

Mathematics 2021, 9, 1779. https://doi.org/10.3390/math9151779 www.mdpi.com/journal/mathematics

Article

Performance of Enhanced Multiple-Searching Genetic

Algorithm for Test Case Generation in Software Testing

Wanida Khamprapai 1,2, Cheng-Fa Tsai 2,*, Paohsi Wang 3 and Chi-En Tsai 4

1 Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science

and Technology, Pingtung 91201, Taiwan; wanida.kpp@gmail.com
2 Department of Management Information Systems, National Pingtung University of Science and

Technology, Pingtung 91201, Taiwan
3 Department of Food and Beverage Management, Cheng Shiu University, Kaohsiung 83347, Taiwan;

k0627@gcloud.csu.edu.tw
4 Department of Multimedia Business Unit II, Realtek Semiconductor Corporation, Hsinchu 30076, Taiwan;

t82327@gmail.com

* Correspondence: cftsai@mail.npust.edu.tw; Tel.: +886-08-770-3201 (ext. 7906)

Abstract: Test case generation is an important process in software testing. However, manual

generation of test cases is a time-consuming process. Automation can considerably reduce the time

required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered

to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified

version of the GA to solve the multicast routing problem in network systems. MSGA can be

improved to make it suitable for generating test cases. In this paper, a new algorithm called the

enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional

processes for selecting the best chromosomes in the GA process, is proposed. The performance of

EMSGA was evaluated through comparison with seven different search-based techniques,

including random search. All algorithms were implemented in EvoSuite, which is a tool for

automatic generation of test cases. The experimental results showed that EMSGA increased the

efficiency of testing when compared with conventional algorithms and could detect more faults.

Because of its superior performance compared with that of existing algorithms, EMSGA can enable

seamless automation of software testing, thereby facilitating the development of different software

packages.

Keywords: search-based test case generation; genetic algorithm; branch coverage; object-oriented

1. Introduction

Software testing is an important process in the software development life cycle. It is

performed to investigate the quality of software and to evaluate the risks in software

implementation. Software testing involves both valid and invalid inputs and includes the

processes of executing the developed software and checking for the expected responses.

Several techniques can be used to automatically produce inputs that conform to the

behavior of the software being tested, and these techniques provide high coverage in a

given branch, line, condition, or path. Various techniques have been proposed to reduce

the cost, resources, and time involved in the testing process.

The genetic algorithm (GA) is a popular and efficient search-based technique for test

case generation. GAs have been widely used to create suitable test cases [1–4]. Suitable

test case generation helps to reduce costs in software testing given the huge cost of

creating test cases, which accounts for more than 50% of the total cost of developing a

program [5]. Researchers have investigated methods to enhance the solution efficiencies

of GAs. Multiple-searching genetic algorithm (MSGA) [6] is a successfully solved optimal

Citation: Khamprapai, W.;

Tsai, C.-F.; Wang, P.; Tsai, C.-E.

Performance of Enhanced

Multiple-Searching Genetic

Algorithm for Test Case Generation

in Software Testing. Mathematics

2021, 9, 1779. https://doi.org/

10.3390/math9151779

Academic Editor: Vassilis C.

Gerogiannis

Received: 22 June 2021

Accepted: 23 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays

neutral with regard to jurisdictional

claims in published maps and

institutional affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(http://creativecommons.org/licenses

/by/4.0/).

Mathematics 2021, 9, 1779 2 of 19

solution with high probability for routing in network system. MSGA is attractive to utilize

in other fields. From previous work [7], MSGA can generate test cases for small to medium

scale software but cannot increase the percentage of coverage for complex software. This

means test cases generated with MSGA cannot increase the number of executed

statements or source code in complex software. Therefore, while MSGA may be suitable

for generating test cases for small to medium scale software, it may not be flexible enough

for test case generation for complex software. Some algorithms may be suitable for

generating test cases for small to medium scale software but may not succeed in complex

cases. For this reason, we present a new algorithm for improving MSGA to make it

suitable for generating test cases. We expect that the test case generation using our

algorithm will also detect more errors or faults in the software and therefore reduce the

cost of software testing by creating the minimum number of test cases while getting the

maximum coverage. Further, our algorithm can create test cases for complex software. In

this study, we used MSGA to generate test cases for software testing because MSGA can

reach the global optimum faster than a traditional GA [7]. In addition, we refactored the

algorithm to solve the problem of executing the source code for more access to the

statements.
In this study, a new algorithm called the enhanced multiple-searching genetic

algorithm (EMSGA), which is an improved MSGA incorporating some additional

processes, was developed. The genetic operators constitute the basic mechanism of the

GA, namely selection, crossover, and mutation. Additional processes in EMSGA include

the evaluation of chromosomes and selection of the best chromosomes to add to the next

generation. In the original MSGA, all the chromosomes that are executed with the genetic

operators are added to the next generation. EMSGA was expanded in EvoSuite, and its

effectiveness was compared with that of MSGA and seven other techniques available in

EvoSuite. The SF110 corpus and nine open-source Java projects developed by Google and

the Apache Software Foundation were employed as case studies for generating test cases

using the aforementioned algorithms.

The remainder of this paper is organized as follows. Section 2 discusses previous

research works related to this study. Section 3 describes search-based techniques for

generating test cases, including representation and fitness functions. The proposed

algorithm is also introduced in this section. Section 4 presents the problem instances and

tools used to evaluate EMSGA. Section 5 presents the experimental results. Section 6

reports threats to the validity of the algorithm. A discussion of the results is presented in

Section 7. Finally, Section 8 concludes the paper.

2. Related Work

In software engineering, GA has been successful in many areas, such as software

design, effort estimation, and maintenance. For software design [8], GA can help

migration from structure programming to object-oriented programming, and the results

are better than greedy algorithm and Monte Carlo. In software effort estimation, GA is

stable, has higher accuracy than a random approach, and consists of an exhaustive

framework [9]. Furthermore, GA is utilized to manage maintenance packages taking into

account the cost-effectiveness of the package and to reduce human bias [10].
Various search-based techniques are available for test case generation. GA is one of

the most widely used techniques. Many GAs have been remodeled for increased search

efficiency. For example, a population aging process was added in a traditional GA without

modifying any original parameters of the GA to reduce the number of test cases and

increase the test coverage [4]. The features of GA and ant colony optimization (ACO) were

combined to increase the efficiency and health of test cases [11]. GA and negative selection

algorithms were merged to reduce the generation of duplicate test cases [12]. The results

of the studies indicate that these improved algorithms are capable of efficiently generating

test cases, even though the algorithms were originally improved for other applications.

