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Abstract: Recently, a derivative-free optimization algorithm was proposed that utilizes a minimum
Frobenius norm (MFN) Hessian update for estimating the second derivative information, which
in turn is used for accelerating the search. The proposed update formula relies only on computed
function values and is a closed-form expression for a special case of a more general approach first
published by Powell. This paper analyzes the convergence of the proposed update formula under
the assumption that the points from Rn where the function value is known are random. The analysis
assumes that the N + 2 points used by the update formula are obtained by adding N + 1 vectors to
a central point. The vectors are obtained by transforming a prototype set of N + 1 vectors with a
random orthogonal matrix from the Haar measure. The prototype set must positively span a N ≤ n
dimensional subspace. Because the update is random by nature we can estimate a lower bound on
the expected improvement of the approximate Hessian. This lower bound was derived for a special
case of the proposed update by Leventhal and Lewis. We generalize their result and show that the
amount of improvement greatly depends on N as well as the choice of the vectors in the prototype
set. The obtained result is then used for analyzing the performance of the update based on various
commonly used prototype sets. One of the results obtained by this analysis states that a regular
n-simplex is a bad choice for a prototype set because it does not guarantee any improvement of the
approximate Hessian.

Keywords: derivative-free optimization; Hessian update; random matrices; uniform distribution

MSC: 90C56; 90C53; 65K05; 15A52

1. Introduction

Derivative-free optimization algorithms have attracted much attention due to the fact
that in many optimization problems, the evaluation of the gradients of the function subject
to optimization and constraints is expensive. Such optimization problems can be often
formulated as constrained black-box optimization (BBO) [1] problems of the form

min f (x) subject to (1)

ci(x) ≤ 0 i = 1, 2, . . . , nC (2)

Functions f and ci are maps from Rn to R. The objective is to minimize f subject to nC
nonlinear constraints defined by functions ci. The method for computing f and ci is treated
as a black-box, and the gradients are usually not available. Such problems often arise
in engineering optimization when simulation is used for obtaining the function values.
BBO often relies on models of the function and of the constraints. Various approaches to
building black-box models were developed in the past, such as linear [2] and quadratic
models [3], radial-basis functions [4], support vector machines [5], neural networks [6], etc.

In this paper, we focus on the quadratic models of f and ci. The most challenging task
in building these models is the computation of the Hessian matrix. Instead of using the
exact Hessian, the model can utilize an approximate Hessian. The approximation can be
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improved gradually by applying an update formula based on the function and the gradient
values at points visited in the algorithm’s past. As the algorithm converges towards a
solution, the approximate Hessian converges to the true Hessian.

For derivative-based optimization, several approaches for updating the approximate
Hessian are well studied and tested in practice (e.g., BFGS update, SR1 update [7]). Un-
fortunately, these approaches rely on the gradient of the function (constraints), which, by
assumption, is not available in derivative-free optimization.

Let n denote the dimension of the search space. For derivative-free optimization,
a Hessian update formula based on the function values computed at m ≥ n + 2 points
visited in the algorithm’s past was proposed by Powell in [8]. The update formula was
obtained by minimizing the Frobenius norm of the update applied to the approximate
Hessian subject to linear constraints imposed by the function values at m points in the
search space. The paper proposed an efficient way for computing the update and explored
some of its properties. The convergence rate of the update formula was not studied.

In a later paper, a simple update formula that uses three collinear points for computing
the updated approximate Hessian [9] was examined. The normalized direction along which
the three points lie was assumed to be uniformly distributed on the unit sphere. With this
assumption, the convergence rate of the update was analyzed and shown to be linear. This
update formula was successfully used in a derivative-free algorithm from the family of
mesh adaptive direct search algorithms (MADS) [10]. A similar Hessian updating approach
was used for speeding up global optimization in [11].

The assumption that the points taking part in an update must be collinear is a sig-
nificant limitation for the underlying derivative-free algorithm. With this in mind, a new
simplicial update formula was proposed in [12]. The formula relies on m ≤ n + 2 points.
The reason for choosing the term simplicial Hessian update is the fact that the m− 1 points
form a simplex centered around the first point. For m = n + 2, the formula is a special
case of the update formula proposed in [8]. By imposing some restrictions on the positions
of the m points, the update formula can be used for any m that satisfies 3 ≤ m ≤ n + 2.
The case m = 3 corresponds to the update formula proposed in [9].

To illustrate the approach for obtaining the update formula, let us assume that the
current quadratic model of function f is given by

m(x) =
1
2

xTBx + ĝTx + ĉ (3)

B is the current approximate Hessian. Let the points where the function is known be
denoted by xi. For the sake of simplicity, let fi denote f (xi). Based on these points, we are
looking for an updated model:

m+(x) =
1
2

xTB+x + ĝT
+x + ĉ+. (4)

The model must satisfy m constraints

m+(xi) = fi (5)

that are linear in ĉ and the components of B+ and ĝ+. Based on these constraints, we
are looking for an updated approximate Hessian B+. Because we have fewer constraints
than there are unknowns, we also require that ‖B+ − B‖F is minimal (‖ · ‖F denotes the
Frobenius norm). The update formula we obtain in this way is a minimum Frobenius norm
update formula.

