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Abstract: Test case generation is an important process in software testing. However, manual genera-
tion of test cases is a time-consuming process. Automation can considerably reduce the time required
to create adequate test cases for software testing. Genetic algorithms (GAs) are considered to be
effective in this regard. The multiple-searching genetic algorithm (MSGA) uses a modified version of
the GA to solve the multicast routing problem in network systems. MSGA can be improved to make
it suitable for generating test cases. In this paper, a new algorithm called the enhanced multiple-
searching genetic algorithm (EMSGA), which involves a few additional processes for selecting the
best chromosomes in the GA process, is proposed. The performance of EMSGA was evaluated
through comparison with seven different search-based techniques, including random search. All
algorithms were implemented in EvoSuite, which is a tool for automatic generation of test cases. The
experimental results showed that EMSGA increased the efficiency of testing when compared with
conventional algorithms and could detect more faults. Because of its superior performance compared
with that of existing algorithms, EMSGA can enable seamless automation of software testing, thereby
facilitating the development of different software packages.

Keywords: search-based test case generation; genetic algorithm; branch coverage; object-oriented

1. Introduction

Software testing is an important process in the software development life cycle. It
is performed to investigate the quality of software and to evaluate the risks in software
implementation. Software testing involves both valid and invalid inputs and includes the
processes of executing the developed software and checking for the expected responses.
Several techniques can be used to automatically produce inputs that conform to the behav-
ior of the software being tested, and these techniques provide high coverage in a given
branch, line, condition, or path. Various techniques have been proposed to reduce the cost,
resources, and time involved in the testing process.

The genetic algorithm (GA) is a popular and efficient search-based technique for
test case generation. GAs have been widely used to create suitable test cases [1–4]. Suit-
able test case generation helps to reduce costs in software testing given the huge cost of
creating test cases, which accounts for more than 50% of the total cost of developing a
program [5]. Researchers have investigated methods to enhance the solution efficiencies of
GAs. Multiple-searching genetic algorithm (MSGA) [6] is a successfully solved optimal
solution with high probability for routing in network system. MSGA is attractive to utilize
in other fields. From previous work [7], MSGA can generate test cases for small to medium
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scale software but cannot increase the percentage of coverage for complex software. This
means test cases generated with MSGA cannot increase the number of executed statements
or source code in complex software. Therefore, while MSGA may be suitable for generating
test cases for small to medium scale software, it may not be flexible enough for test case
generation for complex software. Some algorithms may be suitable for generating test
cases for small to medium scale software but may not succeed in complex cases. For this
reason, we present a new algorithm for improving MSGA to make it suitable for generating
test cases. We expect that the test case generation using our algorithm will also detect
more errors or faults in the software and therefore reduce the cost of software testing by
creating the minimum number of test cases while getting the maximum coverage. Further,
our algorithm can create test cases for complex software. In this study, we used MSGA to
generate test cases for software testing because MSGA can reach the global optimum faster
than a traditional GA [7]. In addition, we refactored the algorithm to solve the problem of
executing the source code for more access to the statements.

In this study, a new algorithm called the enhanced multiple-searching genetic algo-
rithm (EMSGA), which is an improved MSGA incorporating some additional processes,
was developed. The genetic operators constitute the basic mechanism of the GA, namely
selection, crossover, and mutation. Additional processes in EMSGA include the evaluation
of chromosomes and selection of the best chromosomes to add to the next generation. In
the original MSGA, all the chromosomes that are executed with the genetic operators are
added to the next generation. EMSGA was expanded in EvoSuite, and its effectiveness
was compared with that of MSGA and seven other techniques available in EvoSuite. The
SF110 corpus and nine open-source Java projects developed by Google and the Apache
Software Foundation were employed as case studies for generating test cases using the
aforementioned algorithms.

The remainder of this paper is organized as follows. Section 2 discusses previous
research works related to this study. Section 3 describes search-based techniques for gener-
ating test cases, including representation and fitness functions. The proposed algorithm is
also introduced in this section. Section 4 presents the problem instances and tools used to
evaluate EMSGA. Section 5 presents the experimental results. Section 6 reports threats to
the validity of the algorithm. A discussion of the results is presented in Section 7. Finally,
Section 8 concludes the paper.

