
mathematics

Article

Three-Stage Numerical Solution for Optimal Control
of COVID-19

Luis Vargas Tamayo 1, Vianney Mbazumutima 2 , Christopher Thron 1,* and Léonard Todjihounde 2

����������
�������

Citation: Tamayo, L.V.;

Mbazumutima, V.; Thron , C.;

Todjihounde, L. Three-Stage

Numerical Solution for Optimal

Control of COVID-19. Mathematics

2021, 9, 1777. https://doi.org/

10.3390/math9151777

Academic Editor: José Niño-Mora

Received: 7 June 2021

Accepted: 23 July 2021

Published: 27 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Sciences and Mathematics, Texas A & M University, CT, Killeen, TX 76549, USA;
luis.vargas-tamayo@tamuct.edu

2 Institute of Mathematics and Physical Sciences, IMSP-Bénin, Abomey Calavi University,
Porto-Novo B.P. 613, Benin; vianney.mbazumutima@imsp-uac.org (V.M.); leonardt@imsp-uac.org (L.T.)

* Correspondence: thron@tamuct.edu

Abstract: In this paper, we present a three-stage algorithm for finding numerical solutions for optimal
control problems. The algorithm first performs an exhaustive search through a discrete set of widely
dispersed solutions which are representative of large subregions of the search space; then, it uses the
search results to initialize a Monte Carlo process that searches quasi-randomly for a best solution;
then, it finally uses a Newton-type iteration to converge to a solution that satisfies mathematical
conditions of local optimality. We demonstrate our methodology on an epidemiological model of
the coronavirus disease with testing and distancing controls applied over a period of 180 days to
two different subpopulations (low-risk and high-risk), where model parameters are chosen to fit the
city of Houston, Texas, USA. In order to enable the user to select his/her preferred trade-off between
(number of deaths) and (herd immunity) outcomes, the objective function includes costs for deaths
and non-immunity. Optimal strategies are estimated for a grid of (death cost) × (non-immunity
cost) combinations, in order to obtain a Pareto curve that represents optimum trade-offs. The levels
of the four controls for the different Pareto-optimal solutions over the 180-day period are visually
represented and their characteristics discussed. Three different variants of the algorithm are run
in order to determine the relative importance of the three stages in the optimization. Results from
the three algorithm variants are fairly consistent, indicating that solutions are robust. Results also
show that the Monte Carlo stage plays an especially prominent role in the optimization, but that all
three stages of the process make significant contributions towards finding lower-cost, more effective
control strategies.

Keywords: optimal control; testing; distancing; herd immunity; COVID-19; Monte Carlo; visualiza-
tion; Pareto optimum

1. Introduction

Optimal control may be characterized as the determination of inputs to a dynam-
ical system that optimize an objective functional while satisfying all constraints of the
system [1]. In epidemiology, optimal control plays an important role in finding from
among the available strategies the most effective strategy to reduce the infection rate to
an acceptable level, while minimizing the cost of therapeutic or preventive measures that
control the disease progression.

Two major mathematical results in the theory of optimal control are Pontryagin’s
maximum principle and the Arrow theorem. In some cases, these are sufficient to determine
optimal solutions. For example, Pontryagin’s principle is applied to a mathematical model
of dengue transmission in [2] to determine optimal interventions. However, more realistic
models often do not satisfy the hypotheses required for theoretical analysis. In such cases,
various numerical methods are used to estimate optimal controls. For example, the authors
in [3] investigate the measures against dengue fever by using mathematical modeling and
numerical methods of optimal control. Optimal control theory and nonlinear programming

Mathematics 2021, 9, 1777. https://doi.org/10.3390/math9151777 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6279-9178
https://orcid.org/0000-0002-8960-2504
https://doi.org/10.3390/math9151777
https://doi.org/10.3390/math9151777
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9151777
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9151777?type=check_update&version=2

Mathematics 2021, 9, 1777 2 of 26

approaches are applied to Dengue epidemic models [4]. An enumerative numerical method
for finding near-optimal controls for SIS epidemic model under treatment and vaccination
is developed by [5].

There are several different general approaches to numerical optimization. Descent
methods (such as Newton iteration or conjugate gradient) iteratively identify “best” search
directions based on local properties in the neighborhood of the current solution. On the
other hand, enumerative methods such as dynamic programming conduct a systematic
search throughout a subspace of possible solutions. Finally, Monte Carlo methods wander
randomly through solution space, computing sample solutions and disproportionately
sampling regions that have better solutions. These three general approaches all have their
advantages and disadvantages. Descent methods will converge rapidly to a local optimum,
but have no way of determining whether the local optimum is globally the best solution.
Enumerative methods must usually be limited to a relatively small subset of possible
solutions in order to be practically computable. Monte Carlo methods both explore a
relatively extensive subregion of solution space and can avoid inferior local optima to some
extent, but are still unable to accomplish a truly global search and are not good at settling
in to a precise local optimum.

The strengths and deficiencies of each of the above methods to some extent compensate
for each other. This indicates that an algorithm that combines the three approaches together
may possibly combine the strengths and avoid the weaknesses of each individual method.
The natural way to do this is to start with an enumerative method that identifies a favorable
starting point for Monte Carlo; then, use Monte Carlo to identify the most promising local
optimum; then, apply a descent method to home in on the exact local optimum. In this
paper, we present an algorithm that follows this schema, and apply it to a detailed model
of corona virus disease 19 (COVID-19) transmission [6] that is based on practical data from
Houston, Texas, USA. We assume that testing and distancing are the two available control
means, and vary parameters in the objective function.

The organization of the paper is as follows: Section 2 reviews previous work in the
area of control of COVID-19 through the use of non-pharmaceutical measures. Section 3
describes the multicompartment system model. Section 4 introduces controls into the
model and provides justification. Theoretical results from optimal control theory are
briefly recalled in Section 5. Section 6 formulates and justifies the objective function, while
Section 7 analyzes the local optimality conditions for our model. Section 8 describes the
three-stage algorithm in detail, while Section 9 presents and discusses the results obtained
from three variants of the algorithm. Section 10 summarizes the research and draws
general conclusions.

2. Previous Work

As of 2021, ongoing intensive efforts are being made to stop the spread of COVID-19
and eradicate it as soon as possible. Much research has dealt with evaluating the efficacy
of various non-pharmaceutical measures applied to reduce the virus propagation. Several
studies are based on geographical data from various regions. Mitigation which slows down
the epidemic spread, and suppression which reverses epidemic growth and reduces case
numbers to low levels are studied in [7] for the UK and the US. The authors in [8] estimate
the effect of non-pharmaceutical interventions across 11 European countries beginning
from the start of the epidemic in February 2020 until 4 May 2020. The authors in [9] model
the control of COVID-19 transmission in Australia by means of intervention strategies such
as restrictions on international air travel, isolation, home quarantine, social distancing and
school closures, while the authors in [10] model the application of similar measures in
Wuhan province over December 2019 and February 2020. In [11], a dynamic COVID-19
microsimulation model is developed to assess clinical and economic outcomes, as well
as cost-effectiveness of epidemic control strategies in KwaZulu-Natal province, South
Africa, while the authors in [12] established mathematical models to analyze COVID-19
transmission in Germany, and to evaluate the impact of non-pharmaceutical interventions.

Mathematics 2021, 9, 1777 3 of 26

Other related studies analyze the general control problem for COVID-19–based
scenarios, without reference to any particular region. Mathematical models with non-
pharmaceutical and pharmaceutical measures were formulated [13] where community
awareness was considered. An investigation of the optimal control of epidemics where
an effective vaccine is impossible and only non-pharmaceutical measures are practical is
presented in [14] with the objective of minimizing the number of COVID-19 disease deaths
by avoiding an overload of the intensive care treatment capacities and establishing herd
immunity in the population in order to prevent a second outbreak of the epidemic, while
keeping intervention costs at a minimum. A model which presumes two modes of virus
transmission (direct contact and contamination of surfaces) is described in [15], and the
effect of non-pharmaceutical interventions on the transmission dynamics is established.
In [16], optimal control theory is applied to a COVID-19 transmission model where optimal
control strategies are obtained by minimizing the exposed and infected population for a
given implementation cost. By applying the Pontryagin maximum principle to character-
ize the optimal controls, the authors in [17] propose an optimal strategy by carrying out
awareness campaigns for citizens with practical measures to slow down COVID-19 spread,
diagnosis, including surveillance of airports and the quarantine of infected individuals.

3. COVID-19 Epidemic Model Formulation

A deterministic compartmental model was used to model the transmission dynamics
of COVID-19. The model was previously used in [18], and is based on Yang et al. [6]. The
model divides the entire population into two subpopulations characterized by low and
high risk, respectively, of COVID-19 complications. Each subpopulation is further subdi-
vided into the following compartments: susceptible(S), exposed (E), pre-symptomatic
infectious (PY), pre-asymptomatic infectious (PA), symptomatic infectious (IY), asymp-
tomatic infectious (IA), symptomatic infectious that are hospitalized (IH), recovered (R),
and deceased (D). Recovered individuals are assumed to have permanent immunity, and
dead individuals are not infectious. The multicompartment model for each subpopulation
is diagrammed in Figure 1, and the explicit equations are as follows:

dSj

dt
= −

1

∑
i=0

1
Ni

(
IY
i ωY + IA

i ωA + PY
i ωPY + PA

i ωPA
)

φjiβSj,

dEj

dt
=

1

∑
i=0

1
Ni

(
IY
i ωY + IA

i ωA + PY
i ωPY + PA

i ωPA
)

φjiβSj − σEj,

dPA
j

dt
= (1− τ)σEj − ρAPA

j ,

dPY
j

dt
= τσEj − ρYPY

j ,

dIA
j

dt
= ρAPA

j − γA IA
j ,

dIY
j

dt
= ρYPY

j − (1−Πj)γ
Y IY

j −Πjη IY
j ,

dIH
j

dt
= Πjη IY

j − (1− νj)γ
H IH

j − µνj IH
j ,

dRj

dt
= γA IA

j + (1−Πj)γ
Y IY

j + (1− νj)γ
H IH

j − µνj IH
j r

(
1− θ/r

max(ν0 IH
0 + ν1 IH

1 , θ/r)

)
,

dDj

dt
= µνj IH

j

(
1 + r

(
1− θ/r

max(ν0 IH
0 + ν1 IH

1 , θ/r)

))
,

(1)

where j is the subpopulation index (0 = low risk, 1 = high risk), and Nj = Sj + Ej + PA
j +

PY
j + IA

j + IY
j + IH

j + Rj represent the subpopulation totals. The complicated nonlinear

Mathematics 2021, 9, 1777 4 of 26

terms in the last two equations in System (1) reflect the additional mortality that occurs
when the ventilator capacity (represented by the parameter θ) is exceeded. These terms are
derived in [18].

