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Abstract: The traditional machine-part cell formation problem simultaneously clusters machines
and parts in different production cells from a zero–one incidence matrix that describes the existing
interactions between the elements. This manuscript explores a novel alternative for the well-known
machine-part cell formation problem in which the incidence matrix is composed of non-binary values.
The model is presented as multiple-ratio fractional programming with binary variables in quadratic
terms. A simple reformulation is also implemented in the manuscript to express the model as a
mixed-integer linear programming optimization problem. The performance of the proposed model
is shown through two types of empirical experiments. In the first group of experiments, the model
is tested with a set of randomized matrices, and its performance is compared to the one obtained
with a standard greedy algorithm. These experiments showed that the proposed model achieves
higher fitness values in all matrices considered than the greedy algorithm. In the second type of
experiment, the optimization model is evaluated with a real-world problem belonging to Human
Resource Management. The results obtained were in line with previous findings described in the
literature about the case study.

Keywords: machine-part cell formation problem; fractional 0–1 programming; mixed-integer linear
programming; human resources management

1. Introduction

Group technology (GT) is a manufacturing approach in which parts with a high
percentage of similarities are grouped and manufactured with a small number of machines
or processes [1]. GT is employed for product design and manufacturing system design.
In the GT literature, the group of parts with common similarities is known as part family,
and the group of machines employed to process an individual part family is denoted as
machine cell. In this context, cellular manufacturing (CM) emerges as an application of GT
in which a machine cell manufactures a part family [2–4]. The manufacturing efficiencies
are generally improved by implementing GT techniques as the required operations may be
reduced to only a small cell and thus avoiding the need for transportation of in-process
parts [5].

Diverse algorithms, heuristic and nonheuristic approaches, have been proposed for
solving the CF problem [6]. Those methods can be categorized as: (i) array-based clustering
methods [5], (ii) mathematical programming methods [7] and (iii) heuristics models [8–10].
Additionally, the techniques implemented for addressing the CF problem can also be di-
vided, according to their philosophy, into three groups: (i) those that consider the grouping
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of parts into part families followed by assignment of machines to part families [11]; (ii)
those that consider the grouping of machines into machines cells followed by assignment
of parts to machine cells [12], and (iii) those that are based on simultaneous grouping of
parts and machines to manufacturing cells [13].

The methods implemented so far for the simultaneous grouping of family parts
and machine cells are based on a machine-part incidence matrix composed of binary
0–1 elements. A “one” entry in that matrix indicates that this part has an operation sched-
uled in the corresponding machine; zero indicates that it does not. In this manuscript, we
explore an alternative formulation of the CF problem with non-binary values. In the pro-
posed formulation, the goal is to maximize the sum of mean performances of the different
groups, and therefore, it is expressed as a multiple-ratio optimization model with quadratic
terms. The model was reformulated as a mixed-integer linear programming (MILP) to
reach, in this way, the global solution of the problem through standard MILP solvers. The
novel optimization problem has multiple unexplored applications in areas such as machine
learning (biclustering, feature and instance selection), human resources (to create groups
of employees according to their skills), or education (for grouping students according to
their competencies), among others. Specifically, the significance of the model was shown
through its application into a real-world problem belonging to the area of Human Resource
Management (HRM) in a complex setting as the accounting profession.

In the real-world problem, the goal was to simultaneously group employees and job
quality indices to identify areas of enhancement in a specific group of employees. The
sample used includes a set of accountants of the European Union, and its job quality was
measured through seven indices (such as earnings, prospects, or work time quality) [14].
The accounting profession is an exciting setting because it faces job demands that can
hardly be managed. On the one hand, there is a strict concentration of work around the
closing of accounts and intense competition between accountancy firms [15]. On the other
hand, the particularity of the corporations’ systems makes it complex to manage flexibly
the teams which must face the increasing demand for work around the issuance of financial
statements [16]. Unfortunately, inadequate pressure management can lead to a decrease in
the quality of annual reports, their auditing, and, consequently, a deterioration in market
confidence in an essential input for decision-making on resource allocation [17,18]. The
way to deal with these pressures lies in managing job resources, and this paper contributes
to shedding light on this issue in the specific case of the auditing profession.

