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Abstract: Test case generation is an important process in software testing. However, manual 

generation of test cases is a time-consuming process. Automation can considerably reduce the time 

required to create adequate test cases for software testing. Genetic algorithms (GAs) are considered 

to be effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified 

version of the GA to solve the multicast routing problem in network systems. MSGA can be 

improved to make it suitable for generating test cases. In this paper, a new algorithm called the 

enhanced multiple-searching genetic algorithm (EMSGA), which involves a few additional 

processes for selecting the best chromosomes in the GA process, is proposed. The performance of 

EMSGA was evaluated through comparison with seven different search-based techniques, 

including random search. All algorithms were implemented in EvoSuite, which is a tool for 

automatic generation of test cases. The experimental results showed that EMSGA increased the 

efficiency of testing when compared with conventional algorithms and could detect more faults. 

Because of its superior performance compared with that of existing algorithms, EMSGA can enable 

seamless automation of software testing, thereby facilitating the development of different software 

packages. 
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1. Introduction 

Software testing is an important process in the software development life cycle. It is 

performed to investigate the quality of software and to evaluate the risks in software 

implementation. Software testing involves both valid and invalid inputs and includes the 

processes of executing the developed software and checking for the expected responses. 

Several techniques can be used to automatically produce inputs that conform to the 

behavior of the software being tested, and these techniques provide high coverage in a 

given branch, line, condition, or path. Various techniques have been proposed to reduce 

the cost, resources, and time involved in the testing process. 

The genetic algorithm (GA) is a popular and efficient search-based technique for test 

case generation. GAs have been widely used to create suitable test cases [1–4]. Suitable 

test case generation helps to reduce costs in software testing given the huge cost of 

creating test cases, which accounts for more than 50% of the total cost of developing a 

program [5]. Researchers have investigated methods to enhance the solution efficiencies 

of GAs. Multiple-searching genetic algorithm (MSGA) [6] is a successfully solved optimal 
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solution with high probability for routing in network system. MSGA is attractive to utilize 

in other fields. From previous work [7], MSGA can generate test cases for small to medium 

scale software but cannot increase the percentage of coverage for complex software. This 

means test cases generated with MSGA cannot increase the number of executed 

statements or source code in complex software. Therefore, while MSGA may be suitable 

for generating test cases for small to medium scale software, it may not be flexible enough 

for test case generation for complex software. Some algorithms may be suitable for 

generating test cases for small to medium scale software but may not succeed in complex 

cases. For this reason, we present a new algorithm for improving MSGA to make it 

suitable for generating test cases. We expect that the test case generation using our 

algorithm will also detect more errors or faults in the software and therefore reduce the 

cost of software testing by creating the minimum number of test cases while getting the 

maximum coverage. Further, our algorithm can create test cases for complex software. In 

this study, we used MSGA to generate test cases for software testing because MSGA can 

reach the global optimum faster than a traditional GA [7]. In addition, we refactored the 

algorithm to solve the problem of executing the source code for more access to the 

statements. 
In this study, a new algorithm called the enhanced multiple-searching genetic 

algorithm (EMSGA), which is an improved MSGA incorporating some additional 

processes, was developed. The genetic operators constitute the basic mechanism of the 

GA, namely selection, crossover, and mutation. Additional processes in EMSGA include 

the evaluation of chromosomes and selection of the best chromosomes to add to the next 

generation. In the original MSGA, all the chromosomes that are executed with the genetic 

operators are added to the next generation. EMSGA was expanded in EvoSuite, and its 

effectiveness was compared with that of MSGA and seven other techniques available in 

EvoSuite. The SF110 corpus and nine open-source Java projects developed by Google and 

the Apache Software Foundation were employed as case studies for generating test cases 

using the aforementioned algorithms. 

The remainder of this paper is organized as follows. Section 2 discusses previous 

research works related to this study. Section 3 describes search-based techniques for 

generating test cases, including representation and fitness functions. The proposed 

algorithm is also introduced in this section. Section 4 presents the problem instances and 

tools used to evaluate EMSGA. Section 5 presents the experimental results. Section 6 

reports threats to the validity of the algorithm. A discussion of the results is presented in 

Section 7. Finally, Section 8 concludes the paper. 