For computing the expected improvement of the approximate Hessian, we first assume
f itself is quadratic. We also assume the aforementioned m points are obtained by applying
a random orthogonal transformation to m− 1 vectors that form a prototype set and adding
the resulting vectors to a central point. As in [9], the convergence rate of the update is linear.
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The speed with which the approximate Hessian converges to the true Hessian depends on
the choice of the prototype set. Our result is a generalization of the result published in [9].

This paper is divided as follows. In Section 2, some basic properties of minimum
Frobenius norm updates are explored. The Frobenius product is revisited with the pur-
pose of simplifying the notation, and the update formula is derived. In the next section,
uniformly distributed orthogonal matrices are introduced. Some auxiliary results are
derived that are later used for computing the expected improvement of the approximate
Hessian. Section 4 analyzes the convergence of the proposed update and derives the
expected value of the improvement in the sense of the Frobenius norm of the difference
between the approximate Hessian and the true Hessian. The expected improvement is
computed for several prototype sets. The section is followed by an example demonstrating
the convergence of the proposed update and concluding remarks.

Notation. Components of vectors (a) and matrices (A) are denoted by subscripts
(i.e., ai and aij, respectively). The i-th column of matrix A is denoted by ai. The unit
vectors forming an orthogonal basis for Rn are denoted by ei. Vectors are assumed to be
column vectors, and the inner product of two vectors is written in matrix notation as aTb.
The Frobenius norm and the trace of a matrix are denoted by ‖ · ‖F and tr(·), respectively.
The expected value of a random variable is denoted by E[·].

2. Obtaining the Update Formula

Let H denote the Hessian of a function. Minimum Frobenius norm (MFN) update
formulas replace the current Hessian approximation B with a new (better) approximation
B+ in such manner that the Frobenius norm of the change (i.e., B+ − B) is minimal, subject
to constraints imposed on B+.

The Frobenius norm is a norm induced by the Frobenius (inner) product on the space
of n-by-n matrices. The Frobenius product of two matrices is given by

A : B =
n

∑
i=1

n

∑
j=1

aijbij = tr(ATB) = tr(BTA). (6)

Using the Frobenius product, one can express the Frobenius norm of matrix A as

‖A‖2
F = A : A. (7)

Quadratic terms can be expressed with the Frobenius product as

xTAx = A : (xxT). (8)

The Frobenius product introduces the notion of perpendicularity into the set of matri-
ces (not to be confused with the orthogonality of matrices, which is equivalent to QTQ = I).

Definition 1. Two nonzero matrices A and B are perpendicular (denoted by A ⊥ B) if A : B = 0.

The Frobenius product can also be used for expressing linear constraints. A linear
equality constraint on matrix X can be formulated as

A : X = a. (9)

The following Lemma provides motivation for the use of minimum Frobenius
norm updating.

Lemma 1. Let H, B, and B+ denote the exact, the current approximate, and the updated approxi-
mate Hessian, respectively. Suppose we have m linear equality constraints of the form

Ai : B+ = ai, i = 1, . . . , m. (10)
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imposed on B+. Let P⊥ denote the subspace spanned by matrices Ai. Then, the corresponding
MFN update satisfies

1. (B+ − B) ∈ P⊥, and
2. ‖B+ −H‖F ≤ ‖B−H‖F.

Proof. Finding the MFN update is equivalent to minimizing the Frobenius norm of B+−B
subject to linear equality constraints (10). These constraints define an affine subspace in
the n(n + 1)/2 dimensional space of Hessian matrices, and B+ is a member of this affine
subspace. Because the true Hessian also satisfies constraints (10), it is also a member of the
aforementioned affine subspace.

To simplify the problem, we can translate it in such manner that H becomes 0. When
we do this, the linear constraints become homogeneous, and instead of an affine subspace,
they now define an ordinary subspace P . Its orthogonal complement P⊥ is spanned by
matrices Ai. Due to translation, B and B+ are replaced by B−H and B+ −H, of which the
latter is a member of P . Points with constant ‖B+ − B‖F = ‖B+ −H− (B−H)‖F lie on a
sphere centered at B−H. Matrix B+ −H that corresponds to the smallest ‖B+ − B‖F lies
on a sphere centered at B−H that is tangential to subspace P . Therefore, B+ − B must be
perpendicular to P , i.e., B+ − B ∈ P⊥. This proves the first claim.

Due to B+−H ∈ P , we can see that B+−H and B+−B are perpendicular. From B−
H = B+ −H− (B+ − B), we have

‖B−H‖2
F = ‖B+ −H‖2

F + ‖B+ − B‖2
F (11)

The second claim immediately follows from this result.

Consider a quadratic function

q(x) =
1
2

xTHx + gTx + c (12)

where H is its Hessian and g its gradient at x = 0. Let the current and the updated
approximation to q(x) be given by

m(x) =
1
2

xTBx + ĝTx + ĉ (13)

and
m+(x) =

1
2

xTB+x + ĝT
+x + ĉ+, (14)

respectively. In MFN, updating B+ is obtained by minimizing ‖B+ − B‖F. The following
lemma introduces one such update based on the case when the value of q is known at
N + 2 points.