2. Related Work

In software engineering, GA has been successful in many areas, such as software
design, effort estimation, and maintenance. For software design [8], GA can help migration
from structure programming to object-oriented programming, and the results are better
than greedy algorithm and Monte Carlo. In software effort estimation, GA is stable, has
higher accuracy than a random approach, and consists of an exhaustive framework [9].
Furthermore, GA is utilized to manage maintenance packages taking into account the
cost-effectiveness of the package and to reduce human bias [10].

Various search-based techniques are available for test case generation. GA is one of
the most widely used techniques. Many GAs have been remodeled for increased search
efficiency. For example, a population aging process was added in a traditional GA without
modifying any original parameters of the GA to reduce the number of test cases and
increase the test coverage [4]. The features of GA and ant colony optimization (ACO) were
combined to increase the efficiency and health of test cases [11]. GA and negative selection
algorithms were merged to reduce the generation of duplicate test cases [12]. The results of
the studies indicate that these improved algorithms are capable of efficiently generating
test cases, even though the algorithms were originally improved for other applications.
MSGA is an improved GA for network systems. Even though it was improved for and
utilized in another field, we believe that an enhanced version of MSGA can increase the
efficiency of test case generation.
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EMSGA reuses and refactors existing algorithms. The reusable nature of this algo-
rithm [13] helps to increase the reliability of results, provides faster algorithm development,
and reduces costs. Algorithm refactoring is caused by insufficient existing algorithms
to perform certain tasks. Consequently, algorithms are improved to suit the task. Al-
gorithm refactoring is challenging in terms of selecting some parts of an algorithm to
improve the performance or adding some processes to make it suitable for solving a given
problem. Several studies have examined refactoring. For example, Liu et al. (2020) [14]
studied automated refactoring for real-time systems to help reduce the effort required
by programmers to isolate portions for the execution of real-time systems under limita-
tions. Several researchers have used the SF110 corpus and EvoSuite to compare newly
developed algorithms and existing algorithms. For example, the EvoTLBO algorithm was
extended into EvoSuite to compare the results with traditional GA and monotonic GA
using 50 random classes from SF110 [15]; EvoSuite and SF110 were utilized to compare
the performance of memetic algorithm with traditional GA [16]; and nontrivial classes
were selected from SF110 to compare the efficiency of the DynaMOSA algorithm with the
many objective sorting algorithm (MOSA), the whole suite approach with archive (WSA),
and the traditional whole suite approach (WS) [17]. The SF110 corpus is considered as
a benchmark for test generation [18]. The SF110 corpus contains 110 Java projects from
SourceForge, 100 random projects, and the 10 most popular projects in SourceForge. Evo-
Suite is an automatic test generation tool for Java classes based on GA. In the present study,
the SF110 corpus and EvoSuite were considered sufficient to measure the effectiveness of
the proposed algorithm for test case generation. EMSGA was tested using SF110, and its
effectiveness was compared with that of seven algorithms available in EvoSuite.

3. Search-Based Test Case Generation

The search-based technique is widely used for test case generation [19–22]. The
following subsections describe some of the most well-known search-based techniques
before introducing the proposed EMSGA.

3.1. Representation

A population of candidate solutions is represented as a test suite [17,22], which is
a collection of test cases T = {t1, t2, . . . , tn} . Each test case is composed of various
statements t = 〈s1, s2, . . . , sl〉, where l is the total number of statements. A statement [23]
can be a variable declaration or a method call and can be of several different types, namely
a primitive, a constructor, a method, an array, or an assignment.

Figure 1 presents the generated test cases from Java code by considering the required
variables and methods to generate statements for testing the class under test. When
considering Java code, the integer array variable is a required variable to maintain the
numbers for sorting. Therefore, the integer array variable is declared in the test case. The
number of statements depends on the instruction to be used for each test. The length
of either the test case or the chromosome depends on the number of statements. The
population evolves iteratively to yield better solutions. The processes are repeated until a
stopping criterion is satisfied.