Hence, the findings obtained in the research will allow human resources practitioners
to implement tailored human resources incentives for their staff members. This new era
of human talent management, where workers can develop their full potential through
individualized work experiences, requires a better design and implementation of tailored
human resource practices. In this sense, Berhil et al. pointed out that most human re-
source management issues (such as selection and recruitment, compensation, or turnover)
need to be addressed on a case-by-case basis to ensure the effectiveness of the proposed
strategies [19]. The systematic literature review carried out by these authors highlighted
that artificial intelligence solutions tend to be the most frequent. In particular, the most
commonly used methods and algorithms were Decision Tree (30%), Support Vector Ma-
chine (17%), Random Forest (17%), logistic regression (15%), K-Nearest Neighbor (11%),
Multi-Layer Perceptron (4%), C4.5 algorithm (4%) and Gaussian Naïve Baye (2%). In this
manuscript, we extend the set of methodologies to be implemented in the HRM area by
proposing a novel method from Operations Research.

In summary, the main contributions of this manuscript are as follows:

• Contributions to the MPCF field:

– To propose an alternative formulation of the MPCF for non-binary values.
– To implement a MILP approach for the problem mentioned above.

• Contributions to the HRM field:
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– To understand how European accountants are grouped according to their job
quality indices.

– To propose a methodological approach to implement tailored human resource
strategies.

• Contributions to the Accounting profession:

– The high demands of the profession are mainly managed through workplace
social climate.

– Accountants assume work intensity as an intrinsic characteristic of the profession,
and, due to this, they do not prioritize its improvement. In this context, accoun-
tancy firms must develop job resources to lessen the stress of their employees.

The remainder of the manuscript is organized as follows. Section 2 describes the
foundations of the MPCF problem (main objective, performance metrics, and algorithms).
Section 3 details the optimization model proposed to address the MPCF problem with
non-binary values. Section 4 reports the empirical results obtained by the model in both
randomized incidence matrices and a real-world problem related to the area of HRM, and
Section 5 presents the conclusions that were reached in the study.

2. The Machine-Part Cell Formation Optimization Problem

The Machine-Part Cell formation (MPCF) problem is formulated from two different
sets, I and J . The set I encompasses the N machines and the set J includes the D parts.
The production incidence matrix A = (and) ∈ {0, 1}N×D indicates the interactions between
the parts and the machines, and consequently each component and stands for the interaction
that the n-th machine, n ∈ N := {1, . . . , N}, has on the d-th part, d ∈ D := {1, . . . , D}
(and = 0 if machine n process part d, 0 otherwise).

In the baseline MPCF optimization problem, a particular machine, n, processes several
parts (as expected) and a part d may be processed by several machines. A production
cell g, g ∈ G := {1, . . . , G}, includes a subgroup of machines Cg ⊂ I and a subset of
parts, Fg ⊂ J. Thus, the goal is to compute a solution of G production cells, (C,F ) =
{(C1,F1), . . . , (CG,FG)}, as autonomous as possible.

It is important to stress that the optimization procedure produces partitions of the
machines set and of the parts sets with the form:

C1 ∪ . . . ∪ CG = I and F1 ∪ . . . ∪ FG = J
Cg1 ∩ Cg2 = ∅ and Fg1 ∩ Fg2 = ∅

(1)

for all pairs of different cell indices g1 and g2 ∈ G. In the interests of clarity, Table 1
reflects an example of matrix rearrangement according to the MCPF optimization problem
with 7 machines and 11 parts. As can be seen, the output of the optimization process
is a diagonalized matrix with 3 different cells, highlighted with gray color (3 machine
groups {(6, 7), (1, 2), (3, 4, 5)} and 3 families of parts {(4, 5, 8, 10), (1, 2, 6, 9), (3, 7, 11)}).
The elements (5, 4) and (3, 1) are denoted in the MCPF literature as exceptional elements
and correspond to entries with a value of 1 outside of the gray diagonal blocks. The
elements (4, 11) or (6, 8) are called voids and correspond to 0s inside the diagonal blocks.

One of the first proposals for converting a binary matrix into a block diagonal form
implemented a measure called bond energy [20], which is computed as follows:

ν =
N

∑
n=1

D

∑
d=1

and(an(d+1) + an(d−1) + a(n+1)d + a(n−1)d), (2)

where a0d = a(N+1)j = an0 = an(D+1) = 0. In the field of MPCF optimization, several
performance measures have been proposed in the literature [21–24]. The original metric
was called grouping efficiency and it is defined as [21]:

η = qη1 + (1− q)η2 (3)
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where q is a weighting parameter, η1 is the ratio of the number of 1s in the diagonal
blocks concerning the total number of 0s in these diagonal blocks, and η2 is the ratio of
the number of 0s in the off-diagonal blocks for the number of 0s and 1s in the off-diagonal
blocks. Another important performance measure is the well-known grouping efficacy which
is defined as [22]:

τ =
a− aOut

1
a + aIn

0
= 1−

(
aIn

0 + aOut
1

a + aIn
0

)
, (4)

where a = ∑N
n=1 ∑D

d=1 and is the total number of 1s in the matrix A, aOut
1 is the total

number of exceptional elements and aIn
0 denotes the number of 0s in the gray diagonal

blocks. Other alternative performance metrics proposed to evaluate MPCF structures
include: the grouping index [25], the group capability index [23] or the doubly weighted grouping
efficiency [26].