Lemma 2. Let q0, . . . , qN+1, where N ≤ n denote the values of q(x) corresponding to distinct
points x0, . . . , xN+1, respectively. Let vi = xi − x0 and assume ∑N+1

i=1 αivi = 0 with at least one
αi 6= 0. Then the simplicial MFN update satisfying the interpolation conditions m+(xi) = qi for
i = 0, 1, . . . , N + 1 can be computed as

B+ = B + βA (15)

where

A =
1
2

N+1

∑
i=1

αivivT
i , (16)

β =
∑N+1

i=1 αi
(
vT

i (H− B)vi
)

2‖A‖2
F

=
∑N+1

i=1 αi
(
2(qi − q0)− vT

i Bvi
)

2‖A‖2
F

. (17)
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Proof. By assumption we have

qi = q(xi) =
1
2

xT
i Hxi + gTxi + c

=
1
2
(x0 + vi)

TH(x0 + vi) + gT(x0 + vi) + c (18)

Due to the interpolation conditions, we have N + 2 constraints

qi = m+(xi) =
1
2
(x0 + vi)

TB+(x0 + vi) + ĝT
+(x0 + vi) + ĉ+ (19)

By subtraction, we eliminate ĉ+ and obtain N + 1 constraints

qi − q0 =
1
2

vT
i B+vi + (ĝ+ + B+x0)

Tvi i = 1, .., N + 1. (20)

Multiplying (20) with αi and adding the resulting equations yields

1
2

N+1

∑
i=1

αivT
i B+vi + (ĝ+ + B+x0)

T
N+1

∑
i=1

αivi =
N+1

∑
i=1

αi(qi − q0). (21)

By assumption, the second term on the left-hand side of (21) vanishes (thus, ĝ+ is
eliminated). We are left with a single linear constraint on B+:

1
2

N+1

∑
i=1

αivT
i B+vi =

N+1

∑
i=1

αi(qi − q0) (22)

which can be rewritten by recalling (8) as

A : B+ =
N+1

∑
i=1

αi(qi − q0), (23)

where

A =
1
2

N+1

∑
i=1

αivivT
i . (24)

Equation (23) is a linear constraint on the updated Hessian approximation B+. This is
the only constraint on B+. From Lemma 1, we can see that P⊥ is spanned by A. Therefore,
we can write

B+ − B = βA. (25)

By computing the Frobenius product of (25) with A and taking into account (23), we
arrive at

N+1

∑
i=1

αi(qi − q0)−A : B = βA : A. (26)

Now we can compute β:

β =
∑N+1

i=1 αi(qi − q0)−A : B
A : A

=
∑N+1

i=1 αi
(
2(qi − q0)− vT

i Bvi
)

2‖A‖2
F

.

The simplicial update formula introduced by Lemma 2 is the closed-form solution of
the equations arising from the MFN update in [8] for N = n. One can see this by comparing
the interpolation conditions to those in [8]. Due to the assumption ∑N+1

i=1 αivi = 0, we can
also apply it when N < n. The assumption implies the points x1, . . . , xN+1 are positioned
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in a specific manner with respect to x0 (i.e., there exists a nontrivial linear combination
∑N+1

i=1 αi(xi − x0) = 0).
By choosing N = 1, we obtain a special case of the simplicial MFN update, where all

three distinct points must be collinear to satisfy ∑N+1
i=1 αivi = 0. Suppose v1 = −v2 = v

and α1 = α2 = 1. Then,

A = vvT, (27)

β =
(q1 + q2 − 2q0)− vTBv

‖v‖4 =
q(2)v (x0)− vTBv

‖v‖4 (28)

where q(2)v (x0) = vTHv is the second directional derivative of q along direction v. The con-
vergence properties of this MFN update formula were analyzed in [9]. The formula was
used in the derivative-free optimization algorithm proposed in [10].

3. Uniformly Distributed Orthogonal Matrices

The notion of a uniform distribution over the group of orthogonal matrices (On) can
be introduced via the Haar measure [13]. Let A denote a matrix with independent normally
distributed elements with zero mean and variance 1. A random orthogonal matrix from
the Haar measure (O) can then be obtained with Algorithm 1.

Algorithm 1 Constructing a random orthogonal matrix from the Haar measure.

1. Perform QR decomposition A = QR.
2. Construct a diagonal matrix D with dii = 1 if rii ≥ 0 and dii = −1 otherwise.
3. O = QD.

Multiplying O with any unit vector results in a random unit vector that is uniformly
distributed on the unit sphere (Sn) [14]. It can be shown that OT is also a uniformly
distributed orthogonal matrix. Consequently, every column and every row of O are a
random unit vector with uniform distribution on Sn.

The results of this section are obtained with the help of the following lemma.

Lemma 3. Let x ∈ Rn and let dσ denote the surface element of Sn. Then,

Vn(r1, r2, . . . , rn) =
∫
‖x‖=1

x2r1
1 x2r2

2 · · · · · x
2rn
n dσ =

2 ∏n
i=1 Γ(ri + 1/2)

Γ(n/2 + ∑n
i=1 ri)

(29)

Proof. See [15], Appendix B.

From Lemma 3, we can obtain the surface area of Sn by choosing r1 = . . . = rn = 0.

Sn =
2Γ(1/2)n

Γ(n/2)
(30)

Let oi and oj denote two random vectors that correspond to the i-th and the j-th
column of O. If i 6= j, then oT

i oj = 0. We denote the k-th component of oi as oki.
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Lemma 4. Let O be a uniformly distributed random orthogonal matrix. Then,

E
[(

eT
k oi

)2
]
= E

[
o2

ki

]
=

1
n

, (31)

E
[(

eT
k oi

)2(
eT

l oi

)2
]
= E

[
o2

kio
2
li

]
=

{ 3
n(n+2) k = l

1
n(n+2) k 6= l

, (32)

E
[(

eT
k oi

)2(
eT

l oj

)2
]
= E

[
o2

kio
2
l j

]
=

{ 1
n(n+2) k = l, i 6= j

n+1
(n−1)n(n+2) k 6= l, i 6= j

. (33)

Proof. For proving (31), we can assume without loss of generality k = i = 1. Because
o1 = u is uniformly distributed on Sn, the expected value of f (u) can be obtained by
computing the mean value of f (u) over Sn. We use Lemma 3 for expressing the integral
over the surface of Sn.