MSGA is an improved GA for network systems. Even though it was improved for and

Mathematics 2021, 9, 1779 3 of 19

utilized in another field, we believe that an enhanced version of MSGA can increase the

efficiency of test case generation.

EMSGA reuses and refactors existing algorithms. The reusable nature of this

algorithm [13] helps to increase the reliability of results, provides faster algorithm

development, and reduces costs. Algorithm refactoring is caused by insufficient existing

algorithms to perform certain tasks. Consequently, algorithms are improved to suit the

task. Algorithm refactoring is challenging in terms of selecting some parts of an algorithm

to improve the performance or adding some processes to make it suitable for solving a

given problem. Several studies have examined refactoring. For example, Liu et al. (2020)

[14] studied automated refactoring for real-time systems to help reduce the effort required

by programmers to isolate portions for the execution of real-time systems under

limitations. Several researchers have used the SF110 corpus and EvoSuite to compare

newly developed algorithms and existing algorithms. For example, the EvoTLBO

algorithm was extended into EvoSuite to compare the results with traditional GA and

monotonic GA using 50 random classes from SF110 [15]; EvoSuite and SF110 were utilized

to compare the performance of memetic algorithm with traditional GA [16]; and nontrivial

classes were selected from SF110 to compare the efficiency of the DynaMOSA algorithm

with the many objective sorting algorithm (MOSA), the whole suite approach with archive

(WSA), and the traditional whole suite approach (WS) [17]. The SF110 corpus is

considered as a benchmark for test generation [18]. The SF110 corpus contains 110 Java

projects from SourceForge, 100 random projects, and the 10 most popular projects in

SourceForge. EvoSuite is an automatic test generation tool for Java classes based on GA.

In the present study, the SF110 corpus and EvoSuite were considered sufficient to measure

the effectiveness of the proposed algorithm for test case generation. EMSGA was tested

using SF110, and its effectiveness was compared with that of seven algorithms available

in EvoSuite.

3. Search-Based Test Case Generation
The search-based technique is widely used for test case generation [19–22]. The

following subsections describe some of the most well-known search-based techniques

before introducing the proposed EMSGA.

3.1. Representation

A population of candidate solutions is represented as a test suite [17,22], which is a

collection of test cases 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}. Each test case is composed of various statements

𝑡 = ⟨𝑠1, 𝑠2, … , 𝑠𝑙⟩, where l is the total number of statements. A statement [23] can be a

variable declaration or a method call and can be of several different types, namely a

primitive, a constructor, a method, an array, or an assignment.

Figure 1 presents the generated test cases from Java code by considering the required

variables and methods to generate statements for testing the class under test. When

considering Java code, the integer array variable is a required variable to maintain the

numbers for sorting. Therefore, the integer array variable is declared in the test case. The

number of statements depends on the instruction to be used for each test. The length of

either the test case or the chromosome depends on the number of statements. The

population evolves iteratively to yield better solutions. The processes are repeated until a

stopping criterion is satisfied.

Mathematics 2021, 9, 1779 4 of 19

Figure 1. Generated test cases from source code.

3.2. Fitness Function

In software testing, a fitness function is used to evaluate the ability of the generated

test suites to execute the source code of the program. Typically, fitness functions are

assessed based on the branch coverage metric. Complete branch coverage refers to all

control structures being executed and all lines of code being tested. This metric is defined

as follows [24,25]:

𝑓(𝑇) = |𝑀| − |𝑀𝑇| + ∑ 𝑑(𝑏, 𝑇)

𝑏∈𝐵

, (1)

where |𝑀| denotes the total number of methods, |𝑀𝑇| is the number of methods

executed in test suite T, and 𝑑(𝑏, 𝑇) represents the branch distance for each branch b on

test suite T that b is an element of in a set of branches B. The branch distance 𝑑(𝑏, 𝑇) is

defined as follows:

𝑑(𝑏, 𝑇) = {
0 if the branch has been covered,
𝑑𝑚𝑖𝑛(𝑏, 𝑇) if the predicate has been executed at least twice,

1 otherwise.

 (2)

3.3. Genetic Algorithms

GAs [4,26] solve problems through the use of three basic operators: selection,

crossover, and mutation. In GA, a chromosome is defined as a set of parameters that

represent a proposed solution to the problem that the GA is being used to solve. The

selection operator selects certain chromosomes as parent chromosomes. Chromosomes

are selected on the basis of their fitness values. Chromosomes with higher fitness values

have a higher chance of being selected. The crossover and mutation operators are applied

to the parent chromosomes to produce offspring for the next generation. The crossover

operator exchanges certain genes of two chromosomes. The mutation operator changes

the value of some genes in a few chromosomes.

Several researchers have proposed techniques to improve the traditional GA for

enhancing its solution efficiency and enabling its application in complex problems. These

efforts have relied on adjustments of factors or integration of GAs with other strategies.

For example, the monotonic GA [26] involves additional processes after the mutation

process in the traditional GA. These additional processes measure the fitness values to

determine the best offspring or the best parent for the next population; in contrast, the

Mathematics 2021, 9, 1779 5 of 19

traditional GA increases the number of mutated offspring in the next population and then

calculates the fitness values of all chromosomes. Another improved version of GA is the

steady-state GA [27,28], in which the fitness values of the mutated offspring are

determined and then the offspring is compared with the parent. If the offspring is better

than the best parent, the offspring replaces the parent in the current population. The

advantages of monotonic GA and steady-state GA are similar, namely removing duplicate

chromosomes and ensuring the best chromosome is not discarded. A breeder GA [29]

differs from the traditional GA in that it uses the principle of breeding, which involves

selecting the fittest chromosomes and reproducing using those chromosomes. The breeder

GA is more precise as it utilizes the science of breeding [30]. A cellular GA [31] is an

improved GA that selects the best offspring after the crossover operator has been applied.

The best offspring is mutated, and the fitness value is determined. The selection of cellular

GA is restricted to the overlapping neighborhood producing slow solutions [32,33]. Table

1 summarizes the characteristic of each GA.

Table 1. Comparison of GA-based characteristics.

Algorithm Characteristic of Algorithm

Traditional GA
Applies only three basic operators: selection, crossover, and

mutation

Monotonic GA
Still applies three basic operators but adds some processes to select

the best chromosome for the next generation.

