
mathematics

Article

A Mass- and Energy-Conserving Numerical Model for a
Fractional Gross–Pitaevskii System in Multiple Dimensions

Adán J. Serna-Reyes 1 and Jorge E. Macías-Díaz 2,3,*

����������
�������

Citation: Serna-Reyes, A.J.;

Macías-Díaz, J.E. A Mass- and

Energy-Conserving Numerical Model

for a Fractional Gross–Pitaevskii

System in Multiple Dimensions.

Mathematics 2021, 9, 1765.

https://doi.org/10.3390/math9151765

Academic Editors: Theodore E. Simos

and Charampos Tsitouras

Received: 5 July 2021

Accepted: 23 July 2021

Published: 26 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico;
ajserna@correo.uaa.mx

2 Department of Mathematics and Didactics of Mathematics, School of Digital Technologies, Tallinn University,
10120 Tallinn, Estonia

3 Departamento de Matemáticas y Física, Universidad Autónoma de Aguascalientes,
Aguascalientes 20100, Mexico

* Correspondence: jemacias@correo.uaa.mx; Tel.: +52-449-9108400

Abstract: This manuscript studies a double fractional extended p-dimensional coupled Gross–
Pitaevskii-type system. This system consists of two parabolic partial differential equations with equal
interaction constants, coupling terms, and spatial derivatives of the Riesz type. Associated with
the mathematical model, there are energy and non-negative mass functions which are conserved
throughout time. Motivated by this fact, we propose a finite-difference discretization of the double
fractional Gross–Pitaevskii system which inherits the energy and mass conservation properties. As
the continuous model, the mass is a non-negative constant and the solutions are bounded under
suitable numerical parameter assumptions. We prove rigorously the existence of solutions for any
set of initial conditions. As in the continuous system, the discretization has a discrete Hamiltonian
associated. The method is implicit, multi-consistent, stable and quadratically convergent. Finally, we
implemented the scheme computationally to confirm the validity of the mass and energy conservation
properties, obtaining satisfactory results.

Keywords: fractional Gross–Pitaevskii system; Riesz space-fractional derivatives; linearly implicit
model; conservation of energy; conservation of mass; stability and convergence analysis

MSC: 65Mxx; 65Qxx

1. Introduction

Fractional calculus emerged as a generalization of conventional calculus. The classical
differential and integral operators proposed by Leibniz more than three centuries ago have
been extended to the fractional scenario in various different forms. In the way, various
applications have been proposed to within mathematics, such as Cauchy problems with
Caputo Hadamard fractional derivatives [1], the synchronization for a class of fractional-
order hyperchaotic systems [2], the inequality estimates for the boundedness of multilinear
singular and fractional integral operators [3], the analysis of unstructured-mesh Galerkin
finite element method for the two-dimensional multi-term time–space fractional Bloch–
Torrey equations on irregular convex domains [4], and the design of numerically efficient
and conservative model for a Riesz space-fractional Klein–Gordon–Zakharov system [5],
among various other interesting problems [6].

It is worth pointing out that each fractional operator is fully characterized by its own
special kernel, and they can be used in a range of particular problems. In this respect, the
analysis on the uniqueness of solutions for fractional-order differential equations may be
carried out through the use of integral inequalities of fractional order, which obviously
depend on the type of operator. The literature provides accounts of many applications po-
tential applications, such as the periodic orbit analysis for the delayed Filippov systems [7],
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the bifurcation of limit cycles at infinity in piecewise polynomial systems [8], and the
number and stability of limit cycles for planar piecewise linear systems of node–saddle
type [9]. Indeed, these inequalities are often used in the theory of applied mathematics and
differential equations. More well-known applications of integral inequalities are found in
applied sciences, such as statistical problems, transform theory, numerical quadrature, and
probability [10,11].