Figure 1. Multicompartment structure of COVID-19 transmission model (taken from [6]).

The interpretation and numerical values of the model’s parameters are listed in Table 1.
At t = 0, all compartment populations are assumed to be nonnegative, and, for t ≥ 0, the
model has non-negative solutions contained in the feasible region
Γ = {Sj, Ej, PA

j , PY
j , IA

j , IY
j , IH

j , Rj, Dj} ∈ R18
+ .

Table 1. Baseline parameters used in the model [6].

Parameters Interpretation Values

β baseline transmission rate 0.0640

γA recovery rate on asymptomatic compartment Equal to γY

γY recovery rate on symptomatic non-treated compartment 1
γY = 4.0

τ symptomatic proportion 0.55

σ exposed rate 1
σ ∼ 2.9

ρA pre-asymptomatic rate Equal to ρY

ρY pre-asymptomatic rate 1
ρY = 2.3

P proportion of pre-symptomatic transmission 0.44

ωY relative infectiousness of symptomatic individuals 1.0

ωP relative infectiousness of pre-symptomatic individuals ωP = P
1−P

τωY [YHR/η+(1−YHR)/γY]+(1−τ)wA/γA

τωY /ρY+(1−τ)ωA/ρA , ωPY = ωPωY , ωPA = ωPωA

ωA relative infectiousness of infectious individuals in compartment IA ωA = 0.66

IFR infected fatality ratio, age specific (%) [0.6440, 6.440]

YFR symptomatic fatality ratio, age specific (%) [1.130, 11.30]

γH recovery rate in hospitalized compartment 1
γH ∼ 10.7

YHR Symptomatic case hospitalization rate % [4.879, 48.79]

Π rate of symptomatic individuals go to hospital, age-specific Π = γY∗YHR
η+(γY−η)YHR

η rate from symptom onset to hospitalized 0.1695

µ rate at which terminal patients die 1
µ = 8.1

HFR hospitalized fatality ratio, age specific (%) [4, 23.158]

ν death rate on hospitalized individuals, age specific ν = γH HFR
µ+(γH−µ)HFR

θ Hospitals’ capacity to treat seriously ill patients 3000 [19]

1/r number of deaths from the people who are put on respirators 1/3

Mathematics 2021, 9, 1777 5 of 26

4. COVID-19 Epidemic Model Formulation under Controls

In order to study disease mitigation, we introduce the effects of two controls: testing
and social distancing. For our purposes, ‘social distancing’ refers to all measures designed
to reduce potentially infectious social contact, including wearing masks, maintaining dis-
tance, additional cleaning and sanitizing, erecting barriers, limiting building and room
occupancy, and closure of offices, stores, schools, etc. Social distancing reduces the overall
infectivity, while COVID testing reduces the infectivity of the asymptomatic and presymp-
tomatic infectious compartments. The model with controls is identical to (1), except the
first two equations are modified as follows:

dSj

dt
= −

1

∑
i=0

1
Ni

(
IY
i ωY + (1− ui)[IA

i ωA + PY
i ωPY + PA

i ωPA]
)
(1− vi)βφjiSj,

dEj

dt
=

1

∑
i=0

1
Ni

(
IY
i ωY + (1− ui)[IA

i ωA + PY
i ωPY + PA

i ωPA]
)
(1− vi)βφjiSj − σEj,

(2)

where ui, vi denote respectively the levels of testing and distancing control for the two
population subgroups (0 ≤ ui, vi ≤ 1, i ∈ {0, 1}). We shall use X to denote the vector
X = [X0, X1] of all infected classes, where Xj = [Ej, PA

j , PY
j , IA

j , IY
j , IH

j], j ∈ {0, 1} and
X′ = [X′0, X′1] the vector of all uninfected classes with X′j = [Sj, Rj], j ∈ {0, 1}, with sus-

ceptible (Sj), exposed (Ej), pre-symptomatic infectious (PY
j), pre-asymptomatic infectious

(PA
j), symptomatic infectious (IY

j), asymptomatic infectious (IA
j), symptomatic infectious

that are hospitalized (IH
j), recovered (Rj), and deceased (Dj). The contact matrix Φji is

defined by

Φji =

(
Φ00 Φ01
Φ10 Φ11

)
=

(
10.52 2.77
9.4 2.63

)
, (3)

where Φji represents the mean number of contacts per day experienced by individuals
in group i from individuals of group j. The values of the matrix (3) were obtained by
averaging the contacts between low and high risk individuals over all age groups in the
model [6].

5. Theoretical Results in Optimal Control

An optimal control problem comprises a cost function J[x(t), u(t)], a set of variables
state x(t) ∈ X, a set of state controls u(t) ∈ U and all depending on t, where t0 ≤ t ≤ t f ,
and the target is to find control u(t) and the corresponding state variable x(t) to maximize
or minimize an objective functional. In the Lagrange formulation, the objective functional
can be defined as follows:

max
u

J[x(t), u(t)] =
∫ t f

t0

f (t, x(t), u(t))dt,

subject to
dx
dt

= g(t, x(t), u(t)),

x(t0) = x0, and x(t f) is unrestricted or x(t f) is fixed, (4)

where the functions f and g are continuously differentiable. The control u(t) is piecewise
continuous, and the state x(t) is piecewise differentiable.

We give two important theorems in the study of the optimal control theories. The
first theorem gives necessary conditions for an optimal control and corresponding optimal
solution. These conditions are necessary to guarantee local optimality but are not sufficient
to ensure global optimality.

Theorem 1. (Pontryagin’s maximum principle) [20].

Mathematics 2021, 9, 1777 6 of 26

If u∗(t) and x∗(t) are optimal for the problem

max
u

J[x(t), u(t)], where J[x(t), u(t)] =
∫ t f

t0

f (t, x(t), u(t))dt,

subject to

{
dx
dt = g(t, x(t), u(t)),
x(t0) = x0,

(5)

then there exists a piecewise differential adjoint function λ(t) such that

H(t, x∗(t), u(t), λ(t)) ≤ H(t, x∗(t), u∗(t), λ(t)), (6)

for all controls u at each time t, where the Hamiltonian H is given by

H(t, x(t), u(t), λ(t)) = f (t, x(t), u(t)) + λ(t)g(t, x(t), u(t)), (7)

and {
λ′(t) = − ∂H(t,x∗(t),u∗(t),λ(t))

∂x ,
λ(t f) = 0.

(8)

where the functions f and g are continuously differentiable, and x(t) is piecewise differentiable.

The proof of Theorem 1 may be found in [21].
The following theorem gives sufficient conditions for global optimality of a control,

for control problems that satisfy certain conditions.

Theorem 2. (The Arrow theorem) [22].
For the optimal control problem (5), the conditions of the maximum principle are sufficient for

the global minimization of J[x(t), u(t)] if the maximized Hamiltonian function H, defined in (7), is
convex in the variable x for all t in the time interval [t0, t f] for the given λ.

The proof of Theorem 2 may be found in [23,24].
Both Pontryagin’s and Arrow’s theorem have conditions of applicability in order to

establish local and global optimality, respectively. When these conditions do not hold,
numerical methods may be used to approximate optimal solutions. Such methods usually
involve performing both a wide-ranging search through the solution space, as well as a
process of local convergence when a region of promising solutions is located. Simulated
annealing and other Monte Carlo algorithms are prominent examples of such methods.
However, when the dimensionality of the solution space is very high, Monte Carlo meth-
ods can be very computationally expensive. Although Monte Carlo methods perform
the dual task of global search and local convergence, they are not really optimized for
either task separately. Consequently, it is reasonable to include pre- and post-processing
algorithms that assist the Monte Carlo in the tasks of global search and local convergence,
respectively. The pre-processing algorithm makes use of prior knowledge to perform a dis-
crete coarse sampling from the set of likely solutions, while the post-processing algorithm
takes the Monte Carlo output and adjusts it so that it satisfies mathematical conditions for
local optimality. The three-stage numerical algorithm proposed in this paper is based on
this conception.

6. Objective Function

In this section, we develop an objective function that models the cost of COVID-19
infection on a human population. Our algorithm is designed to find controls that minimize
this objective function, given the disease dynamics obeys Systems (1) and (2).

There are several considerations in selecting an optimal control strategy. Of course, the
strategy should reduce deaths as much as possible—however, this goal must be balanced

Mathematics 2021, 9, 1777 7 of 26

against the cost of implementation. Furthermore, it may be desirable to attain a certain level
of herd immunity by reducing the number of non-immune individuals in the population, in
order to avoid recurrence of the epidemic. Achieving this latter goal requires that a certain
proportion of the population contracts the disease, thus incurring the risk of deaths. It
follows that the goals of reducing deaths and attaining herd immunity are, to some extent,
contradictory, and must be balanced against each other.