Steady-state GA

Adds some processes to select the best chromosome. Similar to the

monotonic GA but replaces the best chromosome in the current

population.

Breeder GA
Applies the principle of breeding to select chromosomes before

performing the basic operators.

Cellular GA
Performs mutation operator on only one crossed chromosome.

Chromosomes are selected for mutation by choosing at random.

3.4. Chemical Reaction Optimization (CRO)

Chemical reaction optimization (CRO) [34] is a search-based technique that combines

the advantages of GA and simulated annealing. CRO solves problems using a set of

molecules. Each molecule possesses a molecular structure, potential energy, and kinetic

energy. The molecular structure represents a possible solution that does not have any

specific format. The potential energy is the fitness value of the corresponding molecule.

The kinetic energy quantifies the tolerance of the worst solution. The iterative processes

of CRO are similar to those of GA. A basic CRO involves four types of reactions: on-wall

ineffective collision and decomposition are reactions where a single molecule hits a wall

of the surface, and intermolecular ineffective collision and synthesis are reactions where

multiple molecules collide with each other.

On-wall ineffective collision represents a local search. There is minimal change in the

structure or properties of the molecule during this process. Decomposition is a type of

collision that produces two or more new molecules. This process represents a global

search. Intermolecular ineffective collision is the collision of multiple molecules, which

produces minimal changes in the structure or properties of the molecules, similar to on-

wall ineffective collision. Two or more collided molecules undergo small changes in

structure or properties. Synthesis is a reaction that represents a global search. In this

reaction, multiple colliding molecules fuse into a single molecule.

Mathematics 2021, 9, 1779 6 of 19

3.5. Random Search

Random search is the simplest search-based technique. It involves iterative searches

until an optimal solution is obtained. In each iteration, the solution is incremented with a

random vector. The fitness value of the modified solution is determined. If the modified

solution is better than the previous solution, the former replaces the latter. Otherwise, the

previous solution is retained. Random search is often utilized for comparison with other

techniques [35]. This technique can effectively solve large-scale problems [36].

4. Proposed Algorithm: Enhanced Multiple-Searching Genetic Algorithm (EMSGA)

In the multiple-searching genetic algorithm (MSGA) introduced by Tsai et al. [6], two

types of chromosomes are created to prevent the search from falling into a local optimum.

The MSGA utilizes the candidate mechanism to create more chromosomes with the same

features, resulting in better chromosomes. The MSGA has been successfully used to find

the optimal multicast route in network systems. We believe that the MSGA can also be

integrated with other strategies to increase search ability. Therefore, we propose EMSGA,

a regeneration MSGA with the addition of a feature-selection strategy. After the mutation

operator is employed and the fitness value is determined, only chromosomes from the

best offspring or the best parent will be selected to be included in the next-generation

population. If the mutated offspring are better than the parents, then they replace the

parents in the next generation. Otherwise, the parents are retained. Choosing the best

chromosome increases the chances of reaching the optimal solution. Generally, two

mutated offspring are added to the next-generation population, and the parents are

discarded. The processes involved in EMSGA are similar to those in MSGA, with the

exception of the aforementioned best chromosome selection mechanism after the

mutation process (Figure 2). Algorithm 1 shows the pseudocode of EMSGA.

(a) GAs

(b) MSGAs

Mathematics 2021, 9, 1779 7 of 19

(c) EMSGAs

Figure 2. Flowcharts of GA (a) [7], MSGA (b) [7], and EMSGA (c). The red box indicates the additional processes in

EMSGA. The black dashed box displays the additional processes in MSGA.

Algorithm 1 Pseudocode for EMSGA

1: Procedure EMSGA()

2: Create initial chromosomes

3: Evaluate fitness value of initial chromosomes and order by descending

4: while not terminal condition do

5: Select half chromosomes with the highest fitness value //Conservative chromosomes

6: Call procedure CreateExplorerChromosomes(Conservative chromosomes)

7: Evaluate fitness value of explorer chromosomes

8: Combine Conservative and Explorer chromosomes

9: Call procedure Crossover(all chromosomes)

10: //Mutation of EMSGA is the same as traditional GA

11: Mutate Conservative chromosomes with M1

12: Mutate Explorer chromosomes with M2

13: Evaluate fitness value of the mutated chromosomes

14: if the offspring is better than the best parent then

15: Add offspring in the next population

16: else

17: Add parent in the next population

18: end if

19: end while

20: return chromosomes

21: end procedure

22:

23: Procedure CreateExplorerChromosomes(Conservative chromosomes)

24: for each conservative chromosome i

25: for each gene of conservative chromosome j of i

26: Keep jth gene of ith conservative chromosome to jth candidate gene set

27: end for

28: end for

Mathematics 2021, 9, 1779 8 of 19

29: Creates explorer chromosomes with a number equal to the number of conservative

chromosomes

30: for each explorer chromosome i

31: for each candidate gene set j

32: Select one gene from jth candidate gene set

33: Preserve the selected gene in jth gene of ith explorer chromosome

34: end for

35: end for

36: return explorer chromosomes

37: end procedure

38:

39: Procedure Crossover(all chromosomes)

40: Set a random number r

41: if r is less than crossover probability then

42: for half of all chromosomes from i = 1 to (population size / 2)

43: Select ith chromosome and (population size − i + 1)th chromosome

44: Split the selected chromosomes with crossover method

45: Cross both chromosomes

46: end for

47: end if

48: return chromosomes

49: end procedure

The EMSGA process starts with the creation of initial chromosomes. Then, the fitness

value of the population is determined, and half of the chromosomes with the highest

fitness values are retained. The rest of the chromosomes are discarded. The preserved

chromosomes are called the conservative chromosomes. Next, the candidate mechanism

is utilized to build the explorer chromosomes by selecting the genes of the conservative

chromosomes. The candidate mechanism is created to gather genes of all conservative

chromosomes that are in the same position into the same candidate gene set. Each

candidate gene set selects only one gene to create as a gene of explorer chromosome.

Figure 3 illustrates the method for creating an explorer chromosome. Thereafter, crossover

and mutation are performed on the conservative and explorer chromosomes separately.

Both types of chromosomes are assigned the same crossover probability. The mutation

probabilities are defined differently. At the end of each iteration, the chromosomes are

evaluated in terms of the fitness value, and the best chromosomes are selected and added

to the next-generation population.