2. Related Work 

In software engineering, GA has been successful in many areas, such as software 

design, effort estimation, and maintenance. For software design [8], GA can help 

migration from structure programming to object-oriented programming, and the results 

are better than greedy algorithm and Monte Carlo. In software effort estimation, GA is 

stable, has higher accuracy than a random approach, and consists of an exhaustive 

framework [9]. Furthermore, GA is utilized to manage maintenance packages taking into 

account the cost-effectiveness of the package and to reduce human bias [10]. 
Various search-based techniques are available for test case generation. GA is one of 

the most widely used techniques. Many GAs have been remodeled for increased search 

efficiency. For example, a population aging process was added in a traditional GA without 

modifying any original parameters of the GA to reduce the number of test cases and 

increase the test coverage [4]. The features of GA and ant colony optimization (ACO) were 

combined to increase the efficiency and health of test cases [11]. GA and negative selection 

algorithms were merged to reduce the generation of duplicate test cases [12]. The results 

of the studies indicate that these improved algorithms are capable of efficiently generating 

test cases, even though the algorithms were originally improved for other applications. 

MSGA is an improved GA for network systems. Even though it was improved for and 
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utilized in another field, we believe that an enhanced version of MSGA can increase the 

efficiency of test case generation. 

EMSGA reuses and refactors existing algorithms. The reusable nature of this 

algorithm [13] helps to increase the reliability of results, provides faster algorithm 

development, and reduces costs. Algorithm refactoring is caused by insufficient existing 

algorithms to perform certain tasks. Consequently, algorithms are improved to suit the 

task. Algorithm refactoring is challenging in terms of selecting some parts of an algorithm 

to improve the performance or adding some processes to make it suitable for solving a 

given problem. Several studies have examined refactoring. For example, Liu et al. (2020) 

[14] studied automated refactoring for real-time systems to help reduce the effort required 

by programmers to isolate portions for the execution of real-time systems under 

limitations. Several researchers have used the SF110 corpus and EvoSuite to compare 

newly developed algorithms and existing algorithms. For example, the EvoTLBO 

algorithm was extended into EvoSuite to compare the results with traditional GA and 

monotonic GA using 50 random classes from SF110 [15]; EvoSuite and SF110 were utilized 

to compare the performance of memetic algorithm with traditional GA [16]; and nontrivial 

classes were selected from SF110 to compare the efficiency of the DynaMOSA algorithm 

with the many objective sorting algorithm (MOSA), the whole suite approach with archive 

(WSA), and the traditional whole suite approach (WS) [17]. The SF110 corpus is 

considered as a benchmark for test generation [18]. The SF110 corpus contains 110 Java 

projects from SourceForge, 100 random projects, and the 10 most popular projects in 

SourceForge. EvoSuite is an automatic test generation tool for Java classes based on GA. 

In the present study, the SF110 corpus and EvoSuite were considered sufficient to measure 

the effectiveness of the proposed algorithm for test case generation. EMSGA was tested 

using SF110, and its effectiveness was compared with that of seven algorithms available 

in EvoSuite. 

3. Search-Based Test Case Generation 
The search-based technique is widely used for test case generation [19–22]. The 

following subsections describe some of the most well-known search-based techniques 

before introducing the proposed EMSGA. 

3.1. Representation 

A population of candidate solutions is represented as a test suite [17,22], which is a 

collection of test cases 𝑇 = {𝑡1, 𝑡2, … , 𝑡𝑛}. Each test case is composed of various statements 

𝑡 =  ⟨𝑠1, 𝑠2, … , 𝑠𝑙⟩, where l is the total number of statements. A statement [23] can be a 

variable declaration or a method call and can be of several different types, namely a 

primitive, a constructor, a method, an array, or an assignment.  

Figure 1 presents the generated test cases from Java code by considering the required 

variables and methods to generate statements for testing the class under test. When 

considering Java code, the integer array variable is a required variable to maintain the 

numbers for sorting. Therefore, the integer array variable is declared in the test case. The 

number of statements depends on the instruction to be used for each test. The length of 

either the test case or the chromosome depends on the number of statements. The 

population evolves iteratively to yield better solutions. The processes are repeated until a 

stopping criterion is satisfied. 
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Figure 1. Generated test cases from source code. 

