (qs − qs−1)

2
, Property 5.

≤ ϕ(mk pr) (qs − qs−1)

4
, Property 6.

≤ ϕ(mk pr qs)

4
.



Mathematics 2021, 9, 1800 9 of 12

8. Obvious, it is enough to prove that gcd
[
λ
(

∏k−1
i=1 pni

i

)
, pk

]
= 1.

9. Obvious.

Corollary 1.

λ

(
k

∏
i=1

pni
i

)
≤ 1

2k−1 ϕ

(
k

∏
i=1

pni
i

)
.

Proof. From properties P6 and P7, the proof can be completed by induction.
As a conclusion, we can easily prove the following limit

lim sup
n→∞

ϕ(n)
λ(n)

= +∞,

by considering the subsequence nk = p1.p2. · · · .pk, where (p1, p2, . . . , pk) are the first
k-consecutive odd primes.

Again, since the primes are not bounded, we can conclude that

lim inf
n→∞

ϕ(n)
λ(n)

= 1.

4. Computations of λ(n) versus ϕ(n)

In this section, we compare the magnitude of the Euler function ϕ(n) versus the
Carmichael function λ(n) see Tables 1 and 2.

Figures 3 and 4 present, respectively, the ratio
ϕ(n)
λ(n)

when n is a product of two primes,

respectively, three primes.

Table 1. Comparison between Carmichael and Euler functions for the product of two primes.

n 3 × 5 5 × 7 5 × 29 5 × 61 11 × 31 17 × 97 37 × 73 73 × 109

λ(n) 4 12 28 60 30 96 72 216

ϕ(n)
λ(n)

2 2 4 4 10 16 36 36

Table 2. Comparison between Carmichael and Euler functions for the product of three primes.

n 3 × 5 × 7 5 × 13 × 97 7 × 31 × 61 11 × 31 × 71 13 × 19 × 113 37 × 73 × 109

λ(n) 12 96 60 210 108 216

ϕ(n)
λ(n)

4 48 180 100 216 1296
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Figure 3. The Ratio between Carmichael and Euler functions for n less than 45,000.

Figure 4. The Ratio between Carmichael and Euler functions for n less than 155,000.

5. Conclusions

In this paper, we presented how we built the modified Totient function of Carmichael
λ(.). Important properties have been highlighted, particularly the given iterative scheme
for calculating the λ(.) function. Some preliminary numerical results comparing the Euler
ϕ and the reduced totient λ(.) functions aiming to quantify the reduction between them
are given (see Tables 1 and 2 and Figures 3–5). Figures 6 and 7 express the frequency of n
for getting the value of λ(n); in other words, determining the cardinal of the following set:

{n : λ(n) = k}, k is a given positive integer.

Furthermore, it may be worthwhile investigating more results in Corollary 1 by finding a
better upper-bound.
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Figure 5.
ϕ(n)
λ(n)

for all n ≤ 20,000.

Figure 6. The Cardinal of the Inverse of Carmichael function.

Figure 7. The Cardinal of the Inverse of Euler function.
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