3.2. Fitness Function

In software testing, a fitness function is used to evaluate the ability of the generated
test suites to execute the source code of the program. Typically, fitness functions are
assessed based on the branch coverage metric. Complete branch coverage refers to all
control structures being executed and all lines of code being tested. This metric is defined
as follows [24,25]:

f (T) = |M| − |MT |+ ∑
b∈B

d(b, T), (1)

where |M| denotes the total number of methods, |MT | is the number of methods executed
in test suite T, and d(b, T) represents the branch distance for each branch b on test suite
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T that b is an element of in a set of branches B. The branch distance d(b, T) is defined
as follows:

d(b, T) =


0 if the branch has been covered,
dmin(b, T) if the predicate has been executed at least twice,
1 otherwise.

(2)

Figure 1. Generated test cases from source code.

3.3. Genetic Algorithms

GAs [4,26] solve problems through the use of three basic operators: selection, crossover,
and mutation. In GA, a chromosome is defined as a set of parameters that represent
a proposed solution to the problem that the GA is being used to solve. The selection
operator selects certain chromosomes as parent chromosomes. Chromosomes are selected
on the basis of their fitness values. Chromosomes with higher fitness values have a
higher chance of being selected. The crossover and mutation operators are applied to the
parent chromosomes to produce offspring for the next generation. The crossover operator
exchanges certain genes of two chromosomes. The mutation operator changes the value of
some genes in a few chromosomes.

Several researchers have proposed techniques to improve the traditional GA for
enhancing its solution efficiency and enabling its application in complex problems. These
efforts have relied on adjustments of factors or integration of GAs with other strategies. For
example, the monotonic GA [26] involves additional processes after the mutation process
in the traditional GA. These additional processes measure the fitness values to determine
the best offspring or the best parent for the next population; in contrast, the traditional GA
increases the number of mutated offspring in the next population and then calculates the
fitness values of all chromosomes. Another improved version of GA is the steady-state
GA [27,28], in which the fitness values of the mutated offspring are determined and then
the offspring is compared with the parent. If the offspring is better than the best parent, the
offspring replaces the parent in the current population. The advantages of monotonic GA
and steady-state GA are similar, namely removing duplicate chromosomes and ensuring
the best chromosome is not discarded. A breeder GA [29] differs from the traditional GA
in that it uses the principle of breeding, which involves selecting the fittest chromosomes
and reproducing using those chromosomes. The breeder GA is more precise as it utilizes
the science of breeding [30]. A cellular GA [31] is an improved GA that selects the best
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offspring after the crossover operator has been applied. The best offspring is mutated, and
the fitness value is determined. The selection of cellular GA is restricted to the overlapping
neighborhood producing slow solutions [32,33]. Table 1 summarizes the characteristic of
each GA.

Table 1. Comparison of GA-based characteristics.

Algorithm Characteristic of Algorithm

Traditional GA Applies only three basic operators: selection, crossover,
and mutation

Monotonic GA Still applies three basic operators but adds some processes to
select the best chromosome for the next generation.

Steady-state GA
Adds some processes to select the best chromosome. Similar to
the monotonic GA but replaces the best chromosome in the
current population.

Breeder GA Applies the principle of breeding to select chromosomes before
performing the basic operators.

Cellular GA Performs mutation operator on only one crossed chromosome.
Chromosomes are selected for mutation by choosing at random.

3.4. Chemical Reaction Optimization (CRO)

Chemical reaction optimization (CRO) [34] is a search-based technique that combines
the advantages of GA and simulated annealing. CRO solves problems using a set of
molecules. Each molecule possesses a molecular structure, potential energy, and kinetic
energy. The molecular structure represents a possible solution that does not have any
specific format. The potential energy is the fitness value of the corresponding molecule.
The kinetic energy quantifies the tolerance of the worst solution. The iterative processes
of CRO are similar to those of GA. A basic CRO involves four types of reactions: on-wall
ineffective collision and decomposition are reactions where a single molecule hits a wall
of the surface, and intermolecular ineffective collision and synthesis are reactions where
multiple molecules collide with each other.