3.2. Fitness Function 

In software testing, a fitness function is used to evaluate the ability of the generated 

test suites to execute the source code of the program. Typically, fitness functions are 

assessed based on the branch coverage metric. Complete branch coverage refers to all 

control structures being executed and all lines of code being tested. This metric is defined 

as follows [24,25]: 

𝑓(𝑇) = |𝑀| − |𝑀𝑇| + ∑ 𝑑(𝑏, 𝑇)

𝑏∈𝐵

, (1) 

where |𝑀|  denotes the total number of methods, |𝑀𝑇|  is the number of methods 

executed in test suite T, and 𝑑(𝑏, 𝑇) represents the branch distance for each branch b on 

test suite T that b is an element of in a set of branches B. The branch distance 𝑑(𝑏, 𝑇) is 

defined as follows: 

𝑑(𝑏, 𝑇) = {
0 if the branch has been covered,
𝑑𝑚𝑖𝑛(𝑏, 𝑇) if the predicate has been executed at least twice,

1 otherwise.

 (2) 

3.3. Genetic Algorithms 

GAs [4,26] solve problems through the use of three basic operators: selection, 

crossover, and mutation. In GA, a chromosome is defined as a set of parameters that 

represent a proposed solution to the problem that the GA is being used to solve. The 

selection operator selects certain chromosomes as parent chromosomes. Chromosomes 

are selected on the basis of their fitness values. Chromosomes with higher fitness values 

have a higher chance of being selected. The crossover and mutation operators are applied 

to the parent chromosomes to produce offspring for the next generation. The crossover 

operator exchanges certain genes of two chromosomes. The mutation operator changes 

the value of some genes in a few chromosomes.  

Several researchers have proposed techniques to improve the traditional GA for 

enhancing its solution efficiency and enabling its application in complex problems. These 

efforts have relied on adjustments of factors or integration of GAs with other strategies. 

For example, the monotonic GA [26] involves additional processes after the mutation 

process in the traditional GA. These additional processes measure the fitness values to 

determine the best offspring or the best parent for the next population; in contrast, the 
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traditional GA increases the number of mutated offspring in the next population and then 

calculates the fitness values of all chromosomes. Another improved version of GA is the 

steady-state GA [27,28], in which the fitness values of the mutated offspring are 

determined and then the offspring is compared with the parent. If the offspring is better 

than the best parent, the offspring replaces the parent in the current population. The 

advantages of monotonic GA and steady-state GA are similar, namely removing duplicate 

chromosomes and ensuring the best chromosome is not discarded. A breeder GA [29] 

differs from the traditional GA in that it uses the principle of breeding, which involves 

selecting the fittest chromosomes and reproducing using those chromosomes. The breeder 

GA is more precise as it utilizes the science of breeding [30]. A cellular GA [31] is an 

improved GA that selects the best offspring after the crossover operator has been applied. 

The best offspring is mutated, and the fitness value is determined. The selection of cellular 

GA is restricted to the overlapping neighborhood producing slow solutions [32,33]. Table 

1 summarizes the characteristic of each GA. 

Table 1. Comparison of GA-based characteristics. 

Algorithm Characteristic of Algorithm 

Traditional GA 
Applies only three basic operators: selection, crossover, and 

mutation 

Monotonic GA 
Still applies three basic operators but adds some processes to select 

the best chromosome for the next generation. 

Steady-state GA 

Adds some processes to select the best chromosome. Similar to the 

monotonic GA but replaces the best chromosome in the current 

population.  

Breeder GA 
Applies the principle of breeding to select chromosomes before 

performing the basic operators. 

Cellular GA 
Performs mutation operator on only one crossed chromosome. 

Chromosomes are selected for mutation by choosing at random. 

3.4. Chemical Reaction Optimization (CRO) 

Chemical reaction optimization (CRO) [34] is a search-based technique that combines 

the advantages of GA and simulated annealing. CRO solves problems using a set of 

molecules. Each molecule possesses a molecular structure, potential energy, and kinetic 

energy. The molecular structure represents a possible solution that does not have any 

specific format. The potential energy is the fitness value of the corresponding molecule. 

The kinetic energy quantifies the tolerance of the worst solution. The iterative processes 

of CRO are similar to those of GA. A basic CRO involves four types of reactions: on-wall 

ineffective collision and decomposition are reactions where a single molecule hits a wall 

of the surface, and intermolecular ineffective collision and synthesis are reactions where 

multiple molecules collide with each other. 