E
[
o2

ki

]
= E

[
o2

11

]
= E

[
u2

1

]
= S−1

n

∫
‖u‖=1

u2
1dσ (34)

= S−1
n

2Γ(3/2)Γ(1/2)n−1

Γ(1 + n/2)
=

1
n

. (35)

Regarding (32) for k = l, we have

E
[
o2

kio
2
li

]
= E

[
o4

ki

]
= S−1

n

∫
‖u‖=1

u4
1dσ (36)

= S−1
n

2Γ(5/2)Γ(1/2)n−1

Γ(2 + n/2)
=

3
n(n + 2)

. (37)

For k 6= l, we assume without loss of generality k = 1, l = 2. From Lemma 3, we have

E
[
o2

kio
2
li

]
= S−1

n

∫
‖u‖=1

u2
1u2

2dσ (38)

= S−1
n

2Γ(3/2)2Γ(1/2)n−2

Γ(2 + n/2)
=

1
n(n + 2)

(39)

For (33) with k = l, we can show that it is identical to (32) with k 6= l. We have

eT
k oi = eT

k Oei = eT
i OTek = eT

i

(
OT
)

k
(40)

where
(
OT)

k is the k-th column of OT. This implies(
eT

k oi

)2(
eT

k oj

)2
=
(

eT
i

(
OT
)

k

)2(
eT

j

(
OT
)

k

)2
(41)

To confirm (33) for k = l, we take into account that OT is also a random orthogonal
matrix from the Haar measure, replace O with OT in (32), and rename i, k, and l to k, i,
and j, respectively.

Finally, to prove (33) for k 6= l, we can assume without loss of generality i = k = 1 and
j = l = 2. The cosine of the angle between o1 and e2 can be expressed as o21 = eT

2 o1 = cos φ.
Random vector o2 is orthogonal to o1. Its realizations cover a unit sphere in an n − 1-
dimensional subspace B orthogonal to o1. Unit vectors b1, . . . , bn−1 form an orthogonal
basis for this subspace. Note that bT

i o1 = 0. The conditional probability density distribution
of o2 is uniform on the aforementioned unit sphere in B. Vector o2 can be expressed as

o2 =
n−1

∑
i=1

ηibi,
n−1

∑
i=1

η2
i = 1, (42)
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where vector [η1, . . . , ηn−1] is uniformly distributed on Sn−1. Without loss of generality we
can choose vectors bi in such manner that e2 = o1 cos φ + b1 sin φ, where φ is the angle
between e2 and o1. Now we have

o22 = eT
2 o2 =

n−1

∑
i=1

(o1 cos φ + b1 sin φ)Tηibi = η1 sin φ (43)

and
o2

11o2
22 = (eT

1 o1)
2(eT

2 o2)
2 = o2

11η2
1 sin2 φ = η2

1o2
11

(
1− o2

21

)
. (44)

Next, we can express

E
[
o2

kio
2
l j

]
= E

[
η2

1

]
E
[
o2

11 − o2
11o2

21

]
, (45)

where the first expected value refers to [η1, . . . , ηn−1] ∈ Sn−1 and the second one to o1 ∈ Sn.
Using Lemma 3 and previously proven (32), we arrive at

E
[
η2

1

]
E
[
o2

11 − o2
11o2

21

]
=

1
n− 1

(
1
n
− 1

n(n + 2)

)
=

n + 1
(n− 1)n(n + 2)

(46)

4. Convergence of the Proposed Update

Multiplying vectors in a prototype set D = {d1, . . . , dN+1} with a uniformly dis-
tributed random orthogonal matrix O results in a set of random vectors V = {v1, . . . , vN+1}
such that every v/‖v‖ is uniformly distributed on Sn. The angles between the vectors in a
realization of such a set are identical to the angles between the corresponding vectors from
the prototype set.

Suppose one is interested in the expected amount of improvement resulting from
one application of the update formula from Lemma 2. We assume that the N + 2 points
where the function value is computed comprise x0 and additional N + 1 points generated
using a random orthogonal matrix O and a prototype set of vectors {d1, . . . , dN+1} in the
following manner.

xi = x0 + Odi = x0 + vi, i = 1, ..., N + 1. (47)

First, we prove an auxiliary lemma.