On-wall ineffective collision represents a local search. There is minimal change in
the structure or properties of the molecule during this process. Decomposition is a type
of collision that produces two or more new molecules. This process represents a global
search. Intermolecular ineffective collision is the collision of multiple molecules, which
produces minimal changes in the structure or properties of the molecules, similar to on-wall
ineffective collision. Two or more collided molecules undergo small changes in structure or
properties. Synthesis is a reaction that represents a global search. In this reaction, multiple
colliding molecules fuse into a single molecule.

3.5. Random Search

Random search is the simplest search-based technique. It involves iterative searches
until an optimal solution is obtained. In each iteration, the solution is incremented with a
random vector. The fitness value of the modified solution is determined. If the modified
solution is better than the previous solution, the former replaces the latter. Otherwise, the
previous solution is retained. Random search is often utilized for comparison with other
techniques [35]. This technique can effectively solve large-scale problems [36].

4. Proposed Algorithm: Enhanced Multiple-Searching Genetic Algorithm (EMSGA)

In the multiple-searching genetic algorithm (MSGA) introduced by Tsai et al. [6], two
types of chromosomes are created to prevent the search from falling into a local optimum.
The MSGA utilizes the candidate mechanism to create more chromosomes with the same
features, resulting in better chromosomes. The MSGA has been successfully used to find
the optimal multicast route in network systems. We believe that the MSGA can also be
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integrated with other strategies to increase search ability. Therefore, we propose EMSGA, a
regeneration MSGA with the addition of a feature-selection strategy. After the mutation
operator is employed and the fitness value is determined, only chromosomes from the best
offspring or the best parent will be selected to be included in the next-generation population.
If the mutated offspring are better than the parents, then they replace the parents in the next
generation. Otherwise, the parents are retained. Choosing the best chromosome increases
the chances of reaching the optimal solution. Generally, two mutated offspring are added
to the next-generation population, and the parents are discarded. The processes involved
in EMSGA are similar to those in MSGA, with the exception of the aforementioned best
chromosome selection mechanism after the mutation process (Figure 2). Algorithm 1 shows
the pseudocode of EMSGA.

Figure 2. Flowcharts of GA (a) [7], MSGA (b) [7], and EMSGA (c). The red box indicates the additional processes in EMSGA.
The black dashed box displays the additional processes in MSGA.
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Algorithm 1 Pseudocode for EMSGA

1: Procedure EMSGA()
2: Create initial chromosomes
3: Evaluate fitness value of initial chromosomes and order by descending
4: while not terminal condition do
5: Select half chromosomes with the highest fitness value //Conservative chromosomes
6: Call procedure CreateExplorerChromosomes(Conservative chromosomes)
7: Evaluate fitness value of explorer chromosomes
8: Combine Conservative and Explorer chromosomes
9: Call procedure Crossover(all chromosomes)
10: //Mutation of EMSGA is the same as traditional GA
11: Mutate Conservative chromosomes with M1
12: Mutate Explorer chromosomes with M2
13: Evaluate fitness value of the mutated chromosomes
14: if the offspring is better than the best parent then
15: Add offspring in the next population
16: else
17: Add parent in the next population
18: end if
19: end while
20: return chromosomes
21: end procedure
22:
23: Procedure CreateExplorerChromosomes(Conservative chromosomes)
24: for each conservative chromosome i
25: for each gene of conservative chromosome j of i
26: Keep jth gene of ith conservative chromosome to jth candidate gene set
27: end for
28: end for
29: Creates explorer chromosomes with a number equal to the number of conservative

chromosomes
30: for each explorer chromosome i
31: for each candidate gene set j
32: Select one gene from jth candidate gene set
33: Preserve the selected gene in jth gene of ith explorer chromosome
34: end for
35: end for
36: return explorer chromosomes
37: end procedure
38:
39: Procedure Crossover(all chromosomes)
40: Set a random number r
41: if r is less than crossover probability then
42: for half of all chromosomes from i = 1 to (population size / 2)
43: Select ith chromosome and (population size − i + 1)th chromosome
44: Split the selected chromosomes with crossover method
45: Cross both chromosomes
46: end for
47: end if
48: return chromosomes
49: end procedure