In the last few years, many researchers have established various types of integral
inequalities by employing different approaches. For example, there are reports on some
new inequalities for (k, s)-fractional integrals [12], certain weighted integral inequalities
involving the fractional hypergeometric operators [13], and some generalized integral
inequalities for Hadamard fractional integrals [14]. Moreover, those results provide direct
applications to other areas of mathematics, such as conformable fractional integral inequal-
ities [15], including those of the Hermite–Hadamard type [16]. Furthermore, there are
reports in the literature on integral inequalities for a fractional operator of a function with
respect to another function with nonsingular kernel [17] and Hermite–Hadamard-type
inequalities for Riemann–Liouville fractional integrals [18].

Let p ∈ N and T ∈ R+. Define the set In = {1, . . . , n}, for each n ∈ N, and let
In = In ∪ {0}. Suppose that ai, bi ∈ R satisfy ai < bi, for each i ∈ Ip. Throughout this work,
we let Ω = Πp

i=1(ai, bi) ⊆ Rp and ΩT = Ω× (0, T) ⊆ Rp+1, and we assume that the sets
Ω and ΩT represent, respectively, the minimum closed sets containing Ω and ΩT under
the standard topology of Rp+1, and let ∂Ω be the boundary of Ω. Moreover, we assume
that the functions ψ1 : ΩT → C and ψ2 : ΩT → C are sufficiently smooth. In general,
if ψ : ΩT → C is any function, then we extend its domain to all of Rp × [0, T] by letting
ψ(x, t) = 0, for each (x, t) ∈ (Rp \Ω)× [0, T].

Definition 1 (Podlubny [19]). Suppose that ψ : ΩT → C, let α ∈ R satisfy α ∈ (−1, ∞), and
let n ∈ Z be such that the following hold: n− 1 < α ≤ n. The partial derivative in the sense of
Riesz of the function ψ with respect to xi of order α at (x, t) ∈ ΩT is

∂αψ

∂|xi|α
(x, t) =

−1
2 cos

(
πα
2
)
Γ(n− α)

∂n

∂xn
i

∫ ∞

−∞

ψ(x1, . . . , xi−1, ξ, xi+1, . . . , xp, t)
|xi − ξ|α−1 dξ. (1)

Here, x = (x1, x2, ..., xp) ∈ Ω. If α = n ∈ N∪ {0}, then the Riesz partial derivative of ψ of
order α with respect to xi coincides with the classical partial derivative of ψ of order n. The Riesz
fractional Laplacian and gradient operators of order α are defined, respectively, by

4αψ(x, t) =
p

∑
i=1

∂αψ(x, t)
∂|xi|α

, ∀(x, t) ∈ ΩT , (2)

5αψ(x, t) =
(

∂αψ(x, t)
∂|x1|α

,
∂αψ(x, t)

∂|x2|α
, . . . ,

∂αψ(x, t)
∂|xp|α

)
, ∀(x, t) ∈ ΩT . (3)

For the remainder, D, β11, β12, β22 ∈ R+ ∪ {0}, λ ∈ R and V : Ω → R. Suppose that
α1, α2 ∈ (1, 2], and let φ1 : Ω → C and φ2 : Ω → C be two functions which physically
describe initial profiles for ψ1 and ψ2, respectively. The purpose of this work is to investigate
a Riesz space-fractional two-coupled Gross–Pitaevskii system in dimensionless form, which
is given by the p-dimensional initial-boundary-value problem

i
∂ψ1

∂t
=

[
−1

2
4α1 +V(x) + D + β11|ψ1|2 + β12|ψ2|2

]
ψ1 + λψ2, ∀(x, t) ∈ ΩT ,

i
∂ψ2

∂t
=

[
−1

2
4α2 +V(x) + β12|ψ1|2 + β22|ψ2|2

]
ψ2 + λψ1, ∀(x, t) ∈ ΩT ,

such that


ψ1(x, 0) = φ1(x), ∀x ∈ Ω,
ψ2(x, 0) = φ2(x), ∀x ∈ Ω,
ψ1(x, t) = ψ2(x, t) = 0, ∀(x, t) ∈ ∂Ω× (0, T).