In order to create a single objective function, we assign a monetary value to deaths, as
well as to remaining non-immune individuals. Naturally, it is difficult to assign a monetary
cost equivalent for deaths. In Section 9, we will show how these monetary values can
be adjusted to obtain optimal strategies for different death target levels, or for different
target levels of herd immunity (as measured by the number of non-immune individuals
remaining in the population).

We first establish some convenient notation:

u(t) = (u0(t), u1(t), v0(t), v1(t)),

X(t) = (X0(t),X1(t)), X0(t) = (X0(t), X′0(t)), X1(t) = (X1(t), X′1(t)).
(9)

In the following, we will often drop the function arguments (e.g., the ‘t’ in u(t)) in
order to simplify the equations. Using this notation, our objective function is defined as
follows:

Jtot(u,X) =
∫ t f

0

1

∑
j=0

Jj(uj, vj,Xj)dt

+
1

∑
j=0

ej

(
Dj(t f) + ν′j

(
IH
j (t f) + Π′j(IY

j (t f) + PY
j (t f) + τEj(t f))

))
+

1

∑
j=0

gj

(
Sj(t f) + f j

(
(1− τ)Ej(t f) + PA

j (t f) + IA
j (t f)

))
,

(10)

where
Jj(uj, vj,Xj) = αj(uj, NA

j) + β j(vj) + cj IY
j + dj IH

j , (j = 0, 1),

αj(uj, NA
j) =

{
0 if uj = 0,

aj0 + aj1NA
j uj + aj2NA

j u2
j if 0 < uj ≤ u(max)

j ,

β j(vj) = bj0 + bj1vj + bj2v2
j if 0 < vj ≤ v(max)

j ,

Π′j =
Πjη

Πjη + (1−Πj)γY ,

ν′j =
νj

(1− νj)γH + νjµ
,

(11)

and where NA
j = Sj + Ej + PA

j + PY
j + IA

j is the number of asymptomatic individuals in
subpopulation. The functions αj and β j correspond to the cost associated with COVID
testing and social distancing respectively for subpopulations j = 0, 1 (note these same
cost functions were previously used in [18]). The coefficient aj0 represents the fixed cost
when the testing program is implemented; aj1 is the proportional cost to the number
of tested people, uj is the fraction of asymptomatic individuals in population j that are
tested, and aj2 represents the increasing cost incurred as the testing program becomes
more intensive (reflecting the law of diminishing returns). The cost function β j in (11)
reflects the economic cost of social distancing measures, which increases at an increasing
rate as measures intensify according to diminishing returns. The parameter vj expresses
the proportionate reduction in contacts that result from the implemented measures. The
coefficients ej(j = 0, 1) reflect the cost per death for the two respective population groups: it
multiplies the sum of deaths that have occurred during the time interval plus the predicted

Mathematics 2021, 9, 1777 8 of 26

deaths of individuals that are ill at the final time t f . The coefficients gj(j = 0, 1) are
penalties for non-immune individuals that are still present in the population by the end of
the period: these coefficients may be adjusted to achieve a desired level of herd immunity,
as will be made clear in the subsequent discussion. The coefficients f j(j = 0, 1) multiply
remaining individuals in the two respective groups who are infective, but who eventually
recover: this cost is included because these individuals mediate the spread of the disease
among the remaining population.

Table 2 summarizes the cost and level coefficients used in our simulations. Justification
for parameter values is provided in [18].

Table 2. Cost coefficients and level parameters used in simulation.

Parameters Interpretation Values

a00, a10 minimum testing cost per person $0

a01, a11 linear testing cost coefficient $2.3/person/day

a02, a12 quadratic rate of increase of per capita testing cost $27/person/day2

b01, b11 constant per capita social distancing costs $0

b02, b12 quadratic rate of increase of per capita social distancing cost $40/person/day2

e0, e1 cost per death $104.5–106.5 (assumed)

f0, f1 cost multiplier for remaining infected 2 (assumed)

g0, g1 cost per remaining non-immune $1–106.5 (assumed)

umax
0 , umax

1 maximum testing control level 0.66

vmax
0 , vmax

1 maximum social distancing control level 0.8

7. Local Optimality Conditions for Testing and Distancing Optimal Control Problems

In this section, we will derive approximate local optimum conditions for the controls
uk(t) and vk(t) for k = 0, 1 and for all times 0 ≤ t f . Before doing this, we must first make
more precise the definition of local optimum in this context. We suppose that all controls
are constant on all intervals of the form [nδ, (n + 1)δ) where δ is a small increment and
(n + 1)δ ≤ t f . Given a control u with a corresponding solution X, then the control uk(nδ)

(resp. vk(nδ)) is said to be locally optimal if the cost of solution X is less than or equal to
the cost of the solution obtained when the control is modified by changing its value on the
interval [nδ, (n + 1)δ).

In the following definition, for simplicity, we will assume that the time scale and
solution values have been rescaled such that N0 + N1 = 1 and

∥∥∥ dX
dt

∥∥∥
∞
≤ 1. We further

suppose that δ as specified in the previous paragraph satisfies δ� 1. Naturally, the original
solution can be recovered from the rescaled solution by inverting the rescaling.

We consider first local optimal conditions for the testing controls u0 and u1. We will
compute the impact on the cost function from the perturbation of the control uk(t) for
0 < s < T, where k ∈ {0, 1}. The perturbed control uζ =

(
u0,ζ , u1,ζ , v0,ζ , v1,ζ

)
is defined

as follows:
u1−k,ζ(t) = u1−k(t), 0 ≤ t ≤ t f ,

uk,ζ(s, t) =

{
ζ for s < t < s + δ,
uk(t) otherwise,

vj,ζ(t) = vj(t), 0 ≤ t ≤ t f , j = 0, 1.

(12)

The perturbed control differs from the original control only in the values of uk(t) in
the interval s ≤ t ≤ s + δ. The solution to the System (1) and (2) corresponding to the
perturbed control uζ is denoted by Xζ .

We may examine the dependence of Jtot(uζ ,Xζ) on ζ by decomposing it into three
terms:

Mathematics 2021, 9, 1777 9 of 26

Jtot(uζ ,Xζ) = JA(ζ) + JB(ζ) + JC(ζ),

where

JA(ζ) =
∫ s

0

1

∑
j=0

Jj(uj,ζ , vj,Xj,ζ)dt,

JB(ζ) =
∫ s+δ

s

1

∑
j=0

Jj(uj,ζ , vj,Xj,ζ)dt,

JC(ζ) =
∫ t f

s+δ

1

∑
j=0

Jj(uj,ζ , vj,Xj,ζ)dt

+
1

∑
j=0

ej

(
Dj,ζ(t f) + ν′j

(
IH
j,ζ(t f) + Π′j(IY

j,ζ(t f) + PY
j,ζ(t f) + τEj,ζ(t f))

))
+

1

∑
j=0

gj

(
Sj,ζ(t f) + f j

(
(1− τ)Ej,ζ(t f) + PA

j,ζ(t f) + IA
j,ζ(t f)

))
.

(13)

Of these three terms, JA is independent of ζ, while JC depends on ζ only through
the value of Xζ(s + δ), since uζ(t) = u(t) for s + δ < t < t f so that System (1) and (2) is
unchanged on this interval. It follows from the chain rule that:

d
dζ
JC(ζ) =

(
d

dζ
Xζ(s + δ)

)
dJC

dX(s + δ)
(Xζ(s + δ)),

d2

dζ2JC(ζ) =

(
d2

dζ2Xζ(s + δ)

)
dJC

dX(s + δ)
(Xζ(s + δ)) +

(
d

dζ
Xζ(s + δ)

)2 d2JC

dX(s + δ)2
(Xζ(s + δ)).

(14)

We may use these results to make order-of-magnitude estimates of d
dζJC(ζ) and

d2

dζ2JC(ζ). From (12) and (14), we may deduce that d
dζXζ(s+ δ) = O(δ), and d2

dζ2 Xζ(s+ δ) =

O(δ2), since ζ only affects the solution on a small interval of length δ. It follows that

d
dζ
JC(ζ) = O(δ);

d2

dζ2JC(ζ) = O(δ2). (15)

From (12) and the chain rule, we may also deduce:

d
dζ
JB(ζ) =

∫ s+δ

s

[
duk,ζ

dζ

d
duk,ζ

Jk(uk,ζ , vk,Xk,ζ) +
1

∑
j=0

dXj,ζ

dζ

d
dXj,ζ

Jj(uj,ζ , vj,Xj,ζ)

]
dt,

d2

dζ2JB(ζ) =
∫ s+δ

s

[
d2uk,ζ

dζ2
d

duk,ζ
Jk(uk,ζ , vk,Xk,ζ) +

(
duk,ζ

dζ

)2 d2

du2
k,ζ

Jk(uk,ζ , vk,Xk,ζ)

+
1

∑
j=0

d2Xj,ζ

dζ2
d

dXj,ζ
Jj(uj,ζ , vj,Xj,ζ) +

1

∑
j=0

(dXj,ζ

dζ

)2 d2

dX2
j,ζ

Jj(uj,ζ , vj,Xj,ζ)

]
dt.

(16)

We may compute:

d
duk,ζ

Jk(uk,ζ , vk,Xk,ζ) = ak1NA
k + 2ak2NA

k uk (s ≤ t ≤ s + δ),

d2

du2
k,ζ

Jk(uk,ζ , vk,Xk,ζ) = 2ak2NA
k (s ≤ t ≤ s + δ).