The EMSGA process starts with the creation of initial chromosomes. Then, the fitness
value of the population is determined, and half of the chromosomes with the highest fitness
values are retained. The rest of the chromosomes are discarded. The preserved chromo-
somes are called the conservative chromosomes. Next, the candidate mechanism is utilized
to build the explorer chromosomes by selecting the genes of the conservative chromosomes.
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The candidate mechanism is created to gather genes of all conservative chromosomes that
are in the same position into the same candidate gene set. Each candidate gene set selects
only one gene to create as a gene of explorer chromosome. Figure 3 illustrates the method
for creating an explorer chromosome. Thereafter, crossover and mutation are performed
on the conservative and explorer chromosomes separately. Both types of chromosomes are
assigned the same crossover probability. The mutation probabilities are defined differently.
At the end of each iteration, the chromosomes are evaluated in terms of the fitness value,
and the best chromosomes are selected and added to the next-generation population.

Figure 3. Mechanism of creating explorer chromosome. Red boxes demonstrate which one gene from each candidate gene
set was chosen.

5. Experimental Evaluation

The aim of this study was to evaluate the capability of EMSGA to generate test cases
and to compare the feasibility and effectiveness of EMSGA with those of other algorithms.

5.1. Problem Instances

The selection of problem instances is important for any empirical study on auto-
matic test case generation. This study utilized the SF110 corpus (the details of SF110 are
available online: https://www.evosuite.org/experimental-data/sf110/ (accessed on 4
March 2020)) [18] and nine open-source Java projects developed by Google and the Apache
Software Foundation to evaluate EMSGA. The SF110 corpus is widely used as a bench-
mark [17,24,37]. It contains 110 projects that were written with the Java language. Not all
classes in the SF110 corpus were employed in this experiment. Only 203 classes were chosen
based on the selection in a previous study [38]. Furthermore, nine problem instances from
Google and the Apache Software Foundation were chosen uniformly and at random based
on their sizes and functionalities (Table 2), consisting of a total of 1382 classes. EvoSuite
was applied to a total of 203 + 1382 = 1585 classes.

https://www.evosuite.org/experimental-data/sf110/
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Table 2. Details of open-source Google and Apache projects. Note: the second column lists the
number of non-commenting source lines of code reported by JavaNCSS (http://www.kclee.de/
clemens/java/javancss/ (accessed on 10 December 2020)). The fourth column lists the number of
branches reported by EvoSuite.

Problem Instances No. of Lines No. of Classes No. of Branches

Java Certificate Transparency 955 30 178
Commons CLI 1480 22 961

Commons Codec 5545 68 3050
Commons Email 1505 20 209
Commons Jelly 4688 95 636

Commons Math3 65,389 918 28,450
Commons Numbers 317 5 225

Joda-Time 19,441 166 9924
Truth 4117 58 223

Total 103,437 1382 43,856

5.2. Test Generation Tool

The testing tool employed EvoSuite (EvoSuite can be downloaded from http://www.
evosuite.org (accessed on 20 February 2020)) [24] to generate test cases for Java code.
EvoSuite is widely used in software testing [3,39,40]. It utilizes search-based methods,
including genetic algorithms, to generate test cases using Java bytecode. Furthermore,
EvoSuite supports various coverage criteria to determine the quality of a solution.

In the experiment, the proposed algorithm was implemented as an extension to the
EvoSuite. To extend the new algorithm in Evosuite, a developer must create a new class
in the client module and extend the abstract class GeneticAlgorithm. The EMSGA class
implemented the basic methods for GA that EvoSuite prepares. In addition, the EMSGA
class added some processes for creating two types of chromosomes and selected the best
chromosome. Test cases of each algorithm were automatically generated, and problem
instances were executed through EvoSuite. The performance of EMSGA was compared
with that of the MSGA, traditional GA, monotonic GA, steady-state GA, breeder GA,
cellular GA, CRO, and random search. These search-based methods are provided in
EvoSuite. The coverage achieved by the algorithms was assessed in terms of the branch
coverage metric. Search budget configuration uses EvoSuite’s default of 60 s [41]. Search
budget is the time for generating test cases of the algorithm each time. The experiment was
independently repeated 10 times.