(4)
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This system is particularly interesting due to the fact that it has quantities which are
conserved through time, one of them being the energy function. More precisely, the total
energy at time t ∈ [0, T] is provided as

E(t) =
∫

Ω

[
1
2

p

∑
i=1

(
∂α1 ψ1

∂|xi|α1
ψ1 +

∂α2 ψ2

∂|xi|α2
ψ2

)
+ V(x)

(
|ψ1|2 + |ψ2|2

)
+ D|ψ1|2

+
1
2

β11|ψ1|4 +
1
2

β22|ψ2|4 + β12|ψ1|2|ψ2|2 + 2λ Re
(
ψ1ψ2

)]
dx.

(5)

Definition 2. For each z ∈ C, z represents the complex conjugate of z. Let Lx,2(Ω) denote the set
of all functions f : Ω→ C with the property that, for each t ∈ [0, T], the function f (·, t) : Ω→ C
belongs to L2(Ω). For each pair f , g ∈ Lx,2(Ω), the inner product of f and g is the function of t
defined by

〈 f , g〉x =
∫

Ω
f (x, t)g(x, t)dx, ∀t ∈ [0, T]. (6)

In addition, if u = (u1, u2, . . . , up) and v = (v1, v2, . . . , vp) are vector functions such that
ui, vi ∈ Lx,2(Ω) for each i ∈ Ip, then we set 〈u, v〉x = 〈u1, v1〉x + 〈u2, v2〉x + . . . + 〈up, vp〉x.
Let ‖ f ‖x,2 =

√
〈 f , f 〉, for each f ∈ Lx,2(Ω). In similar fashion, we can define the space Lx,p(Ω).

If f ∈ Lx,p(Ω), then let

‖ f ‖x,p =

(∫
Ω
| f (x, t)|dx

)1/p
, ∀t ∈ [0, T]. (7)

The next result summarizes the property of conservation of energy satisfied by (4).

Theorem 1 (Energy conservation). The energy function (5) can be rewritten alternatively as

E(t) = 1
2

(∥∥∥5α1/2ψ1

∥∥∥2

x,2
+
∥∥∥5α2/2ψ2

∥∥∥2

x,2

)
+
〈

V(x), |ψ1|2 + |ψ2|2
〉

x
+ D‖ψ1‖2

x,2

+
1
2

β11‖ψ1‖4
x,4 +

1
2

β22‖ψ2‖4
x,4 + β12‖ψ1ψ2‖2

x,2 + 2λ Re〈ψ1, ψ2〉x,
(8)

for each t ∈ (0, T). Moreover, if ψ1 and ψ2 satisfy (4), then the function E(t) is a constant.

Proof. The proof of this result was given by Serna-Reyes and Macías-Díaz [20].

The energy density of the system (4) is defined as the function in the integrand of the
expression of E(t). More precisely, the energy density of the physical model (4) is given by
the functionH(ψ1, ψ2) = H(x, t), where, for each (x, t) ∈ ΩT ,

H(x, t) =
1
2

p

∑
i=1

∣∣∣∣∣ ∂α1/2ψ1

∂|xi|α1/2

∣∣∣∣∣
2

+

∣∣∣∣∣ ∂α2/2ψ2

∂|xi|α2/2

∣∣∣∣∣
2
+ V(x)

(
|ψ1|2 + |ψ2|2

)
+ D|ψ1|2

+
1
2

β11|ψ1|4 +
1
2

β22|ψ2|4 + β12|ψ1|2|ψ2|2 + 2λ Re
(
ψ1ψ2

)
.

(9)

On the other hand, the total mass of the continuous system (4) at the time t is defined
as M(t) = M1(t) +M2(t), for each t ∈ (0, T). Here, we let M1(t) = ‖ψ1‖2

x,2 and
M2(t) = ‖ψ2‖2

x,2, for each t ∈ (0, T).