(17)

Mathematics 2021, 9, 1777 10 of 26

Noting that
duk,ζ

dζ = 1 and
d2uk,ζ

dζ2 = 0 for s ≤ t ≤ s + δ, and using the fact that
dXj,ζ

dζ = O(δ) on the same interval, we obtain

d
dζ
JB(ζ) = (ak1 + 2ak2)uk

∫ s+δ

s
NA

k dt +O(δ2),

d2

dζ2JB(ζ) = 2ak2

∫ s+δ

s
NA

k dt +O(δ2). (18)

From (15) and (18), it follows that

d2

dζ2 Jtot =
d2

dζ2 (JB(ζ) + JC(ζ)) = 2ak2

∫ s+δ

s
NA

k dt +O(δ2) > 0, (19)

where the final inequality holds as long as NA
k > 0 on [0, t f]. From this, we may conclude

that d
dζ Jtot

(
uζ ,Xζ

)
= 0 has at most one solution ζ∗ in [0, u(max)

k]. In view of the discontinu-
ity of the function α in (11), this gives us the following local optimality conditions for the
control uk(s):

(i) If 0 < ζ∗ < u(max)
k , d

dζ Jtot

(
uζ∗ ,Xζ∗

)
= 0 and Jtot(uζ∗ ,Xζ∗) ≤ Jtot(u0,X0), then

uk(s) = ζ∗ is locally optimal,
(ii) If d

dζ Jtot

(
uζ ,Xζ

)∣∣∣
ζ=u(max)

k

< 0 and Jtot(uζ ,Xζ)
∣∣∣
ζ=u(max)

k

≤ Jtot(u0,X0), then uk(s) =

u(max)
k is locally optimal,

(iii) Otherwise, uk(s) = 0 is locally optimal.

Given a control u, we may adjust the value of uk(s) to satisfy local optimality as
follows. First, we approximate the solution ζ∗ to d

dζ Jtot(ζ∗) = 0 using Newton’s method:

ζ∗ ≈ uk(s)−
d

dζ Jtot

d2

dζ2 Jtot

∣∣∣∣∣∣
ζ=uk(s)

. (20)

From (18) and (20), we may conclude

ζ∗ = ζ̃ +O(δ), (21)

where

ζ̃ = uk(s)−
d

dζ (JB + JC)
∣∣∣
ζ=uk(s)

2ak2
∫ s+δ

s NA
k dt

. (22)

The numerator and denominator in (22) can both be estimated numerically. Due to
the fact that 0 ≤ ζ ≤ u(max)

k , and the fact that the function α in (11) is discontinuous at 0,
we modify our final estimate of the local optimum value of ζ (denoted by ζ̂) as follows:

(I) If 0 < ζ̃ < u(max)
k and Jtot

(
u

ζ̃
,X

ζ̃

)
≤ Jtot(u0,X0), then ζ̂ = ζ̃,

(II) If ζ̃ ≥ u(max)
k and Jtot

(
u

u(max)
k

,X
u(max)

k

)
≤ Jtot(u0,X0), then ζ̂ = u(max)

k ,

(III) Otherwise, ζ̂ = 0.

Mathematics 2021, 9, 1777 11 of 26

We may similarly develop local optimal conditions for the distancing controls v0 and
v1. Define a perturbed control vξ =

(
u0,ξ , u1,ξ , v0,ξ , v1,ξ

)
as follows:

v1−k,ξ(t) = v1−k(t), 0 ≤ t ≤ t f ,

vk,ξ(s, t) =

{
ξ for s < t < s + δ,
vk(t) otherwise,

uj,ξ(t) = uj(t), 0 ≤ t ≤ t f , j = 0, 1.

(23)

After calculations similar to those above, we obtain

d2

dξ2 Jtot =
d2

dξ2 (JB(ξ) + JC(ξ)) = 2δbk2 +O(δ2) > 0. (24)

It follows that d
dξ Jtot

(
vξ ,Xξ

)
= 0 has at most one solution ξ∗ in [0, v(max)

k]. For vk(s),
we have the following conditions:

(i) If ξ∗ < 0, then 0 is optimal,
(ii) If 0 < ξ∗ < v(max), then ξ∗ is optimal,
(iii) If ξ∗ > v(max), then v(max) is optimal.

Given a control v, we may adjust vk(s) to satisfy local optimality conditions as follows.
We first guess the solution ξ∗ to d

dξ Jtot(ξ∗) = 0 using Newton’s method:

ξ∗ ≈ vk(s)−
d

dξ Jtot

d2

dξ2 Jtot

∣∣∣∣∣∣
ξ=vk(s)

, (25)

and hence
ξ∗ = ξ̃ +O(δ), (26)

with

ξ̃ = vk(s)−
d

dξ (JB + JC)
∣∣∣
ξ=vk(s)

2δbk2
, (27)

where d
dξ (JB + JC)

∣∣∣
ξ=vk(s)

can be approximated numerically.

(I) If 0 < ξ̃ < v(max)
k and Jtot

(
v

ξ̃
,X

ξ̃

)
≤ Jtot(v0,X0), then ξ̂ = ξ̃,

(II) If ξ̃ ≥ v(max)
k and Jtot

(
v

v(max)
k

,X
v(max)

k

)
≤ Jtot(v0,X0), then ξ̂ = v(max)

k ,

(III) Otherwise, ξ̂ = 0.

In conclusion, the locally optima conditions for the controls uk(s) and vk(s) are reca-
pitulated in the following theorem:

Theorem 3. SupposeX(t) is a solution of system (1) under controls (u0(t), u1(t), v0(t), v1(t)), 0 ≤
t ≤ t f . Given the objective function Jtot defined by (10), perturbed controls uζ and vξ defined

by (12) and (23), and values ζ∗ and ξ∗ that solve d
dζ Jtot

(
uζ ,Xζ

)
= 0 and d

dξ Jtot

(
vξ ,Xξ

)
= 0,

respectively, then

(1) If uk(s) = 0, d
dζ Jtot

(
uζ∗ ,Xζ∗

)
≤ 0, then uk(s) = 0 is locally optimal ,

(2) If d
dζ Jtot

(
uζ ,Xζ

)∣∣∣
ζ=u(max)

k

< 0 and Jtot(uζ ,Xζ)
∣∣∣
ζ=u(max)

k

≤ Jtot(u0,X0), then uk(s) =

u(max)
k is locally optimal,

(3) If 0 < ζ∗ < u(max)
k , d

dζ Jtot

(
uζ∗ ,Xζ∗

)
= 0 and Jtot(uζ∗ ,Xζ∗) ≤ Jtot(u0,X0), then uk(s) =

ζ∗ is locally optimal,

Mathematics 2021, 9, 1777 12 of 26

(4) If vk(s) = 0, and Jtot(vξ∗ ,Xξ∗) ≤ Jtot(v0,X0), then vk(s) = 0 is locally optimal,

(5) If d
dξ Jtot

(
vξ ,Xξ

)∣∣∣
ξ=v(max)

k

< 0, and Jtot(vξ ,Xξ)
∣∣∣
ξ=v(max)

k

≤ Jtot(v0,X0), then vk(s) =

v(max)
k is locally optimal,

(6) If 0 < vk(s) < vmax and d
dξ Jtot

(
vξ ,Xξ

)∣∣∣
ξ=v(max)

k

= vk(s), then vk(s) is locally optimal.

8. Numerical Method for Estimating Optimal Controls

As mentioned above, local optima may not be global optima. There may be several
local optima, and the problem is to identify which one is the global optimum. This requires
that we do a wide-ranging search of solution space, as well as a directed search that
converges to a local optimum. In this implementation, we do this in three stages. The first
stage is to do an exhaustive search of a limited set of widely dispersed solutions which are
representative of large subregions of the search space. In our case, solutions are limited
to those in which controls only take at most three different values on three consecutive
intervals that are specified. During the next stage, we allow solutions to vary on smaller
intervals, which gives a much larger search space. On this search space, we implement a
simulated annealing algorithm. Since this stage is still limited to a subset of the solution
space, the resulting solution will still not be locally optimal. During the final stage, the
solution obtained from simulated annealing is taken as the starting point to find a close-by
locally optimal solution, which is our final estimated solution. The following subsections
describe the three stages of the algorithm in sequence. The complete Python code, together
with the testbench, is available on GitHub: the link is provided in the “Data Availability”
section at the end of this paper.

8.1. Enumerative Method

The first stage of the solution algorithm involves an exhaustive search of a discrete set
of diverse solutions. In order to create a discrete set, we consider controls that are constant
on a fixed set of intervals, whose values are also taken from a discrete set. Supposing
that we choose N intervals and allow the k’th control to assume akn values on the n’th
interval, then the total number of control strategies in the discrete set is ∏N−1

n=0 ∏3
k=0 akn.

We then exhaustively evaluate the costs for all of these control strategies and identify the
best. Naturally, both the number of intervals and the number of values per interval must
be limited in order to keep the number of control strategies at a manageable level. The
improved calculation method introduced in [5] enables more rapid computation of the
solutions, by ordering the control strategies in such a way that successive strategies have
minimal changes and recomputing only the portion of the solution that has changed.

In order to limit the number of solutions tried during the enumerative stage, the
low-risk and high-risk testing control level were set to be equal, as were the low- and
high-risk distancing control level. The number of intervals N was limited to small values,
as described in Section 10. Each independent control had three possible values: 0, the
maximum possible control level, (as specified in the last two rows of Table 2), and 1/3 of
the maximum control level. Altogether, there are 3 · 3 = 9 different control combinations
for each interval of constant control, meaning that the number of solutions tried during
the enumerative stage was at most 94 = 6561. Under the method in [5], on average,
only half of each solution is calculated, meaning that the computational burden was
equivalent to computing 3281 solutions to the System (1). Solutions were computed using
the solve_ivp routine from the scipy.integrate package in Python, with time steps
equal to 1 day (180 time steps per solution).

8.2. Monte Carlo Method

The enumerative method gives the optimal solution from among a very limited class
of strategies. Since most strategies do not belong to this limited class, it does not find an
overall optimal solution. Nonetheless, it does provide a good starting point which can be

Mathematics 2021, 9, 1777 13 of 26

further improved by additional search. In cases where the set of possible strategies has very
high dimension, Monte Carlo methods are often used to search the solution space. Monte
Carlo combines features of random search with directed search. In particular, simulated
annealing is one Monte Carlo variant that alternates between exploratory and convergent
modes. The balance between exploration and convergence is set using a temperature
parameter (which is varied in a controlled fashion during the algorithm process): the
higher the temperature, the more random the search for candidate solutions.

