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Abstract: In this paper, a new efficient and practical modification of the Adomian decomposition
method is proposed with Laguerre polynomials and the second kind of Chebyshev polynomials
which has not been introduced in other articles to the best of our knowledge. This approach
can be utilized to approximately solve linear and nonlinear differential equations. The proposed
formulations are examined by a representative example and the numerical results confirm their
efficiency and accuracy.
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1. Introduction

The Adomian decomposition method (ADM) was first introduced by the American
mathematician Adomian and has been widely used for a class of deterministic and stochas-
tic problems in scientific research fields [1–6]. It is based on looking for a solution in view of
a series u(x, t) = ∑∞

k=0 uk(x, t) and the decomposition of the nonlinear operator to a series
N (u) = ∑∞

k=0 Λk(u0, u1, . . . , uk). Consequently, these terms can be computed recursively
through using Adomian polynomials Λk [7].

The modification of ADM itself has acquired a lot of remarkable results and it can
be flexibly applied to kinds of complex higher order equations, even partial differential
equations. However, for some special right hand terms of equations, the definite integrals
with parameters in the domain cannot be solved explicitly, not to mention the approximate
numerical integrations. Therefore, it is necessary to approximate the right terms by series
before using the ADM. This paper aims at modifying ADM using orthogonal polynomials.
Hosseini [8] firstly introduced the idea of combining ADM with the first kind of Chebyshev
polynomials, and the effectiveness and reliability of this frame was proved to be suitable
for linear and nonlinear equations. Subsequently, Liu [9] employed Legendre polynomials
to the ADM and compared them to ones using the existing Chebyshev polynomials.

The same as the Chebyshev polynomials and Legendre polynomials, Laguerre polyno-
mials are also categorized as the Jacobi orthogonal polynomials, and are the eigenfunctions
of certain singular Sturm-Liouville [10]. By the use of the series method, the researchers [11]
have studied the Hyers-Ulam stability of the associated homogeneous Laguerre differential
equation in a subclass of analytic functions. For more details, the readers can refer to the
book [12]. The most significant difference between them shows that the orthogonal interval
of the former two class polynomials is [−1, 1] and the later is [0,+∞]. Mathematically
speaking, Laguerre polynomials are solutions to Laguerre’s differential equation

x
d2Ln(x)

dx2 + (1− x)
dLn(x)

dx
+ nLn(x) = 0. (1)
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The recurrence relation of Laguerre polynomials is

Ln+1(x) = (2n + 1− x)Ln(x)− n2Ln−1(x), n ≥ 1 (2)

and Rodrigues’ formula is

Ln(x) =
e−x

n!
d

dx
(
xne−x). (3)

In the same way, the second kind of Chebyshev polynomials are solutions to Chebyshev’s
differential equation

(1− x2)
d2Un(x)

dx2 − 3x
dUn(x)

dx
+ n(n + 2)Un(x) = 0. (4)

The recurrence relation of the second kind of Chebyshev polynomials is

Un+1(x) = 2xUn(x)−Un−1(x), n ≥ 1 (5)

and the correspond trigonometric identity is

Un(cos θ) =
sin((n + 1)θ)

sin θ
. (6)

This paper firstly employs Laguerre polynomials and the second kind of Chebyshev
polynomials to modify the ADM, that is, at the beginning of implementation of ADM,
Laguerre and the second kind of Chebyshev orthogonal polynomials are used to expand
the right hand terms which fail to integrate with parameters. The modified ADM is then
demonstrated by applying it to solve a representable numerical problem which involves
a nonlinear operator and complicated right hand term. The obtained results are studied
to show the superiority of this modified ADM. Moreover, the modified ADM presented
in this paper is compared to ones with the Taylor expansion, the first kind of Chebyshev
polynomials and Legendre polynomials. The results show that the Chebyshev expansion
possesses the absolute advantage in respect of error and approximation order, while the
error derived by Laguerre expansion is about five orders of magnitude higher than the
former method, because each Laguerre polynomial contains all items from the lowest to
the highest, which leads to larger truncation errors. Moreover, the Taylor expansion at zero
makes the error further and further away from the origin.

2. Modification of Adomian Decomposition Method

Before starting our programme, we present a quick review of the ADM. Consider the
differential equation

L(u) +R(u) +N (u) = f (x), (7)

where L is the highest order derivative, which is supposed to be invertible,R is a linear
operator of less order than L, N is a nonlinear operator, and f (x) is the right hand term
which can be considered as a source term.