Lemma 5. Let a, b, and O denote two unit vectors with cos ϕ = aTb and a uniformly distributed
orthogonal matrix, respectively. Let u = Oa and v = Ob. Then,

E
[
u2

kv2
l

]
=


1+2 cos2 ϕ

n(n+2) k = l
n+1−2 cos2 ϕ
(n−1)n(n+2) k 6= l

(48)

Proof. Without loss of generality, the coordinate system can be rotated in such manner
that a = e1 and b = e1 cos ϕ + e2 sin ϕ. Then, we have

u = o1, (49)

v = o1 cos ϕ + o2 sin ϕ. (50)

For k = l, we have

E
[
u2

kv2
k

]
= E

[
o2

k1(ok1 cos ϕ + ok2 sin ϕ)2
]

(51)

= E
[
o4

k1

]
cos2 ϕ + E

[
o2

k1o2
k2

]
sin2 ϕ + 2E

[
o3

k1ok2

]
cos ϕ sin ϕ (52)



Mathematics 2021, 9, 1775 9 of 18

The last term vanishes because the integral of odd powers of oij over Sn is zero.
By invoking Lemma 4, we arrive at

E
[
u2

kv2
k

]
=

3 cos2 ϕ

n(n + 2)
+

sin2 ϕ

n(n + 2)
=

1 + 2 cos2 ϕ

n(n + 2)
(53)

For k 6= l,

E
[
u2

kv2
l

]
= E

[
o2

k1(ol1 cos ϕ + ol2 sin ϕ)2
]

(54)

= E
[
o2

k1o2
l1

]
cos2 ϕ + E

[
o2

k1o2
l2

]
sin2 ϕ

+ 2E
[
o2

k1ol1ol2

]
cos ϕ sin ϕ (55)

The last term vanishes due to odd powers of oij. Together with Lemma 4, we have

E
[
u2

kv2
l

]
=

cos2 ϕ

n(n + 2)
+

(n + 1) sin2 ϕ

(n− 1)n(n + 2)
=

n + 1− 2 cos2 ϕ

(n− 1)n(n + 2)
. (56)

Lemma 6. Let {d1, . . . , dN+1} be a prototype set of vectors satisfying ∑N+1
i=1 αidi = 0, where all

αi ≥ 0 and at least one αi 6= 0. Let O be a uniformly distributed random orthogonal matrix, and let
vi = Odi with ‖di‖‖dj‖ cos ϕij = dT

i dj = vT
i vj. Then, the MFN update formula from Lemma 2

involving N + 2 points (x0 and the additional N + 1 points constructed according to (47)) satisfies

E
[
‖B+ − B‖2

F

]
= E

[
β2‖A‖2

F

]
= (γ1 − γ2)‖B−H‖2

F + γ2tr(B−H)2 (57)

where

γ1 =
µ + 2

n(n + 2)
(58)

γ2 =
(n + 1)µ− 2

(n− 1)n(n + 2)
(59)

µ =

(
∑N+1

i=1 αi‖di‖2

2‖A‖F

)2

=

(
∑N+1

i=1 αi‖di‖2
)2

∑N+1
i=1 ∑N+1

j=1 αiαj‖di‖2‖dj‖2 cos2 ϕij
(60)

Proof. By repeating the reasoning in the proof of Lemma 2 on (18), we obtain

A : H =
N+1

∑
i=1

αi(qi − q0) (61)

which yields together with the expression for β from Lemma 2

β =
(H− B) : A

A : A
=

∑N+1
i=1 αivT

i (H− B)vi

2‖A‖2
F

. (62)

Now we can express

β2‖A‖2
F =

(
∑N+1

i=1 αivT
i (B−H)vi

)2

4‖A‖2
F

. (63)
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Because vectors vi are uniformly distributed on the unit sphere, we can rotate the
coordinate system without affecting E

[
β2‖A‖2

F
]

so that B−H is diagonalized.

E
[

β2‖A‖2
F

]
= E


(

∑N+1
i=1 αivT

i Dvi

)2

4‖A‖2
F

. (64)

Let vik denote the k-th component of vector vi and λk the k-th eigenvalue of B−H
(k-th diagonal element of D).

E
[

β2‖A‖2
F

]
= E

[
∑N+1

i=1 ∑N+1
j=1 αiαj ∑n

k=1 ∑n
l=1 v2

ikv2
jlλkλl

4‖A‖2
F

]
. (65)

We can rewrite (65) as

E
[

β2‖A‖2
F

]
=

∑n
k=1 ∑N+1

i=1 ∑N+1
j=1 αiαjEikjkλ2

k + ∑k 6=l ∑N+1
i=1 ∑N+1

j=1 αiαjEikjlλkλl

4‖A‖2
F

(66)

The expected value of v2
ikv2

jl depends on cos ϕij = vT
i vj. From Lemma 5, we have

Eikjl = E
[
v2

ikv2
jl

]
=


1+2 cos2 ϕij

n(n+2) ‖vi‖2‖vj‖2 k = l
n+1−2 cos2 ϕij
(n−1)n(n+2) ‖vi‖2‖vj‖2 k 6= l

(67)

Because the eigenvalues of D are the same as the eigenvalues of B−H, we have

‖B−H‖2
F = ‖D‖2

F =
n

∑
k=1

λ2
k , (68)

tr(B−H)2 = tr(D)2 =

(
n

∑
k=1

λk

)2

=
n

∑
k=1

n

∑
l=1

λkλl (69)

and

(γ1 − γ2)‖B−H‖2
F + γ2tr(B−H)2 = (γ1 − γ2)

n

∑
k=1

λ2
k + γ2

n

∑
k=1

n

∑
l=1

λkλl

= γ1

n

∑
k=1

λ2
k + γ2 ∑

k 6=l
λkλl (70)

Note that ‖vi‖ = ‖di‖. Taking into account (66), (67), and (70) yields

γ1 =
∑N+1

i=1 ∑N+1
j=1 αiαj‖di‖2‖dj‖2(1 + 2 cos2 ϕij

)
4n(n + 2)‖A‖2

F
, (71)