Simulated annealing algorithms have the following general structure:

1. Initialize: solution, probability distribution for candidate solutions, temperature;
2. Randomly generate a candidate solution from a probability distribution (this distribu-

tion is modified as the algorithm progresses);
3. Calculate the cost value for the candidate solution:
4. If the candidate solution’s cost value is less than the current solution’s, then replace

the current solution with the candidate solution. If the candidate solution’s cost value
is also the lowest so far obtained, then replace the overall best solution with the
candidate solution;

5. Else replace the current solution with the candidate solution with a probability that
depends on the current temperature and the cost difference between current and
candidate solutions;

6. Update temperature and candidate probability distribution;
7. If the current solution has not changed for n f lat iterations, then reset the temperature;
8. If temperature has been reset nreset times, then terminate and output the best solution;
9. Repeat steps 2–9.

In our implementation, all candidate solutions are piecewise constant on Ninter = 20
equally-spaced time intervals that cover the 180-day period (compare the maximum num-
ber of intervals used in the enumerative solution, which was 4). This facilitates the genera-
tion of new candidate solutions, and provides solutions of sufficiently fine granularity so
that there exists a candidate solution that is very close to the true optimum, which provides
a suitable starting point for the local optimization described in the next subsection.

The steps listed above are described in more detail in the following subsections.

8.2.1. Probability Distribution for Candidate Generation

Each new candidate solution is a perturbation of the current solution, and differs by
the current solution by individual control values on one or two intervals. The perturbation
is generated by first randomly selecting two intervals, then randomly selecting two control
measures, and then randomly generating small changes at a control level for the controls on
these intervals, which are added to the current control levels for the two selected intervals.
Each of these three selections rely on probability distributions that are updated after each
iteration, based on the change in solution cost obtained by the perturbation.

Another distinctive feature of our method is that the generation of new candidate
solutions involves changing control values on two different time intervals. This was done
because it provides a way to shift the balance of control to an earlier or later period during
the simulation period. For example, by decreasing earlier controls and increasing later
controls, it is possible to delay the start of control but maintain the overall intensity. Such
shifts cannot be accomplished if controls are changed only for a single time interval.

The probability distributions for interval selection, control selection, and control
perturbation values were chosen as follows:

• Two select interval pairs for control change, an Niter by Niter matrix P, was defined
(where Niter = 20 as above) and initialized with 2’s on the diagonal and 1’s in all
off-diagonal entries. At each iteration, P is normalized so that entries sum to 1, and
then a random pair of indices (n0, n1) is chosen according to the resulting distribution.

• To select controls to be changed, a Niter by 4 matrix U was defined, and initialized
with all entries equal to 0.5. In order to select the controls for intervals n0 and n1,

Mathematics 2021, 9, 1777 14 of 26

the n0 and n1 rows are each normalized separately to sum to one. We denote the
normalized values by Unk ,j, respectively, where k = 0, 1 and j = 0, 1, 2, 3. Then, control
j in interval nk is selected for changing with probability Un0,j. Note that, according to
this scheme, more than one control may be changed for each interval. If no control is
selected, the random selection is repeated until at least one control is selected.

• To determine the magnitude of control perturbations, a Niter by 4 matrix R was
defined, and initialized to initStep. The perturbed control unk ,j is changed by an
amount Rnk ,j · rand · Bk,j, where rand denotes a uniform random variable on [0, 1]
and Bk,j denotes a Bernoulli random variable that takes the values −0.5 or 1 with
equal probability.

8.2.2. Candidate Selection

The new solution with perturbed controls is computed, and the objective function
is evaluated. The new solution is selected with probability min(1, e−∆/T), where ∆ is the
difference between the new and current objective function values and T is the temperature.
In this manner, solutions that do not improve the objective function are sometimes accepted,
where the probability of acceptance decreases with increasing ∆. The acceptance rate is
regulated by the temperature—if the temperature is very high, most new solutions are
accepted, regardless of ∆, while, if the temperature is near 0, then only new solutions with
∆ ≤ 0 are selected. Hence, when the temperature is high, the algorithm may escape from a
globally suboptimal local minimum, while, when the temperature is low, the algorithm
systematically moves towards the minimum.

8.2.3. Temperature Update

The temperature T is given by Tm · ∆avg, where Tm is a temperature multiplier (initial-
ized as 0.001) and ∆avg is a running average of the observed positive changes in objective
function over the last several iterations. At the end of each iteration, Tm is multiplied by
Treduce (where Treduce < 1 is an algorithm parameter), and ∆avg is updated as follows:

(∆avg)updated =

{
(φmem)∆avg + (1− φmem)∆ if ∆ > 0,
∆avg if ∆ ≤ 0,

(28)

where φmem < 1 is an algorithm parameter which determines the “memory” of the running
average process. The above prescription scales the temperature appropriately to match
the size of observed ∆’s. Simultaneously, the temperature multiplier gradually lowers the
temperature, which represents the cooling process that is part of simulated annealing.

8.2.4. Probability Matrix Updates

At each iteration, the matrices P, U and R are updated to increase the probability
of favorable interval and control selections and decrease the probability of unfavorable
selections. The update equations are given as follows:

Pn0,n1 = max(Pmin, Pn0,n1 − sign(∆) · Pδ),

Unj ,k =

{
Unj ,k(1−Uδ · δunj ,k) if ∆ ≥ 0,

Unj ,k + Uδ · δunj ,k · (1−Unj ,k) if ∆ > 0,

Rnj ,k =

{
Rnj ,k if ∆ ≥ 0;

Rnj ,k · Bnj ,k · (1 + Rδ) if ∆ < 0,

(29)

where Uδ and Rδ are algorithm parameters that control the sizes of changes in the U and R
matrix entries, respectively, and δunj ,k is the perturbation in control unj ,k.

Mathematics 2021, 9, 1777 15 of 26

8.3. Temperature Reset

A count is maintained of the number of iterations since the last objective function
decrease was observed. If this count exceeds n f lat, then the temperature multiplier is reset
to Treset (a high value), and the iteration count is reset to zero (n f lat and Treset are both
algorithm parameters). This ends the current cooling cycle, and starts a new one, putting
the system into a “hot” state during which the solution may escape from a local minimum.

8.4. Cycle Termination

For each cooling cycle, a record is kept of whether or not the objective function was
improved during that cycle. If not, the ‘no improvement’ count is increased by one. If the
‘no improvement’ count reaches a threshold Niter, then the algorithm terminates.

A pseudocode for the simulated annealing algorithm is given in Algorithm 1. Algo-
rithm parameters are listed in Table 3. Algorithm parameters were not fully optimized, but
some adjustments were made based on preliminary observations of algorithm performance.

Algorithm 1: Monte Carlo algorithm pseudocode
1: Initialize system parameters (Table 1), costs (Equation (11)), initial vector xI, final time t f
2: Initialize algorithm parameters: (Table 3)
3: f latcount = 0
4: Inititalized P, U, R as defined Section 8.2.1
5: uIntbest = Intervalwise average of initial control u
6: Compute xbest, costbest = costcurr using initial vector xI and controls uIntbest
7: while resetcount < nreset do
8: Select two random intervals for control changes
9: Select random control measures for the two intervals to be changed

10: Compute random changes for selected measures on selected intervals
11: Updated vector of control measures uInt and uTmp
12: Recompute xtmp, costtmp using initial vector xI and controls uTmp
13: if costtmp < costcurr then
14: Reset f latcount to zero
15: update P, and U, to increase probability of favorable choice.
16: update R to save favorable step size
17: if costtmp < costbest then
18: uIntbest = uInt
19: costbest = costtmp
20: end if
21: else
22: f latcount= increase counter by 1
23: update ∆avg
24: update P and U to decrease probability of unfavorable choice
25: if f latcount > n f lat then
26: Reset P’s and U’s probability matrices
27: Reset Tm
28: Increase resetcount by a constant
29: Reset f latcount to zero
30: end if
31: if By probability min(1, e−∆/T), this solution is accepted then
32: x, xH = update solution values from startStep to t f with xtmp, xHtmp
33: CBest = update values from startStep to t f with Ctmp
34: end if
35: end if
36: Tm = Tm · Treduce
37: end while
38: Ubest = expand uIntbest to size t f
39: return costbest, Ubest

8.5. Local Optimum Solution

Although the Monte Carlo algorithm improves on the enumerative solution, there
is no guarantee of optimality: in particular, the solution may not even be locally optimal.
However, we may use the Monte Carlo output solution as a starting point to find a locally
optimal solution, using an algorithm based on the local optimality conditions derived in
Section 7. A pseudocode for the local optimization is given in Algorithm 2.

Mathematics 2021, 9, 1777 16 of 26

Table 3. Parameters for Monte Carlo algorithm.