The parameter settings influence the performance of search-based methods. The
EvoSuite guides the default values (e.g., selection function, crossover function, crossover
probability, mutation function, mutation probability, population size, and chromosome
length) for test case generation. The default values of EvoSuite are the approximate values
that are suitable for generating test cases that are based on GA. Table 3 shows the default
values in EvoSuite. The same parameter setting may not be enough to fully extract the
efficiency of the algorithm [42]. As Arcuri and Fraser (2013) [43] pointed out, the default
values of EvoSuite are sufficient to evaluate the performance of algorithms for test case
generation, whereas the suitable parameter setting is time-consuming and may or may not
produce good results for algorithms. In addition, Črepinšek et al. (2014) [44] perceptively
stated that all algorithms should be examined under the same conditions.

Therefore, the default values for all nine algorithms were used in the experiment.
EMSGA assigns different mutation probabilities to the conservative and explorer chromo-
somes. If the explorer chromosomes are defined as having a higher mutation probability
than the conservative chromosomes, the optimal solution can be obtained [6]. Several
researchers have set the probability as 1/l for the mutation operator, where l is the chromo-
some length [43,45,46]. Accordingly, mutation probabilities of 1/l and 0.75 (default) were
used for the conservative and the explorer chromosomes, respectively, in this study.

http://www.kclee.de/clemens/java/javancss/
http://www.kclee.de/clemens/java/javancss/
http://www.evosuite.org
http://www.evosuite.org
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Table 3. Default values of parameters in Evosuite.

Parameters Default Values

Population size 50
Chromosome length 40

Selection function Rank
Crossover function Single point relative

Crossover probability 0.75
Mutation function Uniform

Mutation probability 0.75
Search budget 60 s

The experiment involved 1585 × 9 × 10 = 142,650 runs of EvoSuite with the afore-
mentioned settings. The search in each run was limited to 60 s. The experiment required
at least 142,650/(60 × 24) = 99.0625 days of computational time. It was conducted on a
Windows 10 Professional (Seattle, WA, USA) ×64 system having an Intel® Core i7 CPU
with 3.40 GHz and 16 GB of RAM.

5.3. Experimental Analysis

The coverage achieved was evaluated based on the branch criterion, number of test
cases (#T), and mutation score. All the experimental results were analyzed via nonparamet-
ric Mann–Whitney U tests with a significance level (p-value) of 0.05, the Vargha–Delaney
Â12 effect size, and a 95% confidence interval for the branch coverage achieved. Boxplots
and marginal distribution plots were created using RStudio Version 1.1.383.

6. Experimental Results

The experimental results for EMSGA and the competing algorithms are presented and
analyzed in this section. The experimental results are tabulated in Table 4, which shows the
standard deviation (σ), a 95% confidence interval (CI) of the branch coverage, the p-value
for the Mann–Whitney U tests, and the Vargha-Delaney Â12 effect size.

Table 4. Results of test case generation using each algorithm.

Algorithm
Branch Coverage Mut. Score

#T p-Value
^
A12

(EMSGA:Others)Avg. σ CI Avg. σ CI

EMSGA 0.5900 0.0032 (0.5877, 0.5923) 0.4174 0.0038 (0.4146, 0.4201) 180.49351 - -
MSGA 0.5846 0.0033 (0.5823, 0.5870) 0.4166 0.0043 (0.4135, 0.4196) 181.5325 0.00578 0.87

GA 0.5829 0.0040 (0.5801, 0.5858) 0.4159 0.0046 (0.4127, 0.4192) 177.8818 0.00168 0.92
Monotonic GA 0.5855 0.0063 (0.5810, 0.5901) 0.4162 0.0050 (0.4127, 0.4198) 182.3091 0.03752 0.74

Steady-State GA 0.5699 0.0036 (0.5673, 0.5725) 0.4168 0.0023 (0.4152, 0.4185) 178.7455 0.00018 1
Breeder GA 0.5821 0.0059 (0.5779, 0.5864) 0.4167 0.0040 (0.4138, 0.4195) 180.0545 0.00466 0.88
Cellular GA 0.5588 0.0034 (0.5563, 0.5612) 0.4056 0.0044 (0.4024, 0.4087) 174.2039 0.00018 1

CRO 0.5717 0.0040 (0.5688, 0.5746) 0.4120 0.0062 (0.4076, 0.4164) 177.9416 0.00018 1
Random search 0.5683 0.0036 (0.5657, 0.5709) 0.4127 0.0025 (0.4109, 0.4144) 179.5857 0.00018 1