γ2 =
∑N+1

i=1 ∑N+1
j=1 αiαj‖di‖2‖dj‖2(n + 1− 2 cos2 ϕij

)
4(n− 1)n(n + 2)‖A‖2

F
. (72)

The Frobenius norm of A can be expressed as

‖A‖2
F = tr

(
ATA

)
= tr

((
1
2 ∑N+1

i=1 αivivT
i

)T( 1
2 ∑N+1

j=1 αjvjvT
j

))
= 1

4 ∑N+1
i=1 ∑N+1

j=1 αiαjtr
(

vivT
i vjvT

j

)
= 1

4 ∑N+1
i=1 ∑N+1

j=1 αiαj
(
vT

i vj
)2

= 1
4 ∑N+1

i=1 ∑N+1
j=1 αiαj‖di‖2‖dj‖2 cos2 ϕij

(73)
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By substituting (73) in (71) and (72), we arrive at

γ1 =
8‖A‖2

F + ∑N+1
i=1 ∑N+1

j=1 αiαj‖di‖2‖dj‖2

4n(n + 2)‖A‖2
F

, (74)

γ2 =
(n + 1)∑N+1

i=1 ∑N+1
j=1 αiαj‖di‖2‖dj‖2 − 8‖A‖2

F

4(n− 1)n(n + 2)‖A‖2
F

. (75)

We also have
N+1

∑
i=1

N+1

∑
j=1

αiαj‖di‖2‖dj‖2 =

(
N+1

∑
i=1

αi‖di‖2

)2

(76)

Substituting (76) into (74) and (75) concludes the proof.

Theorem 1. Let γ1, γ2, and µ be defined as in Lemma 6. Then,

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤
{

1− 2(n−µ)
(n−1)n(n+2) µ ≥ 2

n+1

1− µ
n µ < 2

n+1

. (77)

Proof. We start with the following identity.

B+ −H + B− B+ = B−H. (78)

Computing the Frobenius norm on both sides and considering (B+ − B) ⊥ (B+ −H)
results in

‖B+ −H‖2
F + ‖B+ − B‖2

F = ‖B−H‖2
F. (79)

Taking into account (15) results in

‖B+ −H‖2
F = ‖B−H‖2

F − β2‖A‖2
F. (80)

After Lemma 6 is applied, we have

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F

= 1−
(

γ1 − γ2 + γ2
tr(B−H)2

‖B−H‖2
F

)
(81)

By definition, µ ≥ 0 and γ1 ≥ 0. For γ2 ≥ 0, we must have µ ≥ 2/(n + 1). By consid-
ering tr(B−H)2/‖B−H‖2

F ≥ 0, we arrive at

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤ 1− (γ1 − γ2) = 1− 2(n− µ)

(n− 1)n(n + 2)
. (82)

For γ2 < 0, we must have µ < 2/(n + 1). Invoking Lemma A1 yields

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤ 1− (γ1 − γ2 + nγ2) = 1− (γ1 + (n− 1)γ2) = 1− µ

n
. (83)

From Theorem 1, several results can be derived. First, we will assume the prototype set
is a regular N-simplex (i.e., comprises N + 1 vectors positively spanning an N-dimensional
subspace). This case is interesting because the update formula in [9] is obtained for N = 1.
We are going to show that our estimate of the expected Hessian improvement is identical
to the one published in [9]. This update formula (with N = 1) was used in an optimization
algorithm published in [10].
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Next, we are going to show that using a regular n-simplex as the prototype set is a bad
choice. According to Theorem 1, no improvement of the Hessian is guaranteed. Even worse,
we show that improvement occurs only at the first application of the update formula.

Finally, we will analyze the case where the prototype set is what we refer to as an
augmented set of N orthonormal vectors. Such a prototype set with N = n was used in the
optimization algorithm published in [14].

Corollary 1. Let D be a regular N-simplex (N ≤ n). Then,

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤ 1− 2(n− N)

(n− 1)n(n + 2)
(84)

Proof. For all i 6= j, we have cos ϕij = −N−1 and ‖di‖ = 1. Because the sum of all vectors
in a regular N-simplex is 0, we conclude αi = 1 and

µ =

(
∑N+1

i=1 αj

)2

∑N+1
i=1 ∑N+1

j=1 αiαj cos2 ϕij
=

(N + 1)2

(N + 1) · 1 + N(N + 1) · N−2 = N (85)

Because 2/(n + 1) ≤ 1 for all n ≥ 1, we have µ ≥ 2/(n + 1), and the result follows
from Theorem 1.

Corollary 1 implies that the most efficient approach to MFN updating with a regular
simplex in the role of the prototype set of unit vectors is to use a regular 1-simplex (three
collinear points).

Corollary 2. For N = 1 and d1 = −d2, set D is a regular 1-simplex and

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤ 1− 2

n(n + 2)
. (86)

This result was proven in [9] with a less general approach. Here, we obtain it as a
special case of Corollary 1 for N = 1.

According to Corollary 1, there is no guaranteed improvement of ‖B−H‖F if a regular
n-simplex (N = n) is used in the update process. In fact, the situation is even worse as we
show in the following Lemma.

Lemma 7. If D is a regular n-simplex (N = n), then the MFN update from Lemma 2 improves
the Hessian approximation only in its first application.