Symbol Value Description

Niter 20 Number constant intervals for controls

n f lat 10 Maximum number of non-improving objective cost iterations

nreset 5 Maximum number of non-improving cooling cycles

φmem 0.95 Memory factor used in computing the mean increase

Tm 0.95 Temperature multiplier (scale factor)

Treduce 0.95 Increment in Tm during cooling

Treset 4 Unscaled temperature at start of new cooling cycle

Pδ 0.5 P matrix adjustment

Uδ 0.5 U matrix adjustment

Rδ 0.5 R matrix adjustment

initStep 0.1 initStep Initial magnitude of control perturbations

Algorithm 2: Pseudocode for local optimization
1: ## Initialization:
2: a, b, c, d, e, f , g = cost values
3: Initial vector xI, final time t f
4: ubest = control measures
5: param = system parameters
6: maxIter = Maximum number of iterations
7: xbest, costbest = initial solution and cost (output from Monte Carlo)
8: allPts = False
9: ## Iterative local optimization procedure

10: for 0 to maxIter or iterate until convergence do
11: for 0 to 1 do
12: if iteration is zero then
13: jtList = indices of ubest in ascending order (Forward scan)
14: else
15: jtList = indices of ubest in descending order (Backward scan)
16: end if
17: costbench = costbest
18: for ∀ jt ∈ jtList do
19: oTmp = random order of selecting control measure in jt
20: for ∀ jc ∈ oTmp do
21: if AllPts then
22: d2J = compute second derivative of objective function
23: d1J = compute first derivative of objective function
24: uNew = compute new estimate of locally optimal control
25: if ubest[jt, jc]− uNew > some tolerance then
26: xTmp, costTmp= compute solution with the uNew
27: if costTmp − costbench < 0 then
28: Update ubest, xbest, costbest
29: end if
30: end if
31: if ubest[jt, jc] > 0 then
32: xTmp, costTmp = compute solution with ubest[jt, jc] = 0
33: if costTmp − costbench < 0 then
34: Update ubest, xbest, costbest
35: end if
36: end if
37: end if
38: end for
39: end for
40: if costbench− costbest < 0.0001 · costbench then
41: break from for-loop
42: end if
43: end for
44: if costbench− costbest < 0.0001 · costbench then
45: Either check all points or break from for-loop
46: end if
47: end for
48: compute costbest using initial vector xI and controls ubest
49: return costbest, Ubest

Mathematics 2021, 9, 1777 17 of 26

9. Numerical Simulations and Discussion
9.1. Overview

Our analysis of simulation results focuses on three different outcomes: the implemen-
tation cost; the number of deaths; and the final level of herd immunity, which is measured
by the number of non-immune individuals remaining in the population at the end of
the period. We want to evaluate how different strategies can achieve different trade-offs
between these outcomes. In order to do this, we independently vary the costs per death
and per non-immune individual (ej and gj respectively in the objective function (10)). By
varying these costs and finding strategies that minimize the total cost Jtot in (10), then one
can find optimal strategies that achieve different target levels of death and herd immunity.
For example, if one is primarily interested in reducing deaths to a certain level, one may
set non-(died or recovered) cost to zero, and adjust the per-death cost so that the target
death level is reached. On the other hand, if one wants to achieve a certain level of herd
immunity, we can set the per-death cost at a low value and adjust the non-immune cost
until the optimal solution reaches the target. The range of ej and gj values used in the
simulation is specified in Table 2. Altogether, the two cost values used formed a 25× 25
grid with logarithmic spacing.

In the algorithm described above, there are three stages to the optimization: enumer-
ative, Monte Carlo, and local optimization. To evaluate the relative importance of each
stage, we used three different combinations of these stages, and compared the solutions
obtained and the runtime required to converge to a solution. The three combinations are
denoted as follows: partial enumerative and partial Monte Carlo (PEPM); full enumerative
and no Monte Carlo (FENM); and no enumerative and full Monte Carlo (NEFM). All three
combinations used the same local optimization method as the final stage. We did not
include a variant in which only local optimization was used because we found that the
execution time was too long so that simulations could not be completed in a reasonable
time frame.

Table 4 shows the simulation parameters used in each combination, where significance
of the different parameters is indicated in Algorithm 1.

Table 4. Parameters for each of the three optimization methods.

Algorithm Combinations

Optimization Stage PEPM FENM NEFM

Enumerative Intervals = 3 Intervals = 4 N/A

Monte Carlo Niter = 20
nreset = 2
n f lat = 10

N/A Niter = 20
nreset = 5
n f lat = 10

In the following subsections, we first present the Pareto curve that expresses the trade-
off between the opposing goals of minimizing deaths and maximizing herd immunity;
next, we display and discuss the characteristics of the different Pareto optimal control
strategies as they vary over the treatment period; then, we compare the contributions
of the three optimization stages to the overall optimization, as well as comparing the
relative effectiveness of the three different algorithm variants that emphasize different
stages; then, we examine the characteristics of optimal solutions as a function of death cost
and non-immunity cost; and finally we present and discuss the execution times for the
three algorithm variants.

9.2. Pareto Optimal Tradeoffs for Death Versus Herd Immunity

Figure 2 shows the Pareto curves for the trade-off between deaths and herd immunity
found by the three different algorithms. The points on each curve were found by first
setting a target number of deaths, and then finding the solution which meets the death
target and has maximum herd immunity level (given by the number of recovered). The
colors of the dots indicate the implementation costs of the solutions. In our case, the

Mathematics 2021, 9, 1777 18 of 26

target death values ranged from 0 to 100,000 with steps of 4000. This graph can be used to
assess various trade-offs between herd immunity level and number of deaths. For example,
if fewer than 40,000 deaths is desired, the curve indicates that, under the best possible
strategy, the number of remaining non-immune individuals in the population is roughly
105. Alternatively, if, for example, the target is to reduce non-immune individuals below
104.5, then this level is reached at the cost of about 60,000 deaths. The figure shows that
the three algorithms produce similar trade-offs between deaths and herd immunity, but
NEFM is slightly better in that the number of non-immune achieved for each death level
is slightly smaller in most cases. This shows that NEFM solutions tend to give better
trade-offs than the other two, indicating that an extended Monte Carlo algorithm is very
effective in most cases in locating overall optima, even when no preliminary enumerative
search is conducted.

Figure 2. Pareto curves showing the trade-off between total deaths and final herd immunity level, for
the three different algorithm variants. Solutions are given by colored dots, where dot colors indicate
the solution implementation cost according to the color scale at right.

Figure 3 shows the implementation costs of the Pareto optimal solutions shown in
Figure 2 as a function of death level. The dots’ colors measure the herd immunity level
(indicated by the number of recovered). The figure shows that the NEFM algorithm is
generally finding solutions with lower implementation cost, even while improving the
herd immunity over the other two algorithms. This makes NEFM indisputably the best
of the three algorithm variants, underscoring the key importance of Monte Carlo in the
optimization process.

Figure 3. Implementation costs for the Pareto optimal solutions shown in Figure 2 at different death
levels, for the three different algorithm variants. Solutions are given by colored dots, where dot
colors indicate the number of recovered individuals according to the color scale at right.

Mathematics 2021, 9, 1777 19 of 26

9.3. Temporal Characteristics of Pareto Optimal Solutions

The heatmaps in Figures 4 and 5 show the control measures (testing and distancing,
respectively) that were implemented during the 180-day period for the different Pareto
optimal solutions indicated in Figure 2. The x-axis shows the time in days, while the y-axis
represents the total number of deaths. The heatmap color for each pair of (x, y) values
indicates the level for day x of the controls applied for the Pareto optimal solution that
results in a total of y deaths over the 180-day period. Heatmap colors are associated with
control levels according to the colorbar scale at right. For example, for PEPM, the low-risk
testing control level on day 50 for a Pareto optimal strategy corresponding to 60,000 deaths,
is around 0.7, as indicated by the yellow color of the pixel at the location (50, 60, 000). On
the other hand, for the same strategy on day 100, it is almost zero, as indicated by the dark
blue color of the pixel a location (50, 60, 000). To see the time progression of the Pareto
optimal strategy that yields a total value of d deaths, one may scan across the pixels at
locations (x, d) for x ≤ 0 ≤ 180.

Figure 4. Testing control measures corresponding to the Pareto-optimal solutions in Figure 2. The
first row of figures shows the daily progression of low-risk testing control levels for PEPM, FENM,
and NEFM for Pareto optimal strategies that attain different overall deaths, as indicated on the y-axis
of the graphs. The second row shows corresponding figures for high-risk control levels for the PEPM,
FENM, and NEFM solutions.

Figure 5. Social distance control measures corresponding to the Pareto-optimal solutions in Figure 2.
The first row of figures shows the daily progression of low-risk distancing control levels for PEPM,
FENM, and NEFM for Pareto optimal strategies that attain different overall deaths, as indicated on
the y-axis of the graphs. The second row shows corresponding figures for high-risk distancing levels
for the PEPM, FENM, and NEFM solutions.

Figure 4 shows low and high risk testing strategies for different death levels. By
comparing across the three columns, it appears that PEPM is intermediate between FENM

Mathematics 2021, 9, 1777 20 of 26

and NEFM. FENM consistently places heavy emphasis on testing for about the first quarter
of the period (except for below about 15,000 deaths, as well as testing in the third quarter
of the period for deaths between 20,000–40,000. PEPM also has early testing, but at a less
intensive level and for a longer time (about the first third of the full period), and less late
testing at a later time. NEFM shows spotty testing throughout the central part of the period,
with much less emphasis especially at deaths above 50,000. Note that, for all three cases,
for death levels above 40,000, there is a final day beyond which no testing is employed: for
example, when deaths = 80,000, there is no testing after day 100. This indicates that the
desired level of herd immunity has been reached, and no further control is necessary.

Comparing across the rows in Figure 4, it appears that strategies applied to low-risk
and high-risk subpopulations are similar, regardless of the algorithm. Consistently, testing
applied to high-risk is slightly less intensive than for low risk. This may be due to the fact
that, according to the contact matrix entries in (3), low-risk individuals have at least three
times as many daily contacts with both low- and high-risk persons. It follows that low-risk
individuals play a much larger role in spreading the disease than high-risk individuals, so
it is reasonable that testing should be more focused on them.