EMSGA achieved the highest branch coverage (0.5900). This means test cases of
EMSGA can execute 59% of the source code of the class test. The branch coverage of
EMSGA obtained that similar to the monotonic GA. However, EMSGA generated fewer
test cases than the monotonic GA due to the limited search budget. Each algorithm had
60 s to search for the optimal test cases for each class. Although EMSGA generated fewer
cases, the branch coverage of EMSGA was higher. This means that EMSGA is more
efficient than monotonic GA. In terms of the mutation score, EMSGA achieved the best
performance. The mutation score represents the number of faults that can be detected
in the test cases, which is a measure of the quality of the test cases generated by each
algorithm [47]. The Â12 measure is a comparison of effect size between the EMSGA and
the others; if Â12 > 0.5, it means EMSGA can beat that algorithm more than 50% of the time.
For example, Â12 = 0.74 means EMSGA can beat the monotonic GA 74% of the time. The
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values of this metric for all the algorithms were found to be greater than 0.5. This means
that the EMSGA can generate higher-quality test cases than the other algorithms.

Considering the values of all the metrics, EMSGA clearly outperformed MSGA in
most categories. Furthermore, specifically in terms of the Â12 measure, EMSGA performed
significantly better than MSGA (average Â12 effect size was 0.93). In the Mann–Whitney U
tests, EMSGA exhibited a p-value of less than 0.05. From a comparison between EMSGA
and MSGA, it can be concluded that EMSGA possesses a more effective best chromosome
selection process due to the addition of genetic operators and is hence more efficient than
the traditional MSGA. The higher mutation score implies that EMSGA is better at detecting
faults than the other algorithms.

The distributions of the average branch coverage and average mutation scores ob-
tained from the 1585 classes during the execution of the test cases generated by each
algorithm are shown in Figure 4. The length of the box indicates the distribution of values
between the 25% and 75% quantiles. The horizontal line in the box represents the median
value. The dot in the box represents the mean value. The vertical lines indicate the smallest
and largest values outside the middle 50%. The dots outside the box denote the outlier val-
ues. Despite the similar distributions of coverage and mutation score for all the algorithms,
outliers of mutation score were observed across all the algorithms (see Figure 4b) except
EMSGA and random search. This suggests that EMSGA and random search can detect
up to 100% of the faults, while the other algorithms can detect approximately 80–90% of
the faults (the outliers represent the undetected faults). Considering the distribution of
coverage (see Figure 4a), EMSGA exhibited a higher average coverage than random search.
Furthermore, EMSGA presented a narrower distribution, that is, less scattered data.

Figure 4. Coverage and mutation scores achieved by each algorithm.

Figure 5 presents the distributions of the branch coverage, number of test cases,
and mutation score achieved by each algorithm. Each marginal distribution displays the
average of each metric (dashed line) and the marginal density. The marginal density is the
solid line on the right side of each marginal distribution plot that indicates the distribution
of results. The average branch coverage of all the algorithms was 57.71% (Figure 5a). Five
algorithms achieved values exceeding the average, namely EMSGA, MSGA, standard GA,
monotonic GA, and breeder GA. In terms of the number of test cases (Figure 5b) as well,
four algorithms achieved values better than the average (179.19 test cases), namely EMSGA,
MSGA, monotonic GA, breeder GA, and random search. All algorithms exhibited mutation
scores above the average (0.41). Thus, EMSGA achieved values exceeding the average for
all three evaluation metrics. The ratio of classes reached branch coverage within each 10%
branch coverage interval, as shown in Figure 6. For example, 35% of all classes that were
tested in the test cases generated by EMSGA achieved a branch coverage between 81% and
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100%. From the experimental results, it is evident that EMSGA is feasible and effective for
generating test cases.

Figure 5. Average values of metrics for each algorithm.

Figure 6. Proportion of classes for different branch coverage intervals.
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Figure 7 displays the association between the number of test cases and the achieved
branch coverage when problem instances were executed using test cases of each algorithm.
Several problem instances indicated the EMSGA achieved greater or equal branch coverage
while the number of test cases was less than the others. The problem instance Truth is
a small-scale program, and the test cases of all algorithms executed a similar number of
source code.