Mathematics 2021, 9, 1779 9 of 19

Figure 3. Mechanism of creating explorer chromosome. Red boxes demonstrate which one gene from each candidate gene

set was chosen.

5. Experimental Evaluation

The aim of this study was to evaluate the capability of EMSGA to generate test cases

and to compare the feasibility and effectiveness of EMSGA with those of other algorithms.

5.1. Problem Instances

The selection of problem instances is important for any empirical study on automatic

test case generation. This study utilized the SF110 corpus (the details of SF110 are available

online: https://www.evosuite.org/experimental-data/sf110/ (accessed on 4 March 2020))

[18] and nine open-source Java projects developed by Google and the Apache Software

Foundation to evaluate EMSGA. The SF110 corpus is widely used as a benchmark

[17,24,37]. It contains 110 projects that were written with the Java language. Not all classes

in the SF110 corpus were employed in this experiment. Only 203 classes were chosen

based on the selection in a previous study [38]. Furthermore, nine problem instances from

Google and the Apache Software Foundation were chosen uniformly and at random

based on their sizes and functionalities (Table 2), consisting of a total of 1382 classes.

EvoSuite was applied to a total of 203 + 1382 = 1585 classes.

Mathematics 2021, 9, 1779 10 of 19

Table 2. Details of open-source Google and Apache projects. Note: the second column lists the

number of non-commenting source lines of code reported by JavaNCSS

(http://www.kclee.de/clemens/java/javancss/ (accessed on 10 December 2020)). The fourth column

lists the number of branches reported by EvoSuite.

Problem Instances No. of Lines No. of Classes No. of Branches

Java Certificate Transparency 955 30 178

Commons CLI 1480 22 961

Commons Codec 5545 68 3050

Commons Email 1505 20 209

Commons Jelly 4688 95 636

Commons Math3 65,389 918 28,450

Commons Numbers 317 5 225

Joda-Time 19,441 166 9924

Truth 4117 58 223

Total 103,437 1382 43,856

5.2. Test Generation Tool

The testing tool employed EvoSuite (EvoSuite can be downloaded from

http://www.evosuite.org (accessed on 20 February 2020)) [24] to generate test cases for

Java code. EvoSuite is widely used in software testing [3,39,40]. It utilizes search-based

methods, including genetic algorithms, to generate test cases using Java bytecode.

Furthermore, EvoSuite supports various coverage criteria to determine the quality of a

solution.

In the experiment, the proposed algorithm was implemented as an extension to the

EvoSuite. To extend the new algorithm in Evosuite, a developer must create a new class

in the client module and extend the abstract class GeneticAlgorithm. The EMSGA class

implemented the basic methods for GA that EvoSuite prepares. In addition, the EMSGA

class added some processes for creating two types of chromosomes and selected the best

chromosome. Test cases of each algorithm were automatically generated, and problem

instances were executed through EvoSuite. The performance of EMSGA was compared

with that of the MSGA, traditional GA, monotonic GA, steady-state GA, breeder GA,

cellular GA, CRO, and random search. These search-based methods are provided in

EvoSuite. The coverage achieved by the algorithms was assessed in terms of the branch

coverage metric. Search budget configuration uses EvoSuite’s default of 60 s [41]. Search

budget is the time for generating test cases of the algorithm each time. The experiment

was independently repeated 10 times.

The parameter settings influence the performance of search-based methods. The

EvoSuite guides the default values (e.g., selection function, crossover function, crossover

probability, mutation function, mutation probability, population size, and chromosome

length) for test case generation. The default values of EvoSuite are the approximate values

that are suitable for generating test cases that are based on GA. Table 3 shows the default

values in EvoSuite. The same parameter setting may not be enough to fully extract the

efficiency of the algorithm [42]. As Arcuri and Fraser (2013) [43] pointed out, the default

values of EvoSuite are sufficient to evaluate the performance of algorithms for test case

generation, whereas the suitable parameter setting is time-consuming and may or may

not produce good results for algorithms. In addition, Črepinšek et al. (2014) [44]

perceptively stated that all algorithms should be examined under the same conditions.

Mathematics 2021, 9, 1779 11 of 19

Table 3. Default values of parameters in Evosuite.

Parameters Default Values

Population size 50

Chromosome length 40

Selection function Rank

Crossover function Single point relative

Crossover probability 0.75

Mutation function Uniform

Mutation probability 0.75

Search budget 60 s

Therefore, the default values for all nine algorithms were used in the experiment.

EMSGA assigns different mutation probabilities to the conservative and explorer

chromosomes. If the explorer chromosomes are defined as having a higher mutation

probability than the conservative chromosomes, the optimal solution can be obtained [6].

Several researchers have set the probability as 1/l for the mutation operator, where l is the

chromosome length [43,45,46]. Accordingly, mutation probabilities of 1/l and 0.75

(default) were used for the conservative and the explorer chromosomes, respectively, in

this study.

The experiment involved 1585 × 9 × 10 = 142,650 runs of EvoSuite with the

aforementioned settings. The search in each run was limited to 60 s. The experiment

required at least 142,650/(60 × 24) = 99.0625 days of computational time. It was conducted

on a Windows 10 Professional (Seattle, WA, USA) ×64 system having an Intel® Core i7

CPU with 3.40 GHz and 16 GB of RAM.

5.3. Experimental Analysis

The coverage achieved was evaluated based on the branch criterion, number of test

cases (#T), and mutation score. All the experimental results were analyzed via

nonparametric Mann–Whitney U tests with a significance level (p-value) of 0.05, the

Vargha–Delaney 𝐴̂12 effect size, and a 95% confidence interval for the branch coverage

achieved. Boxplots and marginal distribution plots were created using RStudio Version

1.1.383.

6. Experimental Results

The experimental results for EMSGA and the competing algorithms are presented

and analyzed in this section. The experimental results are tabulated in Table 4, which

shows the standard deviation (𝜎), a 95% confidence interval (CI) of the branch coverage,

the p-value for the Mann–Whitney U tests, and the Vargha-Delaney 𝐴̂12 effect size.

Table 4. Results of test case generation using each algorithm.