Theorem 2 (Mass conservation). If ψ1 and ψ2 are solutions of (4), then the functionM(t) is
non-negative and constant. Moreover, if λ = 0, then the functionsM1(t) andM2(t) are also
non-negative and constant.
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Proof. Beforehand, recall that the square-root operator of −4α is the operator5α/2, for
each α ∈ (1, 2]. This means that 〈− 4α u, v〉x = 〈5α/2u,5α/2v〉x, for any functions
u, v ∈ H2(ΩT). Notice now that the following identities hold:

i
〈

∂ψk
∂t

, ψk

〉
x
= i

d
dt
‖ψk‖2

x,2, ∀t ∈ (0, T), ∀k ∈ I2, (10)

〈−4αk ψk, ψk〉x =
∥∥∥5αk/2ψk

∥∥∥2

x,2
, ∀t ∈ (0, T), ∀k ∈ I2, (11)

〈(V + D)ψ1, ψ1〉x =
〈

V + D, |ψ1|2
〉

x
, ∀t ∈ (0, T), (12)

〈Vψ2, ψ2〉x =
〈

V, |ψ2|2
〉

x
, ∀t ∈ (0, T), (13)〈

(β11|ψ1|2 + β12|ψ2|2)ψ1, ψ1

〉
x
=
〈

β11|ψ1|2 + β12|ψ2|2, |ψ1|2
〉

x
, ∀t ∈ (0, T), (14)〈

(β12|ψ1|2 + β22|ψ2|2)ψ2, ψ2

〉
x
=
〈

β12|ψ1|2 + β22|ψ2|2, |ψ2|2
〉

x
, ∀t ∈ (0, T). (15)

These inner products are real numbers, except the first one which is purely imaginary.
On both sides of the first equation of (4), obtain the inner product with ψ1 and take the
imaginary parts. In addition, calculate the inner product on both sides of the second
differential equation of (4) with ψ2, and take also the imaginary parts on both sides. Then,

dM1(t)
dt

= λ Im 〈ψ1, ψ2〉x, ∀t ∈ (0, T), (16)

dM2(t)
dt

= λ Im〈ψ1, ψ2〉x, ∀t ∈ (0, T). (17)

Notice that the individual massesM1(t) andM2(t) are constant when the internal
atomic Josephson junction is equal to zero, as mentioned in the conclusion of this result.
Moreover, if we add these two identities, it readily follows that

dM(t)
dt

= λ Im
(
〈ψ1, ψ2〉x + 〈ψ1, ψ2〉x

)
= 2λ Im(Re〈ψ1, ψ2〉x) = 0, ∀t ∈ (0, T). (18)

Conclude that the total mass of the system is conserved throughout time, as desired.

We introduce the function of mass density of the continuous fractional model (4) as
R(ψ1, ψ2) = R(x, t) = R1(x, t) +R2(x, t), for each (x, t) ∈ ΩT . In these expressions,
R1(x, t) = |ψ2(x, t)|2 andR2(x, t) = |ψ2(x, t)|2, for each (x, t) ∈ ΩT . It is obvious that

E(t) =
∫

Ω
H(x, t)dx, ∀t ∈ [0, T], (19)

M(t) =
∫

Ω
R(x, t)dx, ∀t ∈ [0, T]. (20)

The following is an easy consequence of Theorem 2.

Corollary 1 (Boundedness). If ψ1 and ψ2 are solutions of the (4), then there exists a constant
M0 ≥ 0 such that max

{
‖ψ1‖2

2, ‖ψ2‖2
2
}
≤ M0, for each t ∈ (0, T).

In the present work, we design a finite-difference method to solve the system (4), in
such way that the main structural properties of the solutions of that continuous system are
also satisfied in the discrete domain. More precisely, we design a numerical method which
is able of preserving the discrete energy and mass of the system, and such that the solutions
satisfy similar boundedness properties. The scheme is thoroughly analyzed for consistency,
stability, and consistency, and we illustrate these features through some computer simu-
lations. As it turns out, the proposed numerical model has an easy implementation, as
shown by the code in Appendix A.
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2. Numerical Model

In the following, we propose a linearly-implicit numerical method to approximate the
solutions of the fractional system (4), along with the energy and mass functions. To that
end, the concept of fractional centered differences is of utmost importance.