On-wall ineffective collision represents a local search. There is minimal change in the 

structure or properties of the molecule during this process. Decomposition is a type of 

collision that produces two or more new molecules. This process represents a global 

search. Intermolecular ineffective collision is the collision of multiple molecules, which 

produces minimal changes in the structure or properties of the molecules, similar to on-

wall ineffective collision. Two or more collided molecules undergo small changes in 

structure or properties. Synthesis is a reaction that represents a global search. In this 

reaction, multiple colliding molecules fuse into a single molecule.  
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3.5. Random Search 

Random search is the simplest search-based technique. It involves iterative searches 

until an optimal solution is obtained. In each iteration, the solution is incremented with a 

random vector. The fitness value of the modified solution is determined. If the modified 

solution is better than the previous solution, the former replaces the latter. Otherwise, the 

previous solution is retained. Random search is often utilized for comparison with other 

techniques [35]. This technique can effectively solve large-scale problems [36]. 

4. Proposed Algorithm: Enhanced Multiple-Searching Genetic Algorithm (EMSGA) 

In the multiple-searching genetic algorithm (MSGA) introduced by Tsai et al. [6], two 

types of chromosomes are created to prevent the search from falling into a local optimum. 

The MSGA utilizes the candidate mechanism to create more chromosomes with the same 

features, resulting in better chromosomes. The MSGA has been successfully used to find 

the optimal multicast route in network systems. We believe that the MSGA can also be 

integrated with other strategies to increase search ability. Therefore, we propose EMSGA, 

a regeneration MSGA with the addition of a feature-selection strategy. After the mutation 

operator is employed and the fitness value is determined, only chromosomes from the 

best offspring or the best parent will be selected to be included in the next-generation 

population. If the mutated offspring are better than the parents, then they replace the 

parents in the next generation. Otherwise, the parents are retained. Choosing the best 

chromosome increases the chances of reaching the optimal solution. Generally, two 

mutated offspring are added to the next-generation population, and the parents are 

discarded. The processes involved in EMSGA are similar to those in MSGA, with the 

exception of the aforementioned best chromosome selection mechanism after the 

mutation process (Figure 2). Algorithm 1 shows the pseudocode of EMSGA. 

 
(a) GAs 

 
(b) MSGAs 
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(c) EMSGAs 

 

Figure 2. Flowcharts of GA (a) [7], MSGA (b) [7], and EMSGA (c). The red box indicates the additional processes in 

EMSGA. The black dashed box displays the additional processes in MSGA. 

Algorithm 1 Pseudocode for EMSGA 

1: Procedure EMSGA() 

2: Create initial chromosomes 

3: Evaluate fitness value of initial chromosomes and order by descending 

4: while not terminal condition do 

5:  Select half chromosomes with the highest fitness value //Conservative chromosomes 

6:  Call procedure CreateExplorerChromosomes(Conservative chromosomes) 

7:  Evaluate fitness value of explorer chromosomes 

8:  Combine Conservative and Explorer chromosomes 

9:  Call procedure Crossover(all chromosomes) 

10:  //Mutation of EMSGA is the same as traditional GA 

11:  Mutate Conservative chromosomes with M1 

12:  Mutate Explorer chromosomes with M2 

13:  Evaluate fitness value of the mutated chromosomes 

14:  if the offspring is better than the best parent then 

15:   Add offspring in the next population 

16:  else 

17:   Add parent in the next population 

18:  end if 

19: end while 

20: return chromosomes 

21: end procedure 

22:  

23: Procedure CreateExplorerChromosomes(Conservative chromosomes) 

24: for each conservative chromosome i 

25:  for each gene of conservative chromosome j of i 

26:   Keep jth gene of ith conservative chromosome to jth candidate gene set 

27:  end for 

28: end for 
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29: Creates explorer chromosomes with a number equal to the number of conservative 

chromosomes  

30: for each explorer chromosome i 

31:  for each candidate gene set j 

32:   Select one gene from jth candidate gene set 

33:   Preserve the selected gene in jth gene of ith explorer chromosome 

34:  end for 

35: end for 

36: return explorer chromosomes 

37: end procedure 

38:  

39: Procedure Crossover(all chromosomes) 

40: Set a random number r 

41: if r is less than crossover probability then 

42:  for half of all chromosomes from i = 1 to (population size / 2) 

43:   Select ith chromosome and (population size − i + 1)th chromosome 

44:   Split the selected chromosomes with crossover method 

45:   Cross both chromosomes 

46:  end for 

47: end if 

48: return chromosomes 

49: end procedure 

The EMSGA process starts with the creation of initial chromosomes. Then, the fitness 

value of the population is determined, and half of the chromosomes with the highest 

fitness values are retained. The rest of the chromosomes are discarded. The preserved 

chromosomes are called the conservative chromosomes. Next, the candidate mechanism 

is utilized to build the explorer chromosomes by selecting the genes of the conservative 

chromosomes. The candidate mechanism is created to gather genes of all conservative 

chromosomes that are in the same position into the same candidate gene set. Each 

candidate gene set selects only one gene to create as a gene of explorer chromosome. 