Table 1. Example of matrix rearrangement in the baseline MPCF problem (extracted from [27]).

(a) Initial requirement matrix in the MCPF problem

Machines
7 0 0 0 0 1 0 0 1 0 1 0
6 0 0 0 1 1 0 0 0 0 1 0
5 0 0 1 1 0 0 1 0 0 0 1
4 0 0 1 0 0 0 1 0 0 0 0
3 1 0 1 0 0 0 1 0 0 0 1
2 0 1 0 0 0 1 0 0 1 0 0
1 1 1 0 0 0 1 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11

Parts

(b) Diagonalized requirement matrix in the MPCF problem

Machines
6 1 1 0 1 0 0 0 0 0 0 0
7 0 1 1 1 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 0 0 0 0
2 0 0 0 0 0 1 1 1 0 0 0
3 0 0 0 0 1 0 0 0 1 1 1
4 0 0 0 0 0 0 0 0 1 1 0
5 1 0 0 0 0 0 0 0 1 1 1

4 5 8 10 1 2 6 9 3 7 11

Parts

There are multiple ways to define the objective function of the MPCF problem. Despite
this, one of the most common forms to express the function is the following:

max
X,Y

f (A) = aIn
0 + λaOut

1 =

(
G

∑
g=1

N

∑
n=1

D

∑
d=1

(1− and)xngydg

)
+ λ

(
a−

G

∑
g=1

N

∑
n=1

D

∑
d=1

andxngydg

)
, (5)

where λ is a user-defined weighting parameter. The model is then reformulated as a
0–1 linear programming by introducing new additional binary variables to represent the
product xngydg with their corresponding associated constraints [28].

Numerous algorithms, heuristic and nonheuristic approaches, have been proposed
for addressing the MPCF problem [6,29,30]. Under the family of array-based cluster-
ing methods, some authors have presented different algorithms to approach the MPCF
problem [5,31]. For example, Chandrasekharan and Rajagopalan proposed the modified
rank order clustering method [32] or King implemented the rank order clustering model [5].
In the field of mathematical programming, there also important approaches to deal with
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the MPCF problem [7,11]. For instance, Adil et al. presented linear and nonlinear integer
programming models that minimize the weighted sum of exceptional elements and voids [33]
or Gunasingh and Lashkari [34] and Logendran [35] proposed the use of binary integer
programming to maximize the weighted sum of total moves and in-cell uses. The main
drawback of the mathematical programming models is their high computational burden,
which grows significantly with the dimension of the problem. In this context, several
authors have proposed the use of heuristics to solve the MPCF problem. Specifically, some
methods already employed in the literature include: simulated annealing [36], genetic
algorithms [9,10,37] or tabu search [38,39] among others.

Most of these proposals have been criticized due to their narrow scope (for example,
it is often neglected the order in which operations are performed) [40]. Motivated by this
fact, an extension of the well-known MPCF problem for non-binary incidence matrices
is proposed here and presented in continuation. In the proposed model, the incidence
matrix is called requirement matrix, and it is composed of natural numbers instead of binary
ones. Hence, an objective function and a set of constraints (designed according to the
characteristics of the requirement matrix) are proposed ad-hoc for the model.

A real-world problem belonging to human resources management has been imple-
mented in the manuscript to show the applicability of the optimization model. The goal of
the case study is to identify a group of employees and areas of enhancement (in terms of
job quality) associated with each group. The idea is to group simultaneously employees
and job quality dimensions to allow human resources practitioners to implement tailored
human resources incentives for their staff members. Thus, machines are represented by
employees (accountants in the case of study), and the parts are the levels of dissatisfaction
(expressed by natural numbers) those employees have in different dimensions measuring
job quality (such as prospect, earnings, work-life balance, or social support).