Algorithm
Branch Coverage Mut. Score

#T p-Value
𝑨̂𝟏𝟐

(EMSGA:Others) Avg. 𝝈 CI Avg. 𝝈 CI

EMSGA 0.5900 0.0032 (0.5877, 0.5923) 0.4174 0.0038 (0.4146, 0.4201) 180.49351 - -

MSGA 0.5846 0.0033 (0.5823, 0.5870) 0.4166 0.0043 (0.4135, 0.4196) 181.5325 0.00578 0.87

GA 0.5829 0.0040 (0.5801, 0.5858) 0.4159 0.0046 (0.4127, 0.4192) 177.8818 0.00168 0.92

Monotonic GA 0.5855 0.0063 (0.5810, 0.5901) 0.4162 0.0050 (0.4127, 0.4198) 182.3091 0.03752 0.74

Steady-State GA 0.5699 0.0036 (0.5673, 0.5725) 0.4168 0.0023 (0.4152, 0.4185) 178.7455 0.00018 1

Breeder GA 0.5821 0.0059 (0.5779, 0.5864) 0.4167 0.0040 (0.4138, 0.4195) 180.0545 0.00466 0.88

Cellular GA 0.5588 0.0034 (0.5563, 0.5612) 0.4056 0.0044 (0.4024, 0.4087) 174.2039 0.00018 1

CRO 0.5717 0.0040 (0.5688, 0.5746) 0.4120 0.0062 (0.4076, 0.4164) 177.9416 0.00018 1

Random search 0.5683 0.0036 (0.5657, 0.5709) 0.4127 0.0025 (0.4109, 0.4144) 179.5857 0.00018 1

EMSGA achieved the highest branch coverage (0.5900). This means test cases of

EMSGA can execute 59% of the source code of the class test. The branch coverage of

Mathematics 2021, 9, 1779 12 of 19

EMSGA obtained that similar to the monotonic GA. However, EMSGA generated fewer

test cases than the monotonic GA due to the limited search budget. Each algorithm had

60 s to search for the optimal test cases for each class. Although EMSGA generated fewer

cases, the branch coverage of EMSGA was higher. This means that EMSGA is more

efficient than monotonic GA. In terms of the mutation score, EMSGA achieved the best

performance. The mutation score represents the number of faults that can be detected in

the test cases, which is a measure of the quality of the test cases generated by each

algorithm [47]. The 𝐴̂12 measure is a comparison of effect size between the EMSGA and

the others; if 𝐴̂12 > 0.5, it means EMSGA can beat that algorithm more than 50% of the

time. For example, 𝐴̂12 = 0.74 means EMSGA can beat the monotonic GA 74% of the time.

The values of this metric for all the algorithms were found to be greater than 0.5. This

means that the EMSGA can generate higher-quality test cases than the other algorithms.

Considering the values of all the metrics, EMSGA clearly outperformed MSGA in

most categories. Furthermore, specifically in terms of the 𝐴̂12 measure, EMSGA

performed significantly better than MSGA (average 𝐴̂12 effect size was 0.93). In the

Mann–Whitney U tests, EMSGA exhibited a p-value of less than 0.05. From a comparison

between EMSGA and MSGA, it can be concluded that EMSGA possesses a more effective

best chromosome selection process due to the addition of genetic operators and is hence

more efficient than the traditional MSGA. The higher mutation score implies that EMSGA

is better at detecting faults than the other algorithms.

The distributions of the average branch coverage and average mutation scores

obtained from the 1585 classes during the execution of the test cases generated by each

algorithm are shown in Figure 4. The length of the box indicates the distribution of values

between the 25% and 75% quantiles. The horizontal line in the box represents the median

value. The dot in the box represents the mean value. The vertical lines indicate the smallest

and largest values outside the middle 50%. The dots outside the box denote the outlier

values. Despite the similar distributions of coverage and mutation score for all the

algorithms, outliers of mutation score were observed across all the algorithms (see Figure

4b) except EMSGA and random search. This suggests that EMSGA and random search

can detect up to 100% of the faults, while the other algorithms can detect approximately

80–90% of the faults (the outliers represent the undetected faults). Considering the

distribution of coverage (see Figure 4a), EMSGA exhibited a higher average coverage than

random search. Furthermore, EMSGA presented a narrower distribution, that is, less

scattered data.

(a) Branch coverage criterion (b) Mutation score

Figure 4. Coverage and mutation scores achieved by each algorithm.

0

25

50

75

100

B
re

e
d
e
r

G
A

C
e
ll
u
la

r
G

A

C
R

O

E
M

S
G

A

M
o
n
o
to

n
ic

 G
A

M
S

G
A

R
a
n
d
o
m

 s
e
a
rc

h

S
ta

n
d
a
rd

 G
A

S
te

a
d
y
-S

ta
te

 G
A

Algorithms

%
 B

ra
n
c
h
 c

o
v
e
ra

g
e

0.00

0.25

0.50

0.75

1.00

B
re

e
d
e
r

G
A

C
e
ll
u
la

r
G

A

C
R

O

E
M

S
G

A

M
o
n
o
to

n
ic

 G
A

M
S

G
A

R
a
n
d
o
m

 s
e
a
rc

h

S
ta

n
d
a
rd

 G
A

S
te

a
d
y
-S

ta
te

 G
A

Algorithms

M
u
ta

tio
n
 s

c
o
re

Mathematics 2021, 9, 1779 13 of 19

Figure 5 presents the distributions of the branch coverage, number of test cases, and

mutation score achieved by each algorithm. Each marginal distribution displays the

average of each metric (dashed line) and the marginal density. The marginal density is the

solid line on the right side of each marginal distribution plot that indicates the distribution

of results. The average branch coverage of all the algorithms was 57.71% (Figure 5a). Five

algorithms achieved values exceeding the average, namely EMSGA, MSGA, standard GA,

monotonic GA, and breeder GA. In terms of the number of test cases (Figure 5b) as well,

four algorithms achieved values better than the average (179.19 test cases), namely

EMSGA, MSGA, monotonic GA, breeder GA, and random search. All algorithms

exhibited mutation scores above the average (0.41). Thus, EMSGA achieved values

exceeding the average for all three evaluation metrics. The ratio of classes reached branch

coverage within each 10% branch coverage interval, as shown in Figure 6. For example,

35% of all classes that were tested in the test cases generated by EMSGA achieved a branch

coverage between 81% and 100%. From the experimental results, it is evident that EMSGA

is feasible and effective for generating test cases.

Figure 7 displays the association between the number of test cases and the achieved

branch coverage when problem instances were executed using test cases of each

algorithm. Several problem instances indicated the EMSGA achieved greater or equal

branch coverage while the number of test cases was less than the others. The problem

instance Truth is a small-scale program, and the test cases of all algorithms executed a

similar number of source code.