Proof. From Lemma 2, we can see that

B+ = B + βA (87)

where (see (62))

β =
∑N+1

i=1 αivT
i (H− B)vi

2‖A‖2
F

. (88)

For a regular simplex, αi = 1 and ‖di‖ = 1. The Frobenius norm of A is

‖A‖2
F =

1
4

N+1

∑
i=1

N+1

∑
j=1

cos2 ϕij =
1
4
·
(

1 · (n + 1) +
1
n2 · n(n + 1)

)
=

(n + 1)2

4n
(89)
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Due to Lemma A3 (see Appendix A for proof), we have

N+1

∑
i=1

αivT
i (H− B)vi =

n + 1
n

tr(H− B) (90)

and
β =

2
n + 1

tr(H− B) (91)

From definition of A, we obtain

tr(A) =
1
2

n+1

∑
i=1

αitr
(

vivT
i

)
=

1
2

n+1

∑
i=1

αi‖vi‖2 =
n + 1

2
(92)

From B+ −H = B−H + βA, we can express

tr(B+ −H) = tr(B−H) + βtr(A) = 0. (93)

Let B++ denote the approximate Hessian after the second application of the
update formula.

B++ = B+ + β+A+ (94)

Because β+ = 2tr(H − B+)/(n + 1) = 0, we have B++ = B+, and the proof
is complete.

Intuition can mislead one into considering the regular n-simplex as the best choice
for positioning n + 1 points around an origin x0 when computing an MFN update based
on Lemma 2. Lemma 7 shows the exact opposite—a regular n-simplex is the worst choice
because the update formula does not improve the Hessian approximation in its second and
all subsequent applications.

Definition 2. An augmented set of 1 ≤ N ≤ n orthonormal vectors is a set comprising N
mutually orthogonal unit vectors e1, . . . , eN and their normalized negative sum −N−1/2(e1 +
. . . + eN).

Note that an augmented set of N = 1 orthonormal vectors is equivalent to a regular
1-simplex. Now, we have ‖di‖ = 1 and cos ϕii = 1. For i 6= j, we have cos ϕij = 0 except for
i = n + 1 or j = n + 1 when cos ϕij = −N−1/2. Because dN+1 is the normalized negative
sum of the first N vectors, α1 = . . . = αn = 1 and αn+1 = N1/2.

Corollary 3. If the prototype set of unit vectors is an augmented set of N orthonormal vectors,
then

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤ 1− 2n− N − N1/2

(n− 1)n(n + 2)
. (95)

Proof.

µ =

(
∑N+1

j=1 αi

)2

∑N+1
i=1 ∑N+1

j=1 αiαj cos2 ϕij
=

(
N · 1 + N1/2

)2

N · 1 · 1 · 12 + 1 · N1/2 · N1/2 · 12 + 2N · 1 · N1/2 · N−1

=
N(N1/2 + 1)2

2N1/2(N1/2 + 1)
=

N + N1/2

2
(96)

Because 2/(n + 1) ≤ 1 for all n ≥ 1, we conclude µ ≥ 2/(n + 1), and the result
follows from Theorem 1.

A special case of Corollary 1 is the following result.
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Corollary 4. If the prototype set of unit vectors is an augmented set of N = n orthonormal
vectors, then

E
[
‖B+ −H‖2

F
]

‖B−H‖2
F
≤ 1− 1

(n + n1/2)(n + 2)
. (97)

Corollaries 2 and 4 indicate that for an augmented set of N = n orthonormal vec-
tors (used in [12]), the expected improvement of the approximate Hessian approaches
half of the improvement obtained using a regular 1-simplex (introduced in [9]) when n
approaches infinity.

Corollaries 1–4 indicate that the update formula yields a greater improvement of the
approximate Hessian when the prototype set of vectors exhibits more directionality, in the
sense that the vectors are confined to an N < n dimensional subspace of the search space.
Lower values of N result in faster convergence.

5. Example

We illustrate the proposed update with a simple example. The sequence of uni-
formly distributed orthogonal matrices is generated as in [14]. Three prototype sets are
examined—regular 1-dimensional and (n− 1)-dimensional simplex and the augmented set
of n orthonormal vectors. The true Hessian H is chosen randomly and the initial Hessian
approximation is set to B = 0. The progress of the update is measured by the normalized
Frobenius distance between H and B.

Figure 1 depicts the progress of the proposed update with various prototype sets for
n = 5 and n = 10. It is clearly visible that the convergence of the update is linear and
depends on the choice of the prototype set. The convergence rate of the update using an
augmented set of n orthonormal vectors is approximately half of the convergence rate
exhibited by the update using a regular 1-simplex. It can also be seen that the bound
on the amount of progress obtained from one update (Theorem 1) is fairly conservative.
The actual progress of the update is much better in practice.

0 200 400 600 800 1000 1200 1400
Update application 
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Figure 1. Progress of three simplicial updates for n = 5 (left) and n = 10 (right). Dashed lines
represent the progress of the update assuming every update application improves the approximate
Hessian by the amount predicted in Theorem 1.