Figure 7. Problem instances that were evaluated with each algorithm.
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7. Threats to Validity

Based on the results obtained, threats to internal validity are related to factors affecting
the behavior of the software under test [48]. One such factor observed in the experiment
was the number of test cases generated by all algorithms. Single testing might be inadequate
for summarizing the performance of the algorithms in terms of generating test cases. In
this experiment, each algorithm was run 10 times with the same tools. Furthermore, all
parameters were defined with the same default values.

Threats to external validity are related to the generalization of the results beyond the
scope of experimental analysis [22]. The SF110 corpus and nine open-source Java projects
developed by Google and the Apache Software Foundation were utilized as case studies,
which required a large number of experiments to be conducted. In this study, a total of
1585 classes were used, which included 203 classes from the SF110 corpus chosen based on
previous studies [37] and all classes of the nine open-source Java projects. The reported
results are limited to the search-based techniques employed in the experiments.

8. Discussion

EMSGA modifies the MSGA processes by comparing the parent and offspring and
choosing the better chromosomes for the next generation. The selection of the better
chromosome as input to the next generation allows for approaching the optimal solution.
Our experimental results are in accordance with the results of previous experiments, which
indicates that the branch coverage increases when a better chromosome is selected. For
example, the monotonic GA achieved better results than the traditional GA [15,22]. Our
results show that EMSGA can achieve a higher branch coverage, generate more test cases,
and obtain a higher mutation score than MSGA.

One of the contributions of this research is our examination of the efficiency of EMSGA
by extending it to EvoSuite, which is an automatic tool for generating test cases. The results
of this application provide the number of test cases, the percentage of coverage, and muta-
tion score. The results also indicate that EMSGA achieves a similar coverage with fewer test
cases compared with monotonic GA. This is probably because the population of EMSGA
contains two types of chromosomes, namely conservative and explorer chromosomes. The
explorer chromosomes are created from high-fitness chromosomes. The main objective
of software testing is to minimize the number of test cases and increase the coverage.
The number of test cases affects the software development cost [5,49]. Although EMSGA
produces fewer test cases than monotonic GA does in 60 s, the former achieves a higher
coverage for the same number of test cases. A comparison of the efficiency between the
existing algorithms in EvoSuite and EMSGA suggests that, in test case generation, the
branch coverage may not be enough to clearly demonstrate the difference between results.
The finding is consistent with Campos et al. (2018) [21], who indicated that the efficiencies
of algorithms in EvoSuite may provide little difference in results for generating test cases.
This could be due to a limitation on setting parameters, such as population size, basic
function, or timing. In particular, as Fraser and Arcuri (2015) [50] pointed out, achieving a
certain percentage of branch coverage and mutation score for a limited time may lead to
higher mutation scores, but the coverage may be lower. The above experimental results also
show that we can obtain higher mutation scores while having coverage very close to other
algorithms. These findings lead us to believe that EMSGA has the potential to generate
more test cases within a limited time and increase its coverage. Arcuri and Fraser [47] re-
ported that the performance of a search-based technique depends on the parameter settings.
A possible alternative is to find the best value of the parameters suitable for generating test
cases [22], although the default values of EvoSuite are sufficient for evaluating algorithms
in terms of test case generation. Therefore, appropriate values for EMSGA should be
determined to generate the maximum number of test cases. Furthermore, EMSGA should
be examined for other test coverage criteria.
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9. Conclusions

This paper proposes an enhanced MSGA (EMSGA) to generate test cases for software
testing. In EMSGA, the selection process involves creating two types of chromosomes to
obtain better chromosomes before performing crossover and mutation operations. The
performance of EMSGA on the basis of branch coverage, number of test cases, and mutation
score was compared with that of other algorithms available in EvoSuite. The results show
that EMSGA is more efficient than MSGA as well as the other algorithms. In addition,
EMSGA can detect more faults in programs than the other algorithms. Therefore, because
of its superior performance, EMSGA is expected to enable seamless automation of software
testing, thereby facilitating the development of different software packages in the future.
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