(a) Branch coverage criterion (b) Number of test cases

Mathematics 2021, 9, 1779 14 of 19

(c) Mutation score

Figure 5. Average values of metrics for each algorithm.

Figure 6. Proportion of classes for different branch coverage intervals.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

EMSGA MSGA Monotonic

GA

GA Steady-state

GA

Breeder GA Cellular GA CRO Random

search

R
at

io
 o

f
cl

as
se

s

Coverage interval

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mathematics 2021, 9, 1779 15 of 19

(a) Commons CLI (b) Commons Codec (c) Commons Email

(d) Commons Jelly (e) Commons Math3 (f) Commons Numbers

(g) Java Certificate Transparency (h) Joda-Time (i) SF110

(j) Truth

Figure 7. Problem instances that were evaluated with each algorithm.

Mathematics 2021, 9, 1779 16 of 19

7. Threats to Validity

Based on the results obtained, threats to internal validity are related to factors

affecting the behavior of the software under test [48]. One such factor observed in the

experiment was the number of test cases generated by all algorithms. Single testing might

be inadequate for summarizing the performance of the algorithms in terms of generating

test cases. In this experiment, each algorithm was run 10 times with the same tools.

Furthermore, all parameters were defined with the same default values.

Threats to external validity are related to the generalization of the results beyond the

scope of experimental analysis [22]. The SF110 corpus and nine open-source Java projects

developed by Google and the Apache Software Foundation were utilized as case studies,

which required a large number of experiments to be conducted. In this study, a total of

1585 classes were used, which included 203 classes from the SF110 corpus chosen based

on previous studies [37] and all classes of the nine open-source Java projects. The reported

results are limited to the search-based techniques employed in the experiments.

8. Discussion

EMSGA modifies the MSGA processes by comparing the parent and offspring and

choosing the better chromosomes for the next generation. The selection of the better

chromosome as input to the next generation allows for approaching the optimal solution.

Our experimental results are in accordance with the results of previous experiments,

which indicates that the branch coverage increases when a better chromosome is selected.

For example, the monotonic GA achieved better results than the traditional GA [15,22].

Our results show that EMSGA can achieve a higher branch coverage, generate more test

cases, and obtain a higher mutation score than MSGA.

One of the contributions of this research is our examination of the efficiency of

EMSGA by extending it to EvoSuite, which is an automatic tool for generating test cases.

The results of this application provide the number of test cases, the percentage of

coverage, and mutation score. The results also indicate that EMSGA achieves a similar

coverage with fewer test cases compared with monotonic GA. This is probably because

the population of EMSGA contains two types of chromosomes, namely conservative and

explorer chromosomes. The explorer chromosomes are created from high-fitness

chromosomes. The main objective of software testing is to minimize the number of test

cases and increase the coverage. The number of test cases affects the software

development cost [5,49]. Although EMSGA produces fewer test cases than monotonic GA

does in 60 s, the former achieves a higher coverage for the same number of test cases. A

comparison of the efficiency between the existing algorithms in EvoSuite and EMSGA

suggests that, in test case generation, the branch coverage may not be enough to clearly

demonstrate the difference between results. The finding is consistent with Campos et al.

(2018) [21], who indicated that the efficiencies of algorithms in EvoSuite may provide little

difference in results for generating test cases. This could be due to a limitation on setting

parameters, such as population size, basic function, or timing. In particular, as Fraser and

Arcuri (2015) [50] pointed out, achieving a certain percentage of branch coverage and

mutation score for a limited time may lead to higher mutation scores, but the coverage

may be lower. The above experimental results also show that we can obtain higher

mutation scores while having coverage very close to other algorithms. These findings lead

us to believe that EMSGA has the potential to generate more test cases within a limited

time and increase its coverage. Arcuri and Fraser [47] reported that the performance of a

search-based technique depends on the parameter settings. A possible alternative is to

find the best value of the parameters suitable for generating test cases [22], although the

default values of EvoSuite are sufficient for evaluating algorithms in terms of test case

generation. Therefore, appropriate values for EMSGA should be determined to generate

the maximum number of test cases. Furthermore, EMSGA should be examined for other

test coverage criteria.

Mathematics 2021, 9, 1779 17 of 19

9. Conclusions

This paper proposes an enhanced MSGA (EMSGA) to generate test cases for software

testing. In EMSGA, the selection process involves creating two types of chromosomes to

obtain better chromosomes before performing crossover and mutation operations. The

performance of EMSGA on the basis of branch coverage, number of test cases, and

mutation score was compared with that of other algorithms available in EvoSuite. The

results show that EMSGA is more efficient than MSGA as well as the other algorithms. In

addition, EMSGA can detect more faults in programs than the other algorithms.

Therefore, because of its superior performance, EMSGA is expected to enable seamless

automation of software testing, thereby facilitating the development of different software

packages in the future.

Author Contributions: Conceptualization, W.K. and C.-F.T.; methodology, W.K. and C.-F.T.;

software, W.K.; validation, P.W. and C.-E.T.; formal analysis, W.K.; investigation, W.K. and C.-F.T.;

resources, W.K.; data curation, P.W. and C.-E.T.; writing—original draft preparation, W.K.;

writing—review and editing, W.K. and C.-F.T.; visualization, W.K.; supervision, C.-F.T.; project

administration, C.-F.T.; funding acquisition, C.-F.T. All authors have read and agreed to the

published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology, Taiwan, grant

numbers MOST-108-2637-E-020-003, MOST-108-2321-B-020-003, and MOST-109-2637-E-020-003.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The proposed algorithm in this study including source code and

results are available on request from the corresponding author.

Acknowledgments: The authors would like to express their sincere gratitude to the anonymous

reviewers for their useful comments and suggestions for improving the quality of this paper. We

also thank the staff of the Department of Tropical Agriculture and International Cooperation,

Taiwan; Department of Management Information Systems, Taiwan; National Pingtung University

of Science and Technology, Taiwan; and the Ministry of Science and Technology, Taiwan. It is their

kind help and support that have made to complete this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khan, R.; Amjad, M.; Srivastava, A.K. Optimization of Automatic Generated Test Cases for Path Testing Using Genetic

Algorithm. In Proceedings of the 2nd International Conference on Computational Intelligence & Communication Technology,

Ghaziabad, India, 12–13 February 2016; pp. 32–36, doi:10.1504/IJCAET.2019.102496.