Figure 3 illustrates the method for creating an explorer chromosome. Thereafter, crossover 

and mutation are performed on the conservative and explorer chromosomes separately. 

Both types of chromosomes are assigned the same crossover probability. The mutation 

probabilities are defined differently. At the end of each iteration, the chromosomes are 

evaluated in terms of the fitness value, and the best chromosomes are selected and added 

to the next-generation population. 
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Figure 3. Mechanism of creating explorer chromosome. Red boxes demonstrate which one gene from each candidate gene 

set was chosen. 

5. Experimental Evaluation 

The aim of this study was to evaluate the capability of EMSGA to generate test cases 

and to compare the feasibility and effectiveness of EMSGA with those of other algorithms. 

5.1. Problem Instances 

The selection of problem instances is important for any empirical study on automatic 

test case generation. This study utilized the SF110 corpus (the details of SF110 are available 

online: https://www.evosuite.org/experimental-data/sf110/ (accessed on 4 March 2020)) 

[18] and nine open-source Java projects developed by Google and the Apache Software 

Foundation to evaluate EMSGA. The SF110 corpus is widely used as a benchmark 

[17,24,37]. It contains 110 projects that were written with the Java language. Not all classes 

in the SF110 corpus were employed in this experiment. Only 203 classes were chosen 

based on the selection in a previous study [38]. Furthermore, nine problem instances from 

Google and the Apache Software Foundation were chosen uniformly and at random 

based on their sizes and functionalities (Table 2), consisting of a total of 1382 classes. 

EvoSuite was applied to a total of 203 + 1382 = 1585 classes. 
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Table 2. Details of open-source Google and Apache projects. Note: the second column lists the 

number of non-commenting source lines of code reported by JavaNCSS 

(http://www.kclee.de/clemens/java/javancss/ (accessed on 10 December 2020)). The fourth column 

lists the number of branches reported by EvoSuite. 

Problem Instances No. of Lines No. of Classes No. of Branches 

Java Certificate Transparency 955 30 178 

Commons CLI 1480 22 961 

Commons Codec 5545 68 3050 

Commons Email 1505 20 209 

Commons Jelly 4688 95 636 

Commons Math3 65,389 918 28,450 

Commons Numbers 317 5 225 

Joda-Time 19,441 166 9924 

Truth 4117 58 223 

Total 103,437 1382 43,856 

5.2. Test Generation Tool 

The testing tool employed EvoSuite (EvoSuite can be downloaded from 

http://www.evosuite.org (accessed on 20 February 2020)) [24] to generate test cases for 

Java code. EvoSuite is widely used in software testing [3,39,40]. It utilizes search-based 

methods, including genetic algorithms, to generate test cases using Java bytecode. 

Furthermore, EvoSuite supports various coverage criteria to determine the quality of a 

solution. 

In the experiment, the proposed algorithm was implemented as an extension to the 

EvoSuite. To extend the new algorithm in Evosuite, a developer must create a new class 

in the client module and extend the abstract class GeneticAlgorithm. The EMSGA class 

implemented the basic methods for GA that EvoSuite prepares. In addition, the EMSGA 

class added some processes for creating two types of chromosomes and selected the best 

chromosome. Test cases of each algorithm were automatically generated, and problem 

instances were executed through EvoSuite. The performance of EMSGA was compared 

with that of the MSGA, traditional GA, monotonic GA, steady-state GA, breeder GA, 

cellular GA, CRO, and random search. These search-based methods are provided in 

EvoSuite. The coverage achieved by the algorithms was assessed in terms of the branch 

coverage metric. Search budget configuration uses EvoSuite’s default of 60 s [41]. Search 

budget is the time for generating test cases of the algorithm each time. The experiment 

was independently repeated 10 times. 