Suppose u and N (u) can be decomposed as

u(x, t) =
∞

∑
k=0

uk(x, t), N (u) =
∞

∑
k=0

Λk(u0, u1, . . . , uk),

where Λk is the Adomian polynomials of u0, u1, . . . , uk generated by

Λk =
1
k!

dk

dδk

(
N
(

∞

∑
i=0

δiui

))∣∣∣∣∣
δ=0

, k = 0, 1, 2, · · · (8)
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Here, we enumerate several leading terms of Λk,

Λ0 = N (u0),

Λ1 = u1
d

du0
N (u0),

Λ2 = u2
d

du0
N (u0) +

u2
1

2!
d2

du2
0
N (u0),

Λ3 = u3
d

du0
N (u0) + u1u2

d2

du2
0
N (u0) +

u3
1

3!
d3

du3
0
N (u0),

· · · .

(9)

By applying the inverse operator L−1 to (7) with the given conditions, we have

u = Ψ(x) + L−1(g)−L−1R(u)−L−1N (u), (10)

where Ψ(x) is generated by some corresponding initial conditions from integrating the
source term. From the idea of ADM, we can determine all the components of the decompo-
sition solution. The term u0 is given by

u0 = Ψ(x) + L−1 f (x) (11)

and the components of the ADM follow in terms of u0 and hence u can be completely
determined by

uk+1 = −L−1(Ruk)−L−1(N uk) = −L−1(Ruk)−L−1(Λk), k ≥ 0. (12)

The modified ADM in this topic is introduced to solve differential equations where
source term f (x) is not polynomial in general. To perform the modified ADM, f (x) is
expanded in Taylor series for an arbitrary natural number l (at x = 0),

fTayler(x) ≈
l−1

∑
k=0

f (k)(0)
k!

xk. (13)

Hosseini [8] modified the ADM by expanding f (x) in the first kind of Chebyshev polyno-
mials Tk(x)

fT(x) ≈
l−1

∑
k=0

akTk(x) (14)

and Liu [9] modified the ADM by expanding f (x) in Legendre polynomials Pk(x)

fP(x) ≈
l−1

∑
k=0

bkPk(x). (15)

Alternatively, in the present paper, the source term is expressed by Laguerre polynomials
Lk(x)

fL(x) ≈
l−1

∑
k=0

ckLk(x), (16)

and the second kind of Chebyshev polynomials Uk(x)

fU(x) ≈
l−1

∑
k=0

dkUk(x), (17)
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where Ln(x), Uk(x) are the related orthogonal polynomials and we can deduce that

L0(x) = 1,

L1(x) = −x + 1,

L2(x) = x2 − 4x + 2,

L3(x) = −x3 + 9x2 − 18x + 6,

· · · .

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x,

· · · .

Taking the Laguerre expansion as an example and plugging (16) into (11), we have

u0 = L−1(c0L0(x) + c1L1(x) + · · ·+ cl Ll(x)) + Ψ(x),

u1 = −L−1(Ru0)−L−1(Λ0),

u2 = −L−1(Ru1)−L−1(Λ1),

u3 = −L−1(Ru2)−L−1(Λ2),

· · · .

(18)

Alternatively, Wazwaz [13] had rewritten (18) as

u0 = L−1(c0L0(x)) + Ψ(x),

u1 = L−1(c1L1(x))−L−1(Ru0)−L−1(Λ0),

u2 = L−1(c2L2(x))−L−1(Ru1)−L−1(Λ1),

u3 = L−1(c3L3(x))−L−1(Ru2)−L−1(Λ2),

· · · .

(19)

Both (18) and (19) are governing equations of modified ADM using Laguerre polyno-
mials. The n-term approximation of u is obtained from these equations as un = ∑n−1

k=0 uk,
which can be very close to the Laguerre expansion of the exact solution u. Convergence
is well established in [14,15]. Since the decomposition series is very rapidly convergent,
it will be shown by a representative example that the number of terms required to obtain
an accurate solution is very small. Next, we will compare the obtained approximate u to
the ones obtained from the Taylor expansion, Chebyshev expansion, Legendre expansion
and Laguerre expansion to validate the accuracy of the obtained solution as well as the
proposed method.