2. Jatana, N.; Suri, B. Particle Swarm and Genetic Algorithm applied to mutation testing for test data generation: A comparative

evaluation. J. King Saud Univ. Comput. Inf. Sci. 2020, 32, 514–521, doi:10.1016/j.jksuci.2019.05.004.

3. Aleti, A.; Grunske, L. Test data generation with a Kalman filter-based adaptive genetic algorithm. J. Syst. Softw. 2015, 103, 343–

352, doi:10.1016/j.jss.2014.11.035.

4. Yang, S.; Man, T.; Xu, J.; Zeng, F.; Li, K. RGA: A lightweight and effective regeneration genetic algorithm for coverage-oriented

software test data generation. Inf. Softw. Technol. 2016, 76, 19–30, doi:10.1016/j.infsof.2016.04.013.

5. Kumar, D.; Mishra, M.M. The Impacts of Test Automation on Software’s Cost, Quality and Time to Market. Procedia Comput.

Sci. 2016, 79, 8–15, doi:10.1016/j.procs.2016.03.003.

6. Tsai, C.F.; Tsai, C.W.; Wu, H.C. A novel algorithm for multimedia multicast routing in a large scale network. J. Syst. Softw. 2004,

72, 431–441, doi:10.1016/S0164-1212(03)00096-7.

7. Khamprapai, W.; Tsai, C.F.; Wang, P. Analyzing the Performance of the Multiple-Searching Genetic Algorithm to Generate Test

Cases. Appl. Sci. 2020, 10, 7264, doi:10.3390/app10207264.

8. Selim, M.; Siddik, M.S.; Gias, A.U.; Abdullah-Al-Wadud, M.; Khaled, S.M. A Ge-netic Algorithm for Software Design Migration

fromStructured to Object Oriented Paradigm. In Proceedings of the 8th International Conference on Computer Engineering and

Application (CEA 2014), Tenerife, Spain, 10–12 January 2014; pp. 187–192.

9. Murillo-Morera, J.; Quesada-López, C.; Castro-Herrera, C.; Jenkins, M. A genetic algorithm based framework for software effort

prediction. J. Softw. Eng. Res. Dev. 2017, 5, 4, doi:10.1186/s40411-017-0037-x.

10. Bennett, T.E.; Brown, M.S.; Pelosi, M. A Genetic Algorithm for the Generation of Software Maintenance Release Plans without

Human Bias. J. Softw. Eng. Practice 2015, 1, 6–21.

Mathematics 2021, 9, 1779 18 of 19

11. Khari, M.; Kumar, P.; Shrivastava, G. Enhanced approach for test suite optimisation using genetic algorithm. Int. J. Comput.

Aided Eng. Technol. 2019, 11, 653–668, doi:10.1504/IJCAET.2019.102496.

12. Mohi-Aldeen, S.M.; Mohamad, R.; Deris, S. Optimal path test data generation based on hybrid negative selection algorithm and

genetic algorithm. PLoS ONE 2020, 15, e0242812, doi:10.1371/journal.pone.0242812.

13. Rathee, A.; Chhabra, J.K. A multi-objective search based approach to identify reusable software components. J. Comput. Lang.

2019, 52, 26–43, doi:10.1016/j.cola.2019.01.006.

14. Liu, Y.; An, K.; Tilevich, E. RT-Trust: Automated refactoring for different trusted execution environments under real-time

constraints. J. Comput. Lang. 2020, 56, 100939, doi:10.1016/j.cola.2019.100939.

15. Shahabi, M.M.D.; Badiei, S.P.; Beheshtian, S.E.; Akbari, R.; Moosavi, M.R. EVOTLBO: A TLBO based Method for Automatic

Test Data Generation in EvoSuite. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 214–226, doi:10.14569/IJACSA.2017.080627.

16. Fraser, G.; Arcuri, A.; McMinn, P. A Memetic Algorithm for whole test suite generation. J. Syst. Softw. 2015, 103, 311–327,

doi:10.1016/j.jss.2014.05.032.

17. Panichella, A.; Kifetew, F.M.; Tonella, P. A large scale empirical comparison of state-of-the-art search-based test case generators.

Inf. Softw. Technol. 2018, 104, 236–256, doi:10.1016/j.infsof.2018.08.009.

18. Fraser, G.; Arcuri, A. A Large-Scale Evaluation of Automated Unit Test Generation Using EvoSuite. ACM Trans. Softw. Eng.

Methodo 2014, 24, 1–42, doi:10.1145/ 2685612.

19. Wang, R.; Sato, Y.; Liu, S. Mutated Specification-Based Test Data Generation with a Genetic Algorithm. Mathematics 2021, 9, 331,

doi:10.3390/math9040331.

20. Rani, S.; Suri, B.; Goyal, R. On the Effectiveness of Using Elitist Genetic Algorithm in Mutation Testing. Symmetry 2019, 11, 1145,

doi:10.3390/sym11091145.

21. Tian, T.; Gong, D.; Kuo, F.C.; Liu, H. Genetic algorithm based test data generation for MPI parallel programs with blocking

communication. J. Syst. Softw. 2019, 155, 130–144, doi:10.1016/j.jss.2019.04.049.

22. Campos, J.; Ge, Y.; Albunian, N.; Fraser, G.; Eler, M.; Arcuri, A. An empirical evaluation of evolutionary algorithms for unit test

suite generation. Inf. Softw. Technol. 2018, 104, 207–235, doi:10.1016/j.infsof.2018.08.010.

23. Fraser, G.; Zeller, A. Mutation-Driven Generation of Unit Tests and Oracles. IEEE Trans. Softw. Eng. 2012, 38, 278-292,

doi:10.1109/TSE.2011.93.

24. Fraser, G.; Arcuri, A. Whole test suite generation. IEEE Softw. Eng. 2012, 39, 276–291, doi:10.1109/TSE.2012.14.

25. Aleti, A.; Moser, I.; Grunske, L. Analysing the fitness landscape of search-based software testing problems. Autom. Softw. Eng.

2017, 24, 603–621, doi:10.1007/s10515-016-0197-7.

26. Whitley, D. Next Generation Genetic Algorithms: A User’s Guide and Tutorial. In Handbook of Metaheuristics, 3rd ed.; Gendreau,

M., Potvin, J.Y., Eds.; Springer: Cham, Switzerland, 2019; Volume 272, pp. 245–274, doi:10.1007/978-3-319-91086-4_8.