The parameter settings influence the performance of search-based methods. The 

EvoSuite guides the default values (e.g., selection function, crossover function, crossover 

probability, mutation function, mutation probability, population size, and chromosome 

length) for test case generation. The default values of EvoSuite are the approximate values 

that are suitable for generating test cases that are based on GA. Table 3 shows the default 

values in EvoSuite. The same parameter setting may not be enough to fully extract the 

efficiency of the algorithm [42]. As Arcuri and Fraser (2013) [43] pointed out, the default 

values of EvoSuite are sufficient to evaluate the performance of algorithms for test case 

generation, whereas the suitable parameter setting is time-consuming and may or may 

not produce good results for algorithms. In addition, Črepinšek et al. (2014) [44] 

perceptively stated that all algorithms should be examined under the same conditions. 
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Table 3. Default values of parameters in Evosuite. 

Parameters Default Values 

Population size 50 

Chromosome length 40 

Selection function Rank 

Crossover function Single point relative 

Crossover probability 0.75 

Mutation function Uniform 

Mutation probability 0.75 

Search budget 60 s 

Therefore, the default values for all nine algorithms were used in the experiment. 

EMSGA assigns different mutation probabilities to the conservative and explorer 

chromosomes. If the explorer chromosomes are defined as having a higher mutation 

probability than the conservative chromosomes, the optimal solution can be obtained [6]. 

Several researchers have set the probability as 1/l for the mutation operator, where l is the 

chromosome length [43,45,46]. Accordingly, mutation probabilities of 1/l and 0.75 

(default) were used for the conservative and the explorer chromosomes, respectively, in 

this study. 

The experiment involved 1585 × 9 × 10 = 142,650 runs of EvoSuite with the 

aforementioned settings. The search in each run was limited to 60 s. The experiment 

required at least 142,650/(60 × 24) = 99.0625 days of computational time. It was conducted 

on a Windows 10 Professional (Seattle, WA, USA) ×64 system having an Intel® Core i7 

CPU with 3.40 GHz and 16 GB of RAM. 

5.3. Experimental Analysis 

The coverage achieved was evaluated based on the branch criterion, number of test 

cases (#T), and mutation score. All the experimental results were analyzed via 

nonparametric Mann–Whitney U tests with a significance level (p-value) of 0.05, the 

Vargha–Delaney 𝐴̂12 effect size, and a 95% confidence interval for the branch coverage 

achieved. Boxplots and marginal distribution plots were created using RStudio Version 

1.1.383. 

6. Experimental Results 

The experimental results for EMSGA and the competing algorithms are presented 

and analyzed in this section. The experimental results are tabulated in Table 4, which 

shows the standard deviation (𝜎), a 95% confidence interval (CI) of the branch coverage, 

the p-value for the Mann–Whitney U tests, and the Vargha-Delaney 𝐴̂12 effect size.  

Table 4. Results of test case generation using each algorithm. 

Algorithm 
Branch Coverage Mut. Score 

#T p-Value 
𝑨̂𝟏𝟐 

(EMSGA:Others) Avg. 𝝈 CI Avg. 𝝈 CI 

EMSGA 0.5900 0.0032 (0.5877, 0.5923) 0.4174 0.0038 (0.4146, 0.4201) 180.49351 - - 

MSGA 0.5846 0.0033 (0.5823, 0.5870) 0.4166 0.0043 (0.4135, 0.4196) 181.5325 0.00578 0.87 

GA 0.5829 0.0040 (0.5801, 0.5858) 0.4159 0.0046 (0.4127, 0.4192) 177.8818 0.00168 0.92 

Monotonic GA 0.5855 0.0063 (0.5810, 0.5901) 0.4162 0.0050 (0.4127, 0.4198) 182.3091 0.03752 0.74 

Steady-State GA 0.5699 0.0036 (0.5673, 0.5725) 0.4168 0.0023 (0.4152, 0.4185) 178.7455 0.00018 1 

Breeder GA 0.5821 0.0059 (0.5779, 0.5864) 0.4167 0.0040 (0.4138, 0.4195) 180.0545 0.00466 0.88 

Cellular GA 0.5588 0.0034 (0.5563, 0.5612) 0.4056 0.0044 (0.4024, 0.4087) 174.2039 0.00018 1 

CRO 0.5717 0.0040 (0.5688, 0.5746) 0.4120 0.0062 (0.4076, 0.4164) 177.9416 0.00018 1 

Random search 0.5683 0.0036 (0.5657, 0.5709) 0.4127 0.0025 (0.4109, 0.4144) 179.5857 0.00018 1 