3. The Proposed Model

The goal of the proposed model is to group simultaneously N participants and D
characteristics in G disjoint clusters. The optimization process is defined using as base
information the one provided by a requirement matrix A = (and) ∈ NN×D in which each
component and ∈ N stands for the level of dissatisfaction that the n-th employee, n ∈ N :=
{1, . . . , N}, has on the d-th dimension characterizing job quality, d ∈ D := {1, . . . , D}.
In the case of study, we consider the different levels of dissatisfaction in the set of job
quality indices because the final goal is to identify areas of enhancement in a specific
group of employees (to implement a tailored human resources strategy of incentives).
As previously mentioned, the matrix A is not a binary matrix, but a matrix of natural
numbers, each encoding a level of dissatisfaction of a particular employee about a given
job quality dimension. Thus, the two matrices that are the output of the optimization
process are the X = (xng) ∈ {0, 1}N×G matrix (for grouping the employees) and the
Y = (ydg) ∈ {0, 1}D×G matrix (for clustering the job quality dimensions). xng = 1 if
participant n is assigned to group g and xng = 0 otherwise. ydg = 1 if job quality dimension
d is assigned to group g and 0 otherwise.

For the sake of clarity, it is presented in continuation a synthetic example with
12 employees and seven job quality indices. Thus, Table 2 (a) shows an example of
an initial requirement matrix A in a problem with 12 employees and seven job qual-
ity indices. Table 2 (b) depicts the final matrix obtained after the rearrangement process,
in which three groups are identified. As can be seen, the output of the optimization
process is a rearranged matrix with three different groups, highlighted with gray color
(3 employee groups {(7, 12, 11, 2), (4, 9, 1, 6), (8, 10, 5, 3)} and three groups of job quality
indices {(6, 7), (1, 5, 2), (3, 4)}). Consequently, the two matrices, X and Y associated with
the requirement matrix A of the previous example will be equal to:
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XT =

0 0 1 0 1 0 0 1 1 1 0 0
0 0 0 1 0 0 1 0 1 0 0 1
1 1 0 0 0 1 0 0 0 0 1 0

YT =

0 0 0 1 1 0 0
0 0 1 0 0 1 1
1 1 0 0 0 0 0



Table 2. Example of matrix rearrangement in the MPCF problem with non-binary input values.

(a) Initial requirement matrix in the MPCF problem
with non-binary input values

Employees
12 4
11 3 5
10 4 3 2
9 5 4 3 3
8 5 5
7 5 4 5 3
6 5 5
5 5
4 2 4 4
3 4 4 3 4
2 5 4
1 4

1 2 3 4 5 6 7

Job quality indices

(b) Diagonalized requirement matrix in the MPCF problem
with non-binary input values

Employees
7 5 3 5 4

12 4
11 5 3
2 5 4
4 2 4 4
9 3 5 3 4
1 4
6 5 5
8 5 5

10 2 4 3
5 5
3 4 4 3 4

6 7 1 5 2 3 4

Job quality indices

3.1. Base Formulation

The performance measures defined in the previous section for the MPCF problem are
not suitable when implemented in non-binary matrices. For example, the model should
generate well-balanced clusters in terms of performance, or it should also consider the
ordinal nature of the values included in the new requirement matrix A. For this reason,
it is a must to propose a completely different objective function for the problem under
study. Specifically, the proposed objective function, f (A), is defined as the sum of the
corresponding mean levels of dissatisfaction that the employees of a group have about
the job quality dimensions assigned to that group. Thus, the proposed objective function
fosters well-balanced clusters in terms of mean levels of job dissatisfaction (unlike the
traditional formulation of the MPCF problem, which does not consider this issue):
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f (A) =
G

∑
g=1

∑N
n=1 ∑D

d=1 andxngydg

∑N
n=1 ∑D

d=1 xngydg
. (6)

The optimization problem has to also incorporate the constraints needed to ensure
that each employee and each job quality dimension is assigned to exactly one group,
respectively: (i) ∑G

g=1 xng = 1, n ∈ N and (ii) ∑G
g=1 ydg = 1, d ∈ D, and those required to

ensure that each group includes at least one employee and one job quality dimension: (i)
∑N

n=1 xng ≥ 1, g ∈ G and (ii) ∑D
d=1 ydg ≥ 1, g ∈ G.