Definition 3 (Ortigueira [21]). Let f : R → R be any function, h > 0, and α > −1. The
fractional-order centered difference of f of order α at x is defined as

∆(α)
h f (x) =

∞

∑
k=−∞

g(α)k f (x− kh), ∀x ∈ R, (21)

where

g(α)k =
(−1)kΓ(α + 1)

Γ( α
2 − k + 1)Γ( α

2 + k + 1)
, ∀k ∈ Z. (22)

Lemma 1 (Wang et al. [22]). Let 0 < α ≤ 2 and α 6= 1. Then,

g(α)0 > 0, (23)

g(α)k = g(α)−k < 0, ∀k 6= 0, (24)
∞

∑
k=−∞

g(α)k = 0. (25)

Lemma 2 (Wang et al. [22]). Let 0 < α ≤ 2 and α 6= 1. If f : R→ R has integrable derivatives
up to order 5, then, for almost all x,

−
∆α

h f (x)
hα

=
∂α f (x)
∂|x|α +O(h2). (26)

Next, we present the discrete notation used to approximate the solutions of the
fractional problem (4). We let hi, τ ∈ R, for each i ∈ Ip. Moreover, we assume that
N = T/τ and Mi = (bi − ai)/hi are natural numbers, for each i ∈ Ip, and fix uniform
partitions of [ai, bi] and [0, T] given, respectively, by

xi,ji = ai + jihi, ∀i ∈ Ip, ∀ji ∈ IMi , (27)

tn = nτ, ∀n ∈ IN . (28)

Let J = ∏
p
i=1 IMi−1 and J = ∏

p
i=1 IMi , and let ∂J represent the boundary of the mesh J.

Define xj = (x1,j1 , . . . , xp,jp), for each multi-index j = (j1, . . . , jp) ∈ J. The symbol (un
j , vn

j )

denotes a numerical estimate to (ψ1(xj, tn), ψ2(xj, tn)), for each (j, n) ∈ J × IN .

Definition 4. Define the following, for w = u, v and α ∈ (0, 1) ∪ (1, 2], (j, n) ∈ J × IN−1:

µtwn
j =

wn+1
j + wn

j

2
, (29)

µ
(1)
t wn

j =
wn+1

j + wn−1
j

2
, (30)

δtwn
j =

wn+1
j − wn

j

τ
, (31)

δ
(1)
t wn

j =
wn+1

j − wn−1
j

2τ
, (32)
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and

δ
(α)
xi wn

j = − 1
hα

i

Mi

∑
k=0

g(α)ji−kw(x1,j1 , . . . , xi−1,ji−1 , xi,k, xi+1,ji+1 , . . . , xp,jp , tn). (33)

Moreover, for the sake of convenience, we agree that

4(α)
h wn

j = δ
(α)
x1 wn

j + δ
(α)
x2 wn

j + . . . + δ
(α)
xp wn

j , ∀(j, n) ∈ J × IN−1, (34)

5(α)
h wn

j = (δ
(α)
x1 wn

j , δ
(α)
x2 wn

j , . . . , δ
(α)
xp wn

j ), ∀(j, n) ∈ J × IN−1. (35)