6. Discussion

The convergence of a Hessian update formula that requires only function values for
computing the update was analyzed. The update formula is based on the formula published
in [8] that generally requires the function values at m ≥ n + 2 points. The proposed update
is based on the case where m = n + 2. An additional requirement is introduced, namely
that the m− 1 vectors from the central point to the remaining m− 1 points must positively
span a m− 2 dimensional subspace of Rn. This requirement extends the usability of the
proposed update to sets of points with 3 ≤ m ≤ n + 2 members. The set of m points used
by the update is generated by adding m− 1 vectors to a central point in the set. The vectors
are obtained by applying a random orthogonal transformation to a prototype set of vectors
that spans a m− 2 dimensional subspace of Rn.
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A lower bound on the expected improvement of the Hessian approximation was
derived (Theorem 1). Up to now, no such result was published for the update from [8] and
m = n + 2. The obtained result was applied to several different prototype sets. The general
result obtained for the case when the prototype set is a regular m− 2-dimensional simplex
(Corollary 1) shows that the expected improvement of the Hessian approximation is greatest
for m = 3 (i.e., 1-dimensional regular simplex) and decreases as the dimensionality of
the simplex increases. The special case when m = 3 (1-dimensional regular simplex)
corresponds to the update from [9]. The lower bound on the expected improvement
obtained with our general result (Corollary 2) matches the one that was published in [9].
For the n-dimensional regular simplex, our result indicates that the lower bound on
expected improvement of the Hessian approximation is 0. Furthermore, it was shown
that the Hessian approximation is possibly improved only by the first application of the
proposed update formula (Lemma 7). Therefore, the use of the n-dimensional regular
simplex in the role of the prototype set is a bad choice.

Next, the expected improvement of the approximate Hessian for a prototype set
comprising N ≤ n orthogonal vectors and their normalized negative sum was derived.
Such a prototype set with N = n was used in the optimization algorithm published in [12].
It was shown that using this kind of prototype set does guarantee a positive lower bound on
the expected improvement of the Hessian approximation (Corollary 4). The general result
(Corollary 3), however, again indicates that using a prototype set of lower dimensionality
results in faster convergence. The result for N = 1 (two collinear vectors in the role of the
prototype set) is the same as the one obtained for the update from [9].

Finally, the results were illustrated by running the proposed update on a quadratic
function with a randomly chosen Hessian for several choices of the prototype set. The ob-
served progress was compared to the lower bound predicted by Theorem 1. The results
indicate that the lower bound is quite pessimistic, and that the actual progress is faster. The
observed performance was closest to the predicted lower bound for the update formula
from [9].
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Appendix A

The following lemma is used in the proof of the main result.

Lemma A1. Let B be a n× n matrix. Then,

tr(B)2 ≤ n‖B‖2
F (A1)

Proof. Let λi ∈ R denote the n eigenvalues of B. We have

tr(B)2 =

(
n

∑
i=1

λi

)2

, (A2)

‖B‖2
F =

n

∑
i=1

λ2
i = a. (A3)

The maximum of tr(B)2 can be obtained by finding max(∑n
i=1 λi)

2 subject to ∑n
i=1 λ2

i =
a. The solution of this problem is

|λi| = (a/n)1/2 i = 1, 2, . . . , n. (A4)

Considering ∑n
i=1 λi ≤ n(a/n)1/2 along with (A2) and (A3) concludes the proof.

Let S be a n× (n + 1) matrix whose columns are the vectors comprising a regular
simplex in n dimensions. By definition, the following must hold

STS =


1 −n−1 . . . −n−1

−n−1 1 . . . −n−1

...
...

. . .
...

−n−1 −n−1 . . . 1


(n+1)×(n+1)

= C (A5)

Clearly, there are infinitely many possible solutions to (A5). We will assume that S is
upper triangular. A solution to (A5) with this property is unique and can be obtained via
Cholesky decomposition of the submatrix of C comprising the first n rows and columns
which yields the first n columns of S. The last column is then obtained as the negative sum
of the first n columns. Matrix S is in row echelon form and represents what we will refer to
as the standard regular simplex. Its components can be expressed as

s2
ii =

(n + 1)(n− i + 1)
n(n− i + 2)

(A6)

sij =

{
− sii

n−i+1 j > i
0 otherwise

(A7)

Lemma A2. Let columns of V represent a regular simplex. Then,

VVT = SST =
n + 1

n
In×n (A8)

Proof. Let columns of S comprise a standard regular simplex. Diagonal elements of SST

can be obtained as

n+1

∑
i=1

s2
ki =

n+1

∑
i=k

s2
ki = s2

kk + (n− k + 1)s2
k(k+1) = s2

kk ·
n− k + 2
n− k + 1

=
n + 1

n
. (A9)
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Because SST is symmetric, we assume k > l for computing the extradiagonal elements

n+1

∑
i=1

skisli =
n+1

∑
i=k

skisli = sl(l+1)

n+1

∑
i=k

ski = sl(l+1)

(
skk + (n− k + 1) · sk(k+1)

)
(A10)

= sl(l+1)

(
skk − (n− k + 1)

skk
n− k + 1

)
= 0 (A11)

This proves SST = (n + 1)In×n/n. Any regular simplex V can be expressed with the
standard regular simplex as V = QS, where Q is an orthogonal matrix. Therefore, we have

VVT = QSSTQT =
n + 1

n
QIn×nQT =

n + 1
n

In×n (A12)

Lemma A3. Let columns of V represent a regular simplex, and let H be a symmetric matrix. Then,

n+1

∑
i=1

vT
i Hvi =

n + 1
n

tr(H) (A13)

Proof.

n+1

∑
i=1

vT
i Hvi = tr(VTHV) = tr

(
H :

(
VVT

))
=

n + 1
n

tr(H : I) =
n + 1

n

n

∑
i=1

hii (A14)
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