An additional constraint is included in the base model to control the numbers in
the off-diagonal blocks. The constraint imposes a maximum value for the sum of those
elements, and it is defined as follows:

N

∑
n=1

D

∑
d=1

and −
G

∑
g=1

N

∑
n=1

D

∑
d=1

andxngyng ≤ ε, (7)

where ε is the maximum allowed value for the sum of elements out of the diagonal blocks
and, obviously, depends on the dimensions of the requirement matrix (N and D) and the
range of values associated with the values of this matrix, ∑N

n=1 ∑D
d=1 and represents to the

sum of elements in the matrix A and ∑N
n=1 ∑D

d=1 and − ∑G
g=1 ∑N

n=1 ∑D
d=1 andxngyng is the

sum of elements out of the diagonal blocks. The constraint is expressed in the optimization
model as:

G

∑
g=1

N

∑
n=1

D

∑
d=1

andxngyng ≥ κ, (8)

where κ = ∑N
n=1 ∑D

d=1 and − ε. Hence, the proposed optimization model is composed
of (N × G) + (D × G) decision variables and N + D + 2G + 1 constraints. The model
is expressed as a multiple-ratio optimization with quadratic terms in both the objective
function and constraints, and it is defined as:

max
X,Y

f (A) =
G

∑
g=1

∑N
n=1 ∑D

d=1 andxngydg

∑N
n=1 ∑D

d=1 xngydg
.

s. t.
G

∑
g=1

xng = 1 n ∈ N

G

∑
g=1

ydg = 1 d ∈ D

N

∑
n=1

xng ≥ 1 g ∈ G

D

∑
d=1

ydg ≥ 1 g ∈ G

G

∑
g=1

N

∑
n=1

D

∑
d=1

andxngyng ≥ κ

X = (xng) ∈ {0, 1}N×G

Y = (ydg) ∈ {0, 1}D×G

(9)

3.2. Model Conversion

The model presented in the previous section is a multiple-ratio quadratic 0–1 fractional
programming model as the highest order of the product of binary variables in the objective
function is two, and the objective function is expressed as the sum of G ratios [41–44]. A
quadratic 0–1 programming model can be converted into a linear 0–1 programming one
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by introducing a new set of 0–1 variables (one for each quadratic term included in the
base model) and additional constraints [28]. This idea is borrowed in this manuscript to
represent the multiplication of 0–1 variables using additional binary variables, wg

nd, as [45]:

wg
nd = xngydg n ∈ N d ∈ D g ∈ G, (10)

with Wg = (wg
nd) ∈ {0, 1}N×D. Additionally, each new binary variable, wg

nd, requires the
introduction of two new inequality constraints to ensure that the new binary variable,
representing the product of the two original variables, is equal to one when both are equal
to one and zero otherwise. Thus, we have incorporated, for each new binary variable, the
two following constraints:

−wg
nd + xng + ydg −M ≤ 0 n ∈ N d ∈ D g ∈ G,

Mwg
nd − xng − ydg ≤ 0 n ∈ N d ∈ D g ∈ G,

(11)

where M = 1.5 as xng, ydg ∈ {0, 1}. As a result, the model will increase considerably in the
number of variables and constraints. Despite this increase, the advantage of performing
this conversion is that the reformulated model (after performing the linearization described
in the next section) can be solved by well-known optimization techniques such as the
branch-and-bound (B&B) [46].

3.3. Linearizing the Objective Function

After the modifications implemented in the previous section, the optimization model
can be categorized within the field of fractional (hyperbolic) 0–1 programming problems
with linear constraints [43,47,48]. As stated in [48], these types of problems are NP-hard,
and consequently, they have been traditionally solved through heuristics [49], or by global
optimization approaches [50,51].

Another approach to globally solve the problem under study involves its transfor-
mation into a mixed-integer linear program (MILP), which can be solved using standard
B&B-based MILP solvers. In the optimization problem proposed, we start defining:

µg :=
1

∑N
n=1 ∑D

d=1 wg
nd

, (12)

for all g ∈ G, µ = (µ1, . . . , µG) ∈ RG
+, where:

N

∑
n=1

D

∑
d=1

wg
nd ≥ 0, (13)

taking into account that wg
nd = xngydg and ∑N

n=1 xng ≥ 1, ∑D
d=1 ydg = 1, for all g ∈ G and

satisfying, consequently, the constraint of having in each denominator values different from
zero (to avoid undetermined expressions) [52,53]. Using these newly defined variables, the
objective function can be equivalently posed as:

f (A) =
G

∑
g=1

N

∑
n=1

D

∑
d=1

andµgwg
nd, (14)

including as constraints that ∑N
n=1 ∑D

d=1 µgwg
nd = 1, for all g ∈ G.