27. Sundar, S. A Steady-State Genetic Algorithm for the Dominating Tree Problem. In Proceedings of the 10th International

Conference on Simulated Evolution and Learning, Dunedin, New Zealand, 15–18 December 2014; pp. 48–57, doi:10.1007/978-3-

319-13563-2_5.

28. Agapie, A.; Wright, A.H. Theoretical analysis of steady state genetic algorithms. Appl. Math. 2014, 59, 509–525,

doi:10.1007/s10492-014-0069-z.

29. Muhlenbein, H.; Schlierkamp-Voosen, D. Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter

Optimization. Evol. Comput. 1996, 1, 25–49, doi:10.1162/evco.1993.1.1.25.

30. Mühlenbein, H.; Schlierkamp-Voosen, D. The Science of Breeding and Its Application to the Breeder Genetic Algorithm. Evol.

Comput. 1994, 1, 335–360, doi:10.1162/evco.1993.1.4.335.

31. Dorronsoro, B.; Alba, E. A Simple Cellular Genetic Algorithm for Continuous Optimization. In Proceedings of the IEEE

International Conference on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 2838–2844,

doi:10.1109/CEC.2006.1688665.

32. Pedemonte, M.; Panizo-LLedot, A.; Bello-Orgaz, G.; Camacho, D. Exploring Multi-objective Cellular Genetic Algorithms in

Community Detection Problems. In Intelligent Data Engineering and Automated Learning; Analide, C., Novais, P., Camacho, D.,

Yin, H., Eds.; Springer: Cham, Switzerland, 2020; Volume 12490, pp. 223–235, doi:10.1007/978-3-030-62365-4_22.

33. Whitley, D. A genetic algorithm tutorial. Stat. Comput. 1994, 4, 65–85, doi:10.1007/BF00175354.

34. Lam, A.Y.S.; Li, V.O.K. Chemical Reaction Optimization: A tutorial. Memetic. Comp. 2012, 4, 3–17, doi:10.1007/s12293-012-0075-

1.

35. Marrison, C.I.; Stengel, R.F. The use of random search and genetic algorithms to optimize stochastic robustness functions. In

Proceedings of the 1994 American Control Conference, Baltimore, MD, USA, 29 June–1 July 1994; pp. 1484–1489,

doi:10.1109/ACC.1994.752312.

36. Zabinsky, Z.B. Random search algorithms. In Wiley Encyclopedia of Operations Research and Management Science; Cochran, J.J.,

Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C., Eds.; John Wiley & Sons: New York, NY, USA, 2010; pp. 1–13,

doi:10.1002/9780470400531.eorms0704.

37. Rojas, J.M.; Fraser, G.; Arcuri, A. Seeding strategies in search-based unit test generation. Softw. Test. Verif. Reliab. 2016, 26, 366–

401, doi:10.1002/stvr.1601.

38. Panichella, A.; Kifetew, F.M.; Tonella, P. Automated Test Case Generation as a Many-Objective Optimisation Problem with

Dynamic Selection of the Targets. IEEE Softw. Eng. 2016, 44, 122–158, doi:10.1109/TSE.2017.2663435.

Mathematics 2021, 9, 1779 19 of 19

39. Grano, G.; Palomba, F.; Nucci, D.D.; Lucia, A.D.; Gall, H.C. Scented since the beginning: On the diffuseness of test smells in

automatically generated test code. J. Syst. Softw. 2019, 156, 312–327, doi:10.1016/j.jss.2019.07.016.

40. Ma, P.; Cheng, H.; Zhang, J.; Xuan, J. Can This Fault Be Detected: A Study on Fault Detection via Automated Test Generation.

J. Syst. Softw. 2020, 170, 110769, doi:10.1016/j.jss.2020.110769.

41. Fraser, G. A Tutorial on Using and Extending the EvoSuite Search-Based Test Generator. In Proceedings of the 10th International

Symposium, Montpellier, France, 8–9 September 2018; pp. 106–130, doi:10.1007/978-3-319-99241-9_5.

42. Hansen, N.; Auger, A.; Finck, S.; Ros, R. Real-Parameter Black-Box Optimization Benchmarking 2010: Experimental Setup. 2010.

Available online: https://hal.inria.fr/inria-00462481 (accessed on 31 May 2021).

43. Arcuri, A.; Fraser, G. Parameter tuning or default values? An empirical investigation in search-based software engineering.

Empir. Softw. Eng. 2013, 18, 594–623, doi:10.1007/s10664-013-9249-9.

44. Črepinšek, M.; Liu, S.; Mernik, M. Replication and comparison of computational experiments in applied evolutionary

computing: Common pitfalls and guidelines to avoid them. Appl. Soft. Comput. 2014, 19, 161–170, doi:10.1016/j.asoc.2014.02.009.

45. Aston, E.; Channon, A.; Belavkin, R.V.; Gifford, D.R.; Krašovec, R.; Knight, C.G. Critical Mutation Rate has an Exponential

Dependence on Population Size for Eukaryotic-length Genomes with Crossover. Sci. Rep. 2017, 7, 1–12, doi:10.1038/s41598-017-

14628-x.

46. Deb, K.; Deb, D. Analysing mutation schemes for real-parameter genetic algorithms. Int. J. Artif. Intell. Soft Computing. 2014, 4,

1–28, doi:10.1504/IJAISC.2014.059280.

47. Jia, Y.; Merayo, M.; Harman, M. Introduction to the special issue on Mutation Testing. Softw. Test. Verif. Reliab. 2015, 25, 461–

463, doi:10.1002/stvr.1582.

48. Luo, Q.; Moran, K.; Poshyvanyk, D.; Penta, M.D. Assessing Test Case Prioritization on Real Faults and Mutants. In Proceedings

of the IEEE International Conference on Software Maintenance and Evolution, Madrid, Spain, 23–29 September 2018; pp. 240–

251, doi:10.1109/ICSME.2018.00033.

49. Ammann, P.; Offutt, J. Introduction to Software Testing, 2nd ed.; Cambridge University Press: New York, NY, USA, 2016; pp. 18–

19.

50. Fraser, G.; Arcuri, A. Achieving scalable mutation-based generation of whole test suites. Empir. Softw. Eng. 2015, 20, 783–812,

doi:10.1007/s10664-013-9299-z.