3. Test Problem

In this section, an initial ordinary differential equation is considered and the problem is
solved by modified ADM (18) with the Taylor expansion uTaylor(x), Chebyshev expansion
uT(x), uU(x), Legendre expansion uP(x) and Laguerre expansion uL(x). Note that the
approximate solution u derived by (18) and (19) has similar behaviour compared to the
corresponding orthogonal polynomials expansion of the exact solution, so we only calculate
the first modified ADM (18).

Consider for 0 ≤ x ≤ 1

u′′ + xu′ + x2u3 = (−2 + 2x2)e−x2
+ x2e−3x2

, (20a)

u(0) = 1, u′(0) = 0, (20b)
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with the exact solution u(x) = e−x2
, which tends to zero at infinity. Compared to (7), we

derive that L = d2

dx2 , L−1 =
∫ x

0

∫ x
0 (·)dxdx R = x d

dx , N (u) = x2u3 and the source term

f (x) = (−2 + 2x2)e−x2
+ x2e−3x2

. Thus, the Adomian polynomials are given by

Λ0 = x2u3
0,

Λ1 = x2(3u2
0u1),

Λ2 = x2(3u2
0u2 + 3u0u2

1),

Λ3 = x2(3u2
0u3 + 6u0u1u2 + u3

1),

· · · .

Setting l = n = 7, we obtain the approximation of u by different orthogonal polynomials.
Case 1. The Taylor expansion of f (x) is written by

fTaylor(x) ≈ −2 + 5x2 − 6x4 +
35x6

6
.

Then, we have

u0(x) = L−1
(
−2 + 5x2 − 6x4 +

35x6

6

)
+ u(0) + u′(0)(x) = 1− x2 +

5x4

12
− x6

5
+

5x8

48
,

u1(x) = −L−1(xu′0(x)
)
−L−1(Λ0) = −

x4

12
+

x6

10
− 17x8

224
+ · · · ,

u2(x) = −L−1(xu′1(x)
)
−L−1(Λ1) = −

x6

90
− 31x8

3360
+

337x10

37,800
+ · · · ,

u3(x) = −L−1(xu′2(x)
)
−L−1(Λ2) =

x8

840
+

x10

840
+ · · · ,

u4(x) = −L−1(xu′3(x)
)
−L−1(Λ3) = −

x10

9450
+ · · · ,

· · · .

Consequently, we obtain

uTaylor(x) = 1− x2 +
x4

3
− x6

9
+

17x8

840
+

x10

18
+ · · · . (21)

Case 2. In terms of the first kind Chebyshev expansion for f (x), we have

fT(x) ≈
6

∑
k=0

akTk(2x− 1), 0 ≤ x ≤ 1,

where the coefficients ak are computed by

a0 =
1
π

∫ 1

−1

fT(0.5x + 0.5)C0(x)√
1− x2

dx,

ak =
2
π

∫ 1

−1

fT(0.5x + 0.5)Ck(x)√
1− x2

dx, k = 1, 2, · · · , 6,

which implies

fT(x) ≈ −2 + 0.0019x + 4.9259x2 + 0.8070x3 − 9.7599x4 + 8.4226x5 − 2.3478x6.
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Consequently, we derive uT(x) by a process similar to Taylor expansion

uT(x) = 1− x2 + 0.0003x3 + 0.4938x4 + 0.0403x5 − 0.2912x6

+ 0.1957x7 − 0.0908x8 − 0.0207x9 + 0.0618x10 + · · · .
(22)

Case 3. In terms of Legendre expansion for f (x), we have

fP(x) ≈
6

∑
k=0

bkPk(2x− 1), 0 ≤ x ≤ 1,

where the coefficients bk are computed by

bk =
2k + 1

2

∫ 1

−1
fP(0.5x + 0.5)Pk(x)dx, k = 0, 1, · · · , 6,

which implies

fP(x) ≈ −1.9996− 0.0141x + 5.0807x2 + 0.2047x3 − 8.6563x4 + 7.4707x5 − 2.0361x6.