The above problem includes the multiplication of continuous and binary variables but
can be linearized using the approach defined in [54] as follows. For any g ∈ G, d ∈ D and
n ∈ N , define a variable zg

nd as zg
nd = µgwg

nd, Zg = (zg
nd) ∈ RN×D

+ and introduce the four
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following inequality constraints to ensure that each additional variable, zg
nd, represents the

product of a binary variable with a continuous one:

zg
nd ≤ µU

g wg
nd n ∈ N d ∈ D g ∈ G

zg
nd ≥ µL

g wg
nd n ∈ N d ∈ D g ∈ G

zg
nd ≤ µg + µL

g wg
nd − µL

g n ∈ N d ∈ D g ∈ G

zg
nd ≥ µg + µU

g wg
nd − µU

g n ∈ N d ∈ D g ∈ G,

(15)

where µL
g and µL

g are the lower and upper bounds of µg, for each g ∈ G. In this manuscript,
these bounds can be readily obtained as wg

nd ∈ {0, 1} for all n ∈ N , d ∈ D.
Therefore, problem (5) in is equivalent to:

max
X,Y,W1,...,WG ,µ,Z1,...,ZG

f (A) =
G

∑
g=1

N

∑
n=1

D

∑
d=1

andzg
nd.

s. t.
G

∑
g=1

xng = 1 n ∈ N

G

∑
g=1

ydg = 1 d ∈ D

N

∑
n=1

xng ≥ 1 g ∈ G

D

∑
d=1

ydg ≥ 1 g ∈ G

G

∑
g=1

N

∑
n=1

D

∑
d=1

andxngyng ≥ κ

− wg
nd + xng + ydg −M ≤ 0 n ∈ N , d ∈ D, g ∈ G

Mwg
nd − xng − ydg ≤ 0 n ∈ N , d ∈ D, g ∈ G

N

∑
n=1

D

∑
d=1

µgwg
nd = 1 g ∈ G

zg
nd ≤ µU

g wg
nd n ∈ N , d ∈ D, g ∈ G

zg
nd ≥ µL

g wg
nd n ∈ N , d ∈ D, g ∈ G

zg
nd ≤ µg + µL

g wg
nd − µL

g n ∈ N , d ∈ D, g ∈ G

zg
nd ≥ µg + µU

g wg
nd − µU

g n ∈ N , d ∈ D, g ∈ G

X = (xng) ∈ {0, 1}N×G

Y = (ydg) ∈ {0, 1}D×G

Wg = (wg
nd) ∈ {0, 1}N×D g ∈ G

µ ∈ RG
+

Zg = (zg
nd) ∈ RN×D

+ g ∈ G

(16)

This problem can be solved using MILP software such as CPLEX [55,56].

4. Numerical Examples

In this section, the competitive performance of the proposed model is shown through
its application to two types of experiments. In the first group of experiments, the model
is tested with a set of randomized requirement matrices, and its performance (concerning
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the objective function) is compared to the one obtained with a standard greedy algorithm
(Section 4.1). In the second type of experiment, the optimization model is evaluated with a
real-world problem belonging to the area of HRM (Section 4.2). The findings obtained in
this part are compared with those reported in the specialized literature.

4.1. Experiments in Randomized Requirement Matrices

In this section, the MILP solution of the problem is compared to the one obtained
through a standard greedy algorithm in which solutions are obtained in two sequential
steps. In the first step, an initial solution is reached, whereas, in the second step of the
algorithm, this initial solution is modified to obtain a feasible one [57]. The greedy heuristic
algorithm obtains a local solution, unlike the proposed model that reaches an exact solution.
The main advantage of the greedy algorithm concerning the proposed method lies in its
reduced computational burden (if compared to the MILP solution). It is important to
stress that the comparison method (the greedy algorithm) implements the optimization
function defined in Section 3.1 whereas the proposed model the reformulated version of
the problem, Section 3.3 (suitable to obtain an exact solution through the MILP solver).

The two implemented models were tested with randomly generated requirement
matrices (with different number of employees and job quality indices). Specifically, eight
requirement matrices were generated with the following dimensions (employees × job
quality indices): 50× 5, 100× 5, 150× 5, 200× 5, 50× 10, 100× 10, 150× 10, and 200× 10.
All matrices include in their elements natural values ranging from 0 to 5. For the sake of
simplicity, the number of groups was set to 5 for all the experiments, G = 5. µU

g and µL
g

were estimated for all g ∈ G, taking into account the dimension of the problem (N × D)
and that the lower and upper bounds for each component in the requirement matrix are 0
and 5, respectively. The parameter κ was computed for each problem similarly. The fitness
function to evaluate the quality of the solution was defined as:

f (A) =
G

∑
g=1

∑N
n=1 ∑D

d=1 andxngydg

∑N
n=1 ∑D

d=1 xngydg
. (17)

Table 3 shows the empirical results obtained by the two methods implemented in
the random requirement matrices employed in this experiment. The first three columns
report the results of the two models in matrices with five columns, and the last three
columns the results with matrices of dimension (columns) equal to ten. As shown in
Table 3, the proposed method consistently obtains better fitness values than the greedy
algorithm. Regarding the computational time, it is worth mentioning that the proposed
method, in general, is 100 times more computationally expensive than the greedy algorithm
(although this difference depends critically on the dimension of the requirement matrix).
In any case, this is not a critical issue in the case of the study presented, as the model
should be optimized just once (it is not required an online tuning of the parameters). An
alternative solution in efficacy and efficiency could be a heuristic algorithm [8], although,
as stated earlier, in our humble opinion, efficiency is not a significant issue in these types of
problems.