EMSGA achieved the highest branch coverage (0.5900). This means test cases of 

EMSGA can execute 59% of the source code of the class test. The branch coverage of 
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EMSGA obtained that similar to the monotonic GA. However, EMSGA generated fewer 

test cases than the monotonic GA due to the limited search budget. Each algorithm had 

60 s to search for the optimal test cases for each class. Although EMSGA generated fewer 

cases, the branch coverage of EMSGA was higher. This means that EMSGA is more 

efficient than monotonic GA. In terms of the mutation score, EMSGA achieved the best 

performance. The mutation score represents the number of faults that can be detected in 

the test cases, which is a measure of the quality of the test cases generated by each 

algorithm [47]. The 𝐴̂12 measure is a comparison of effect size between the EMSGA and 

the others; if 𝐴̂12 > 0.5, it means EMSGA can beat that algorithm more than 50% of the 

time. For example, 𝐴̂12 = 0.74 means EMSGA can beat the monotonic GA 74% of the time. 

The values of this metric for all the algorithms were found to be greater than 0.5. This 

means that the EMSGA can generate higher-quality test cases than the other algorithms. 

Considering the values of all the metrics, EMSGA clearly outperformed MSGA in 

most categories. Furthermore, specifically in terms of the 𝐴̂12  measure, EMSGA 

performed significantly better than MSGA (average 𝐴̂12  effect size was 0.93). In the 

Mann–Whitney U tests, EMSGA exhibited a p-value of less than 0.05. From a comparison 

between EMSGA and MSGA, it can be concluded that EMSGA possesses a more effective 

best chromosome selection process due to the addition of genetic operators and is hence 

more efficient than the traditional MSGA. The higher mutation score implies that EMSGA 

is better at detecting faults than the other algorithms. 

The distributions of the average branch coverage and average mutation scores 

obtained from the 1585 classes during the execution of the test cases generated by each 

algorithm are shown in Figure 4. The length of the box indicates the distribution of values 

between the 25% and 75% quantiles. The horizontal line in the box represents the median 

value. The dot in the box represents the mean value. The vertical lines indicate the smallest 

and largest values outside the middle 50%. The dots outside the box denote the outlier 

values. Despite the similar distributions of coverage and mutation score for all the 

algorithms, outliers of mutation score were observed across all the algorithms (see Figure 

4b) except EMSGA and random search. This suggests that EMSGA and random search 

can detect up to 100% of the faults, while the other algorithms can detect approximately 

80–90% of the faults (the outliers represent the undetected faults). Considering the 

distribution of coverage (see Figure 4a), EMSGA exhibited a higher average coverage than 

random search. Furthermore, EMSGA presented a narrower distribution, that is, less 

scattered data. 

  

(a) Branch coverage criterion (b) Mutation score 

Figure 4. Coverage and mutation scores achieved by each algorithm. 
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Figure 5 presents the distributions of the branch coverage, number of test cases, and 

mutation score achieved by each algorithm. Each marginal distribution displays the 

average of each metric (dashed line) and the marginal density. The marginal density is the 

solid line on the right side of each marginal distribution plot that indicates the distribution 

of results. The average branch coverage of all the algorithms was 57.71% (Figure 5a). Five 

algorithms achieved values exceeding the average, namely EMSGA, MSGA, standard GA, 

monotonic GA, and breeder GA. In terms of the number of test cases (Figure 5b) as well, 

four algorithms achieved values better than the average (179.19 test cases), namely 

EMSGA, MSGA, monotonic GA, breeder GA, and random search. All algorithms 

exhibited mutation scores above the average (0.41). Thus, EMSGA achieved values 

exceeding the average for all three evaluation metrics. The ratio of classes reached branch 

coverage within each 10% branch coverage interval, as shown in Figure 6. For example, 

35% of all classes that were tested in the test cases generated by EMSGA achieved a branch 

coverage between 81% and 100%. From the experimental results, it is evident that EMSGA 

is feasible and effective for generating test cases. 

Figure 7 displays the association between the number of test cases and the achieved 

branch coverage when problem instances were executed using test cases of each 

algorithm. Several problem instances indicated the EMSGA achieved greater or equal 

branch coverage while the number of test cases was less than the others. The problem 

instance Truth is a small-scale program, and the test cases of all algorithms executed a 

similar number of source code. 

  

(a) Branch coverage criterion (b) Number of test cases 
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(c) Mutation score 

Figure 5. Average values of metrics for each algorithm. 