Figure 5 shows low and high risk distancing strategies for different death levels. Once
again, PEPM is intermediate between FENM and NEFM. FENM has intensive distancing
for the second quarter of the period, except below 20,000 deaths, where distancing stretches
throughout the 180-day period. It appears that distancing levels are high during the
intermediate period where testing is low, indicating a trade-off between the two control
approaches. PEPM is similar, except there is also low-level distancing in the first quarter
and intensive distancing is delayed. For NEFM, the period of intensive distancing is even
longer, starting around 15–20 days and lasting for about half of the total period. Below
20,000 deaths, there is intensive distancing throughout the period for all three strategies,
which explains why testing measures are greatly reduced for these death levels. It appears
that distancing has a greater effect than testing in limiting disease exposure but is less
preferred when some disease exposure is permitted in order to promote herd immunity.

As with testing, distancing strategies for low- and high-risk are similar regardless of
death level for each of the three algorithms. Distancing also resembles testing in that above
40,000 deaths; there is a time at which all control is ceased, indicating that the disease has
been sufficiently controlled and is left to run its course.

9.4. Relative Contributions of the Three Stages to the Overall Optimization

Figure 6 shows the contributions of the three optimization stages towards lowering
the objective function in the overall solution process. The graphs compare the total cost
obtained at the end of each optimization stage, in proportion to the final cost obtained
by the completed optimization procedure. In the PEPM solution, the partial optimal
enumerative solution produces a total cost that is generally between 5–25 percent higher
than the final cost obtained by the three-stage algorithm, while the partial Monte Carlo
stage improves this result to reach between 1–10 percent higher than the final solution. In
the NEFM solution, the Monte Carlo stage reaches within 15 percent of the locally optimal
solution. In the FENM solution, the enumerative alone reached within 15 percent of the
final locally optimal solution.

Mathematics 2021, 9, 1777 21 of 26

Figure 6. Ratio of costs achieved following different optimization stages compared to the final cost
obtained following local optimization. Costs are given as a function of the number of deaths in the
Pareto-optimal calculated solution.

Figures 7 and 8 both show the percentage total cost difference between two different
optimization methods produced by each combination of (non-immune cost, death cost).
The base 10 logarithms of non-immune cost and death cost are plotted on the x- and y-axes,
respectively. The heatmap color scale indicates the percentage cost difference between the
optimized total costs obtained by the two different methods for each (x, y) combination.
Figure 7 shows that PEPM resulted in a higher total cost compared to NEFM for majority
of the cost combinations, where cost differences range up to 15 percent. However, there is
a region in the graph (non-immunity cost from 100–103 and death cost from 105.1–105.25)
where NEFM resulted in a higher cost than PEPM, with differences of up to about 5 percent.
We will see in Figure 9 that the Pareto solutions shown in Figure 3 lie in the region where
the difference between PEPM and NEFM is largest. The fact that NEFM outperforms
PEPM for most cost combinations shows that the Monte Carlo stage has a larger effect on
optimization than the enumerative method. Figure 8 shows similar differences between
FENM and NEFM. The fact that sometimes FENM and PEPM gives better results than
NEFM shows that the enumerative method can be useful in providing the Monte Carlo
stage with a suitable initial condition.

Figure 7. Heatmap showing percentage difference in total cost between final solutions obtained by
PEPM and NEFM, as a function of death and non-immunity cost.

Mathematics 2021, 9, 1777 22 of 26

Figure 8. Heatmap showing percentage difference in total cost between final solutions obtained by
FENM and NEFM, as a function of death and non-immunity cost.

9.5. Death and Non-Immunity Cost Characteristics of Optimal Solutions

Figures 9–11 show the locations of the Pareto optimal solutions shown in Figures 3–6
within the same grid of non-immune and death costs that are shown in Figures 7 and 8.
The heatmap colors represent the quantity of interest for each graph, and the color scale for
the heatmap is given by the first colorbar at right. The dots represent the (non-immune,
death) cost combinations that correspond to the Pareto solutions shown in Figure 3, and the
second colorbar on the right interprets the colors of the dots, which correspond to the log
base 10 of the final recovered population attained by the solutions represented by the dots.

Figure 9 shows a narrow transition region between cost combinations that produce
few deaths (blue region) and those that produce many deaths (yellow region). The blue
region corresponds to solutions that protect the population, but do not promote herd
immunity, while the yellow regions show solutions where most of the population becomes
immune. All of the Pareto optimal solutions are located in the transition region, for all
three algorithms. By comparison with Figures 7 and 8, it appears that most of the Pareto
optimal solutions lie in the band where NEFM produces better optima than the other
two algorithms.

Figure 9. Heatmap showing number of deaths as a function of death and non-immunity costs
under PEPM, FENM, and NEFM algorithms, respectively. Pareto optimal solutions are indicated by
hollow dots, and the dot colors correspond to number of recovered according to the color scale at
the far left. The figure shows that all Pareto optimal solutions occur in the transition region between
death-nonimmune cost combinations producing few deaths (blue region) and those corresponding
to many deaths (yellow region).

Figure 10 is comparable to Figure 9, except the heatmap shows the total number of
remaining non-immune in the population after 180 days since the spread of the disease.
This figure has similar characteristics to the previous figure—the low-death and high-death
regions in Figure 9 correspond to low and high levels of herd immunity, respectively. The
only visible difference is the transition band between low and high herd immunity is wider

Mathematics 2021, 9, 1777 23 of 26

and more clearly defined, especially for the FENM and PEPM algorithm variants. Figure 11
is like the previous two figures except the heatmap shows the implementation cost. Low
and high death regions correspond to high and low implementation costs, respectively.
This figure differs from the previous two in that the transition band between high and low
cost regions is somewhat lower, and the Pareto optimal solutions lie above the transition
band instead of within. This is explained by the fact that our Pareto trade-off does not
consider implementation cost, but is rather focused on deaths and herd immunity.

Figure 10. Heatmap showing remaining non-immune individuals as a function of death and non-
immunity costs under PEPM, FENM, and NEFM algorithms, respectively. Pareto optimal solutions
are indicated by hollow dots, and the dot colors correspond to the number of recovered according to
the color scale at the far left. The figure shows that all Pareto optimal solutions occur in the transition
region between death-nonimmune cost combinations producing low herd immunity (blue region)
and those corresponding to high herd immunity (yellow region).

Figure 11. Heatmap showing total implementation cost as a function of death and non-immunity
costs under PEPM, FENM, and NEFM algorithms, respectively. Pareto optimal solutions are indicated
by hollow dots, and the dot colors correspond to number of recovered according to the color scale at
the far left.

9.6. Execution Times for Three Algorithm Variants

The heatmaps in Figure 12 display the runtimes obtained by the three different algo-
rithms for the different (non-immune, death) cost combinations. All simulations were done
on a Macbook Pro with a single 8-core 2.3 GHz Intel Core i9 processor and 16 GB RAM,
running Python 3.7.7. In comparison with PEPM and NEFM, the FENM cost combination
had the longest runtimes. The runtime for the cost combination (5.5, 3) on FENM was
80 min, while, on PEPM and NEFM, it was less than 40 min. This drastic change in the
runtime can be explained by the expensive enumerative search that must compute a large
number of solutions. It may also be noted that Pareto optimal solutions are among those
that have longer runtimes.

Mathematics 2021, 9, 1777 24 of 26

Figure 12. Runtimes of PEPM, FENM, and NEFM algorithms as a function of death and non-
immunity non-immunity costs.

Table 5 summarizes mean runtimes for the three optimization stages, for the three
algorithm variants. The PEPM method had the shortest mean execution time, and NEFM
was about 30% longer (recall, however, that NEFM obtained better solutions). FENM had
by far the longest mean execution time, which was more than double that of NEFM.

Table 5. Average execution time for each method.

Execution Time

Simulation Enumerative Monte Carlo Local Optimization Total

PEPM 1.03 min 1.23 min 11.79 min 14.05 min

FENM 6.85 min 0.00 min 31.48 min 38.33 min

NEFM 0.00 min 5.39 min 12.53 min 17.92 min

10. Conclusions

This paper applies numerical methods for finding optimal controls to an SEIR epidemic
model of COVID-19 in the city of Houston, TX, USA with low-risk and high-risk population
groups. Available controls include COVID-19 testing and various distancing measures. We
formulate an objective function that models the cost of COVID-19 by assigning monetary
values to deaths and non-immunity, which can be adjusted to obtain solutions that meet
different death or herd immunity level targets. We determine the local optimality conditions
for the optimal control problem under testing and distancing controls.

A three-stage algorithm for numerically estimating optimal solutions is designed, and
the performance (in terms of final solution total cost and computational cost) for three
algorithm variants is thoroughly investigated. Of the three algorithm variants, the version
that included the longest Monte Carlo stage without any enumerative solution gave the
best control solutions, in terms of finding strategies that give better trade-offs between
death and herd immunity and at lower cost. This implies that, of the three stages, the
Monte Carlo stage has an especially significant effect on the optimization. However, results
also show that all three stages contribute to the obtaining of good control solutions. Pareto
optimal solutions that balance death versus herd immunity level exhibit a near-linear
trade-off between these two variables, as shown in Figure 2. The best obtained solutions
show that distancing tends to outweigh testing, especially when the reduction of deaths is
emphasized at the expense of herd immunity. Algorithm runtimes for the best-performing
algorithm variant average under 20 min for a 180-day period, indicating that the algorithm
is practically feasible for exploratory analysis.

Author Contributions: Conceptualization, L.V.T., V.M. and C.T.; methodology, L.V.T., V.M. and C.T.;
software, L.V.T. and C.T.; validation, L.V.T. and C.T.; formal analysis, L.V.T., V.M. and C.T.; investi-
gation, L.V.T. and C.T.; resources, L.V.T.; data curation, L.V.T.; writing—original draft preparation,
L.V.T., V.M. and C.T.; writing—review and editing, L.V.T., V.M. and C.T.; visualization, L.V.T. and
C.T.; supervision, C.T. and L.T.; project administration, L.T.; funding acquisition, L.T. All authors
have read and agreed to the published version of the manuscript.