Table 3. Empirical results of the two methods implemented (the proposed model and the standard
greedy algorithm).

Matrix Greedy Proposed Model Greedy Proposed Model Matrix
f (A) f (A) f (A) f (A)

50× 5 2.5198 3.4589 2.5890 3.6709 50× 10
100× 5 2.6809 3.6172 2.6799 3.9961 100× 10
150× 5 2.3967 3.7970 2.9043 3.8531 150× 10
200× 5 3.0177 3.9887 2.8278 3.3180 200× 10
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4.2. A Real-World Application in the Field of Human Resources Management

The European Foundation conducts the VI European Working Conditions Survey
(EWCS), aiming to understand and consequently improve European employees’ conditions
of life and work [14]. In the 2015 edition, accounting professionals amounted to 739 subjects.
After a data cleansing process, 241 valid subjects have remained [16]. The measurement of
well-being can be approached through a multidimensional construct (Job Quality Index,
JQI) composed of seven dimensions [14]:

• Physical environment (JQI 1) measures the physical risks employees encounter in
their jobs.

• Work intensity (JQI 2) measures the level of job demands for employees.
• Work time quality (JQI 3) is a multidimensional metric composed of four elements:

duration, scheduling, discretion, and short-term flexibility over working time.
• Social environment (JQI 4) measures the extent to which employees experience sup-

portive relationships with both their peers and superiors.
• Skills and discretion (JQI 5) measure the possibility of professional development

through work and the ability to set goals and organize work.
• Prospects (JQI 6) combines indicators of employment status, type of contract, and

perceived career prospects by the employee.
• Earnings (JQI 7) measures monthly employee compensation.

In this experiment, the proposed optimization model was tested with the data pro-
vided by the European Foundation for the Improvement of the Conditions of Life and
Work in its sixth EWCS regarding the job demands (concerning the values of job quality
in the seven previously described indices) of the 241 accountants available in the sample.
Hence, the requirement matrix is composed of 241 rows (N = 241), and 7 columns (D = 7).
The participants of each group were characterized according to a set of demographics
(participants with or without couple, participants with less or more than 40 years, and their
gender), and to their mean level of WHO (World Health Organization) well-being. The
WHO index is a validated scale consisting of 5 items that measure well-being by averaging
the scores of the items in a single construct [58].

It is essential to clarify that the model received input only the requirement matrix
composed of 241 accountants and five job quality indices. The demographics variables
along with the WHO variables are not included in the optimization procedure. They are
used only to characterize (regarding the demographics) the accountants included in each
group (once the optimization procedure is finished). This characterization of the groups is
helpful to compare the empirical findings with those reported in the existing literature.

Table 4 shows the results of the clustering procedure and the characterization of the
employees of the five groups identified. Figure 1 graphically details the organization of the
clusters in the different demographics variables (excluded of the optimization procedure).
The plot combines a box-plot (to illustrate the results in numerical variables) and histogram
(for qualitative/categorical variables) using two y-axes. The left y-axis is used to define the
scale of the quantitative WHO variable (normalized in the [0, 1] range), whereas the right
y-axis specifies the scale of the qualitative variables (in the original range of values).

The group with the worst level of well-being, (C5,F5), claims an improvement in the
Social environment dimension (JQI-4). The accounting profession reacts to high levels
of pressure by developing teamwork and strengthening the support of superiors and
peers, as suggested by the Job Demands Control Support theory [59]. In the accounting
profession, evidence shows the positive effect of the work climate on job satisfaction [60,61]
and professionals’ commitment [62]. This category is formed by a group of professionals
younger than in other groups for which the emotional dimension of the work may be
relevant in their perception of well-being [16].
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Figure 1. Graphical representation of the main characteristics of the five clusters obtained.