 

Figure 6. Proportion of classes for different branch coverage intervals. 
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(a) Commons CLI (b) Commons Codec (c) Commons Email 

   
(d) Commons Jelly (e) Commons Math3 (f) Commons Numbers 

   
(g) Java Certificate Transparency (h) Joda-Time (i) SF110 

  
(j) Truth 

Figure 7. Problem instances that were evaluated with each algorithm. 
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7. Threats to Validity 

Based on the results obtained, threats to internal validity are related to factors 

affecting the behavior of the software under test [48]. One such factor observed in the 

experiment was the number of test cases generated by all algorithms. Single testing might 

be inadequate for summarizing the performance of the algorithms in terms of generating 

test cases. In this experiment, each algorithm was run 10 times with the same tools. 

Furthermore, all parameters were defined with the same default values.  

Threats to external validity are related to the generalization of the results beyond the 

scope of experimental analysis [22]. The SF110 corpus and nine open-source Java projects 

developed by Google and the Apache Software Foundation were utilized as case studies, 

which required a large number of experiments to be conducted. In this study, a total of 

1585 classes were used, which included 203 classes from the SF110 corpus chosen based 

on previous studies [37] and all classes of the nine open-source Java projects. The reported 

results are limited to the search-based techniques employed in the experiments.  

8. Discussion 

EMSGA modifies the MSGA processes by comparing the parent and offspring and 

choosing the better chromosomes for the next generation. The selection of the better 

chromosome as input to the next generation allows for approaching the optimal solution. 

Our experimental results are in accordance with the results of previous experiments, 

which indicates that the branch coverage increases when a better chromosome is selected. 

For example, the monotonic GA achieved better results than the traditional GA [15,22]. 

Our results show that EMSGA can achieve a higher branch coverage, generate more test 

cases, and obtain a higher mutation score than MSGA.  

One of the contributions of this research is our examination of the efficiency of 

EMSGA by extending it to EvoSuite, which is an automatic tool for generating test cases. 

The results of this application provide the number of test cases, the percentage of 

coverage, and mutation score. The results also indicate that EMSGA achieves a similar 

coverage with fewer test cases compared with monotonic GA. This is probably because 

the population of EMSGA contains two types of chromosomes, namely conservative and 

explorer chromosomes. The explorer chromosomes are created from high-fitness 

chromosomes. The main objective of software testing is to minimize the number of test 

cases and increase the coverage. The number of test cases affects the software 

development cost [5,49]. Although EMSGA produces fewer test cases than monotonic GA 

does in 60 s, the former achieves a higher coverage for the same number of test cases. A 

comparison of the efficiency between the existing algorithms in EvoSuite and EMSGA 

suggests that, in test case generation, the branch coverage may not be enough to clearly 

demonstrate the difference between results. The finding is consistent with Campos et al. 

(2018) [21], who indicated that the efficiencies of algorithms in EvoSuite may provide little 

difference in results for generating test cases. This could be due to a limitation on setting 

parameters, such as population size, basic function, or timing. In particular, as Fraser and 

Arcuri (2015) [50] pointed out, achieving a certain percentage of branch coverage and 

mutation score for a limited time may lead to higher mutation scores, but the coverage 

may be lower. The above experimental results also show that we can obtain higher 

mutation scores while having coverage very close to other algorithms. These findings lead 

us to believe that EMSGA has the potential to generate more test cases within a limited 

time and increase its coverage. Arcuri and Fraser [47] reported that the performance of a 

search-based technique depends on the parameter settings. A possible alternative is to 

find the best value of the parameters suitable for generating test cases [22], although the 

default values of EvoSuite are sufficient for evaluating algorithms in terms of test case 

generation. Therefore, appropriate values for EMSGA should be determined to generate 

the maximum number of test cases. Furthermore, EMSGA should be examined for other 

test coverage criteria. 
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9. Conclusions 

This paper proposes an enhanced MSGA (EMSGA) to generate test cases for software 

testing. In EMSGA, the selection process involves creating two types of chromosomes to 

obtain better chromosomes before performing crossover and mutation operations. The 

performance of EMSGA on the basis of branch coverage, number of test cases, and 

mutation score was compared with that of other algorithms available in EvoSuite. The 

results show that EMSGA is more efficient than MSGA as well as the other algorithms. In 

addition, EMSGA can detect more faults in programs than the other algorithms. 

Therefore, because of its superior performance, EMSGA is expected to enable seamless 

automation of software testing, thereby facilitating the development of different software 

packages in the future. 
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