Mathematics 2021, 9, 1777 25 of 26

Funding: Researchers were supported by Texas A&M University-Central Texas (L.V.T.) and the
German Academic Exchange Service (DAAD) (V.M.)

Data Availability Statement: The complete simulation code and testbench are available online at
https://github.com/LuisEVT/COVID19_Three_Stage_Numerical_Solution_For_Optimal_Controls,
accessed on 25 July 2021.

Acknowledgments: The authors would like to thank the administration of the Institute of Mathe-
matical and Physical Sciences (Porto- Novo, Benin) for facilitating the establishment of this research
collaboration.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

COVID-19 Corona virus disease 2019
PEPM Partial enumerative and partial Monte Carlo
FENM Full enumerative and no Monte Carlo
NEFM No enumerative and full Monte Carlo
N/A Not applicable

References
1. Rao, A.V. A survey of numerical methods for optimal control. Adv. Astronaut. Sci. 2009, 135, 497–528.
2. Supriatna, A.; Anggriani, N.; Nurulputri, L.; Wulantini, R.; Aldila, D. The optimal release strategy of Wolbachia infected

mosquitoes to control dengue disease. Adv. Sci. Eng. Med. 2014, 6, 831–837. [CrossRef]
3. Fischer, A.; Chudej, K.; Pesch, H.J. Optimal vaccination and control strategies against dengue. Math. Methods Appl. Sci. 2019,

42, 3496–3507. [CrossRef]
4. Rodrigues, H.S.; Monteiro, M.T.T.; Torres, D.F. Dynamics of dengue epidemics when using optimal control. Math. Comput. Model.

2010, 52, 1667–1673. [CrossRef]
5. Mbazumutima, V.; Thron, C.; Todjihounde, L. Enumerative numerical solution for optimal control using treatment and vaccination

for an SIS epidemic model. BIOMATH 2019, 8, 1912137. [CrossRef]
6. Haoxiang, Y.; Daniel, D.; Ozge, S.; David, P.M.; Remy, P.; Kelly, P.; Fox, J.S.; Meyers, L.A. Staged Strategy to Avoid Hospital

Surge and Preventable Mortality, while Reducing the Economic Burden of Social Distancing Measures. Available online:
https://sites.cns.utexas.edu/sites/default/files/cid/files/houston_strategy_to_avoid_surge.pdf?m=1592489259 (accessed on 27
January 2021).

7. Ferguson, N.; Laydon, D.; Nedjati-Gilani, G.; Imai, N.; Ainslie, K.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.;
Cuomo-Dannenburg, G.; et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and
healthcare demand. Imp. Coll. Lond. 2020, 10, 491–497.

8. Flaxman, S.; Mishra, S.; Gandy, A.; Unwin, H.J.T.; Mellan, T.A.; Coupland, H.; Whittaker, C.; Zhu, H.; Berah, T.; Eaton, J.W.; et
al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 2020, 584, 257–261. [CrossRef]
[PubMed]

9. Chang, S.L.; Harding, N.; Zachreson, C.; Cliff, O.M.; Prokopenko, M. Modelling transmission and control of the COVID-19
pandemic in Australia. Nat. Commun. 2020, 11, 5710. [CrossRef] [PubMed]

10. Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M.; Sun, F.; Jit, M.; Munday, J.D.; et al. Early
dynamics of transmission and control of COVID-19: A mathematical modeling study. Lancet Infect. Dis. 2020, 20, 553–558.
[CrossRef]

11. Reddy, K.P.; Shebl, F.M.; Foote, J.H.; Harling, G.; Scott, J.A.; Panella, C.; Fitzmaurice, K.P.; Flanagan, C.; Hyle, E.P.; Neilan, A.M.;
et al. Cost-effectiveness of public health strategies for COVID-19 epidemic control in South Africa: A microsimulation modeling
study. Lancet Glob. Health 2021, 9, e120–e129. [CrossRef]

12. Barbarossa, M.V.; Fuhrmann, J.; Meinke, J.H.; Krieg, S.; Varma, H.V.; Castelletti, N.; Lippert, T. A first study on the impact of
current and future control measures on the spread of COVID-19 in Germany. medRxiv 2020. [CrossRef]

13. Aldila, D.; Ndii, M.Z.; Samiadji, B.M. Optimal control on COVID-19 eradication program in Indonesia under the effect of
community awareness. Math. Biosci. Eng. 2020, 17, 6355–6389. [CrossRef] [PubMed]

14. Kantner, M.; Koprucki, T. Beyond just “flattening the curve”: Optimal control of epidemics with purely non-pharmaceutical
interventions. J. Math. Ind. 2020, 10, 1–23. [CrossRef] [PubMed]

15. Bouchnita, A.; Jebrane, A. A hybrid multi-scale model of COVID-19 transmission dynamics to assess the potential of non-
pharmaceutical interventions. Chaos Solitons Fractals 2020, 138, 109941. [CrossRef] [PubMed]

16. Lemecha Obsu, L.; Feyissa Balcha, S. Optimal control strategies for the transmission risk of COVID-19. J. Biol. Dyn. 2020,
14, 590–607. [CrossRef] [PubMed]

https://github.com/LuisEVT/COVID19_Three_Stage_Numerical_Solution_For_Optimal_Controls
https://github.com/LuisEVT/COVID19_Three_Stage_Numerical_Solution_For_Optimal_Controls
http://doi.org/10.1166/asem.2014.1602
http://dx.doi.org/10.1002/mma.5594
http://dx.doi.org/10.1016/j.mcm.2010.06.034
http://dx.doi.org/10.11145/j.biomath.2019.12.137
https://sites.cns.utexas.edu/sites/default/files/cid/files/houston_strategy_to_avoid_surge.pdf?m=1592489259
http://dx.doi.org/10.1038/s41586-020-2405-7
http://www.ncbi.nlm.nih.gov/pubmed/32512579
http://dx.doi.org/10.1038/s41467-020-19393-6
http://www.ncbi.nlm.nih.gov/pubmed/33177507
http://dx.doi.org/10.1016/S1473-3099(20)30144-4
http://dx.doi.org/10.1016/S2214-109X(20)30452-6
http://dx.doi.org/10.1101/2020.04.08.20056630
http://dx.doi.org/10.3934/mbe.2020335
http://www.ncbi.nlm.nih.gov/pubmed/33378859
http://dx.doi.org/10.1186/s13362-020-00091-3
http://www.ncbi.nlm.nih.gov/pubmed/32834921
http://dx.doi.org/10.1016/j.chaos.2020.109941
http://www.ncbi.nlm.nih.gov/pubmed/32834575
http://dx.doi.org/10.1080/17513758.2020.1788182
http://www.ncbi.nlm.nih.gov/pubmed/32696723

Mathematics 2021, 9, 1777 26 of 26

17. Kouidere, A.; Khajji, B.; El Bhih, A.; Balatif, O.; Rachik, M. A mathematical modeling with optimal control strategy of transmission
of COVID-19 pandemic virus. Commun. Math. Biol. Neurosci. 2020, 2020. [CrossRef]

18. Thron, C.; Mbazumutima, V.; Tamayo, L.; Todjihounde, L. Cost Effective Reproduction Number Based Strategies for Reducing
Deaths from COVID-19. J. Math. Ind. 2021. [CrossRef] [PubMed]

19. Barker, A. Texas Medical Center Data Shows ICU, Ventilator Capacity vs. Usage during Coronavirus Outbreak. 2020. Avail-
able online: https://www.click2houston.com/health/2020/04/10/texas-medical-center-data-shows-icu-ventilator-capacity-
vs-usage-during-coronavirus-outbreak/ (accessed on 27 January 2021).

20. Lenhart, S.; Workman, J.T. Optimal Control Applied to Biological Models; CRC Press: Boca Raton, FL, USA, 2007.
21. Pontryagin, L.S. Mathematical Theory of Optimal Processes; Routledge: London, UK, 2018.
22. Chiang, A.C. Elements of Dynamic Optimization; McGraw-Hill: New York, NY, USA, 1992.
23. Kamien, M.I.; Schwartz, N.L. Sufficient conditions in optimal control theory. J. Econ. Theory 1971, 3, 207–214. [CrossRef]
24. Mangasarian, O.L. Sufficient conditions for the optimal control of nonlinear systems. SIAM J. Control. 1966, 4, 139–152. [CrossRef]

http://dx.doi.org/10.28919/cmbn/4599
http://dx.doi.org/10.1186/s13362-021-00107-6
http://www.ncbi.nlm.nih.gov/pubmed/34221823
https://www.click2houston.com/health/2020/04/10/texas-medical-center-data-shows-icu-ventilator-capacity-vs-usage- during-coronavirus-outbreak/
https://www.click2houston.com/health/2020/04/10/texas-medical-center-data-shows-icu-ventilator-capacity-vs-usage- during-coronavirus-outbreak/
http://dx.doi.org/10.1016/0022-0531(71)90018-4
http://dx.doi.org/10.1137/0304013

	Introduction
	Previous Work
	COVID-19 Epidemic Model Formulation
	COVID-19 Epidemic Model Formulation under Controls
	Theoretical Results in Optimal Control
	Objective Function
	Local Optimality Conditions for Testing and Distancing Optimal Control Problems
	Numerical Method for Estimating Optimal Controls
	Enumerative Method
	Monte Carlo Method
	Probability Distribution for Candidate Generation
	Candidate Selection
	Temperature Update
	Probability Matrix Updates

	Temperature Reset
	Cycle Termination
	Local Optimum Solution

	Numerical Simulations and Discussion
	Overview
	Pareto Optimal Tradeoffs for Death Versus Herd Immunity
	Temporal Characteristics of Pareto Optimal Solutions
	Relative Contributions of the Three Stages to the Overall Optimization
	Death and Non-Immunity Cost Characteristics of Optimal Solutions
	Execution Times for Three Algorithm Variants

	Conclusions
	References