On the other hand, the group with a higher perception of well-being, (C4,F4), consid-
ers that the dimension that must improve is the work intensity index (JQI-2). This category
is made up mainly of women who live with a couple and relatively young. Professionals
find reasons for satisfaction in other dimensions of the quality of employment and thus
neutralize this demand that is consubstantial to the seasonality experienced by the account-
ing profession. Tight deadlines and work overload have been widely described as job
stressors of this profession [17,63] and sometimes used as a means to maintain a high level
of productivity [64], as prescribed by the arousal theory [65–67].

In intermediate-high levels of well-being are groups 1 and 2, (C1,F1) and (C2,F2).
Group 1 is made up of professionals who demand an improvement in remuneration (JQI-7)
although they maintain a high level of satisfaction, so there are other incentives, in addition
to financial compensation. In addition, group 2 demands an improvement in skills applica-
tion and job autonomy (JQI-5). The group of accountants is segmented into organizations
with different business models and, consequently, human resources management. At the
same time, a high level of professional development and a great diversity of clients in which
to develop the work [15] characterize accountancy firms, employment in corporations is
more standardized and offers fewer possibilities for professional growth.

Finally, at a low intermediate level of well-being is a group, (C3,F3), that calls for
the improvement of three dimensions: the physical conditions of the workplace (JQI-1),
the quality of working time (JQI-3), and the professional career (JQI-6). As claimed in
previous research [15], the accounting profession offers an opportunity for promotion and
has demanding conditions in work performed (there are tight deadlines that affect job
flexibility and, sometimes, require trips to the client’s offices). Hence, well-being levels
decrease when the promotion is unclear and the negative impact on work time quality is
accentuated [68].
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Table 4. Statistical characteristics of the five groups (C,F ): JQI-associations, mean and standard
deviation for the WHO index per cluster (xSD), number of participants without and with a couple
(N and Y), number of accountants younger and older than 40 years (<40 and >40) and number of
females and males (F and M).

JQI-Related Variables WHO Socio-Demographic Variables

(C,F) JQI-Associations WHO-5 Couple Age Gender
xSD N Y <40 >40 F M

(C1,F1) (JQI-7) 0.6840.235 16 31 24 23 24 23
(C2,F2) (JQI-5) 0.6770.194 18 27 26 19 26 19
(C3,F3) (JQI-1, JQI-3, JQI6) 0.6430.224 23 30 26 27 16 37
(C4,F4) (JQI-2) 0.7360.164 17 40 37 20 33 24
(C5,F5) (JQI-4) 0.6100.260 13 26 22 17 22 17

These results show that accounting professionals assume work intensity as a charac-
teristic of work, as a constraint that is difficult to manage, and it affects to a lesser extent
their perception of well-being. On the contrary, job resources are the levers that can be
managed, such as teamwork, which is critical to cope with pressure, and the professional
career, both being the JQI most demanded when the professional has a low perception of
well-being. These findings are in line with those reported in the literature [15,16].

The following is the managerial implication of this study [69,70]:

• This study’s findings allow human resources practitioners to implement tailored
human resources strategies that consider the different particularities of the groups
under study. For example, in this research, we have shown that workplace well-
being is strongly correlated with workplace social climate. Furthermore, we have
also shown that accountants assume work intensity as an intrinsic characteristic
of the profession. Human resources practitioners could employ those findings to
improve the accountants’ satisfaction and optimize future incentives strategies within
the profession.

• The proposed model can be easily adapted to other sectors (such as professors or
nurses) to understand how employees are organized according to their job demands.

• The model can also be adapted to problems related to human resources, such as the
team formation problem (in which employees are grouped according to their skills to
perform a particular task).

5. Conclusions

In this manuscript, we have proposed a mixed-integer linear programming (MILP)
formulation for an alternative to the machine-part cell formation (MPCF) problem in which
the elements composing the input matrix are natural numbers instead of binary values.
The optimization model presented has multiple applications in areas such as machine
learning (biclustering, feature and instance selection), group technology, or social sciences
(in education for grouping students according to their competencies), among others.

The proposed model was first compared to a greedy algorithm in a set of randomized
matrices. These experiments showed that the proposed model achieves consistently higher
fitness values than the greedy algorithm. The model was also tested in a real-world
problem of Human Resources Management (HRM) to stress its high applicability. The
results obtained were in line with previous findings described in the literature about the
case study.

The main limitation of the model is its high computational burden (if compared to
heuristic approaches). Thus, future research should be devoted to developing new models
of parameter estimation (heuristics or alternatives formulations of the problem) for the
problem explored in this manuscript. In any case, it is important to clarify that this is not a
critical issue in the case of the study presented, as the model should be optimized just once
(it is not required an online tuning of the parameters).
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