Consequently, we derive uP(x) by a process similar to Taylor expansion

uP(x) = 1− x2 − 0.0024x3 + 0.5067x4 + 0.0106x5 − 0.2561x6

+ 0.1768x7 − 0.0896x8 − 0.0178x9 + 0.0614x10 + · · · .
(23)

The above three kinds of polynomial expansions are already proposed and confirmed.
Next, we introduce two classes of orthogonal polynomials to assist with the application
of ADM.
Case 4. In terms of the Laguerre expansion for f (x) proposed in the paper, we have

fL(x) ≈
6

∑
k=0

ckLk(x),

where the coefficients ck are computed by

ck =
1

(k!)2

∫ ∞

0
fL(x)Lk(x)e−xdx, k = 0, 1, · · · , 6,

which implies

fL(x) ≈ −2.3931 + 3.8375x− 1.9648x2 + 0.4388x3 − 0.0466x4 + 0.0023x5 − 0.0001x6.

Consequently, we derive uL(x) by a process similar to Taylor expansion

uL(x) = 1− 1.1966x2 + 0.6396x3 − 0.0476x4 − 0.0740x5 + 0.1245x6

− 0.0368x7 − 0.0875x8 + 0.0704x9 + 0.0052x10 + · · · .
(24)

Case 5. In terms of the second kind Chebyshev expansion for f (x) proposed in the paper,
we have

fU(x) ≈
6

∑
k=0

dkUk(x),

where the coefficients dk are computed by

dk =
2
π

∫ ∞

0
fU(x)Uk(x)

√
1− x2dx, k = 0, 1, · · · , 6,
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which implies

fU(x) ≈ −2 + 0.0035x + 4.8999x2 + 0.9414x3 − 10.0588x4 + 8.7217x5 − 2.4583x6.

Consequently, we derive uU(x) by a process similar to Taylor expansion

uU(x) = 1− x2 + 0.0006x3 + 0.4917x4 + 0.0470x5 − 0.3008x6

+ 0.2020x7 − 0.0916x8 − 0.0215x9 + 0.0621x10 + · · · .
(25)

Finally, in order to demonstrate the accuracy and efficiency of the modified ADM with
orthogonal polynomial expansions, we draw the approximate solutions and error curves
of various expansions. For comparing the errors of the same order of magnitude accurately,
we plotted the absolute errors |u− uTaylor|, |u− uL| in the same coordinate system (see
Figure 1) and |u− uT |, |u− uP| , |u− uU | in another coordinate system (see Figure 2).

|u-uL|

|u-uTaylor|

0.2 0.4 0.6 0.8 1.0
x

0.005

0.010

0.015

0.020

absolute error

Figure 1. The absolute error between exact solution and uL and uTaylor.

|U-UT |

|U-UU|

|U-UP|

0.2 0.4 0.6 0.8 1.0

1×10-7

2×10-7

3×10-7

4×10-7

5×10-7

Figure 2. The absolute error between exact solution and uT , uP and uU .

The results show that the Chebyshev and Legendre expansions possess the absolute
advantage in respect of error (about 10−7), while the errors derived by Laguerre and Taylor
expansions are about five orders of magnitude higher than the former methods (about
10−2), because each Laguerre polynomial contains all items, from the lowest to highest,
which leads to larger truncation error. Moreover, the Taylor expansion at zero makes
the error further and further away from the origin. From the point of view of errors, we
recommend finite interval approximations which include the Chebyshev expansion and
Legendre expansion.

4. Concluding Remarks

In this paper, a new efficient and practical modification of the Adomian decomposi-
tion method is proposed with Laguerre polynomials and the second kind of Chebyshev
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polynomials. These orthogonal polynomials can be applied to further improve the ADM
and the approximation solution is more accurate than the general ADM. By comparison,
Legendre polynomials provide estimations that are a little better than those of Cheby-
shev polynomials, which is a contradiction with the research of [9]. On the other hand,
the orthogonal interval of the Laguerre polynomials is [0,+∞] so they can be applied to
approximate the functions which define a semi-infinite interval. Take the example in this
article, the exact solution is u(x) = e−x2

, which tends to zero at infinity, and the right hand
term is f (x) = (−2 + 2x2)e−x2

+ x2e−3x2
. In fact, the definition interval of u(x) and f (x) is

[−∞,+∞], so we can use other Hermite polynomials. However, for comparison with other
polynomials in one example, such as Chebyshev polynomials, Legendre polynomials and
Lagurre polynomials, we chose the common definition interval [0, 1]. Therefore, we can
choose the most suitable approximation method according to different definition intervals.
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