The finite-difference method to approximate the solution of (4) on ΩT is the discrete
system with initial-boundary conditions

iδ(1)t un
j =

(
−1

2
4(α1)

h +Vj + D + β11

∣∣∣un
j

∣∣∣2 + β12

∣∣∣vn
j

∣∣∣2)µ
(1)
t un

j + λvn
j ,

iδ(1)t vn
j =

(
−1

2
4(α2)

h +Vj + β22

∣∣∣vn
j

∣∣∣2 + β12

∣∣∣un
j

∣∣∣2)µ
(1)
t vn

j + λun
j ,

such that


u0

j = µ
(1)
t u0

j = φ1(xj), ∀j ∈ J,

v0
j = µ

(1)
t v0

j = φ2(xj), ∀j ∈ J,
un

j = vn
j = 0, ∀(j, n) ∈ ∂J × IN ,

(36)

where (j, n) ∈ J× IN−1. Notice that this scheme is an implicit three-step method. Moreover,
the approximations at the time t0 are provided by the initial data u0

j = φ1(xj) and v0
j =

φ2(xj), for each j ∈ J. On the other hand, the discrete model requires knowledge of fictitious
approximations at the time t−1. To avoid this shortcoming, notice that the initial conditions
µ
(1)
t u0

j = φ1(xj) and µ
(1)
t v0

j = φ2(xj) show that u−1
j = 2φ1(xj)− u1

j and v−1
j = 2φ2(xj)− v1

j ,
respectively, for each j ∈ J. Substituting these identities into the recursive difference
equations of (36) when n = 0, we obtain the explicit formulas

u1
j = φ1(xj)− iτ

[(
−1

2
4(α1)

h +Vj + D + β11
∣∣φ1(xj)

∣∣2 + β12
∣∣φ2(xj)

∣∣2)φ1(xj)

+λφ2(xj)
]
, ∀j ∈ J,

(37)

and

v1
j = φ2(xj)− iτ

[(
−1

2
4(α2)

h +Vj + β22
∣∣φ2(xj)

∣∣2 + β12
∣∣φ1(xj)

∣∣2)φ2(xj)

+λφ1(xj)
]
, ∀j ∈ J.

(38)

For the sake of convenience, the stencil of the scheme (36) is provided in Figure 1.
We study the existence and uniqueness of solutions of the finite-difference method

(36). To that end, we require some additional nomenclature and technical results. To start
with, we let h = (h1, . . . , hp) and h∗ = ∏

p
i=1 hi, and fix the spatial mesh {xj}j∈J ⊆ Rp. Let

Vh be the complex vector space of all grid functions which vanish at the boundary of the
mesh. For any w ∈ Vh and j ∈ J, convey that wj = w(xj).

Definition 5. Define the product 〈·, ·〉 : Vh × Vh → C and the norm ‖ · ‖1 : Vh → R by

〈u, v〉 = h∗∑
j∈I

ujvj, ∀u, v ∈ Vh, (39)

‖u‖1 = h∗∑
j∈I
|uj|, ∀u, v ∈ Vh. (40)

The Euclidean norm induced by the inner product 〈·, ·〉 is denoted by ‖ · ‖2.
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6
t

-ee
ee
ee
ee
e

ee
ee
ee
ee
e

e e e e e e e e e e e e e
xj xj+2xj−2

xj−1

. . .. . .

xM1−2

xM1−1

xM1x0

x1

x2 xj+1

tn−1

tn

tn+1

u uu u u uu u . . . . . . u u
× ×× × ×× × . . . . . . × ×

Figure 1. Stencil of the numerical model (36) at the time tn in one spatial dimension. The black circles
denote the known solutions at the times tn−1 and tn. Meanwhile, the crosses represent the unknown
approximations at the time tn+1. For the sake of convenience, we agree that xji = x1,ji .

In the following, we represent the solutions of the finite-difference method (36) by
(un, vn)N

n=0, where we agree that un = (un
j )j∈J and vn = (vn

j )j∈J , for each n ∈ IN . We use
the following lemma to prove that solutions of (36) exist.

Lemma 3 (Browder fixed-point theorem [23]). Let (H, 〈·, ·〉) be a finite-dimensional inner-
product space, let ‖ · ‖ : H → H be the norm induced by the inner product, and suppose that
g : H → H is continuous. Assume that there exists β > 0 such that Re〈g(z), z〉 > 0, for all
z ∈ H with ‖z‖ = β. Then, there is z∗ ∈ H, such that g(z∗) = 0 and ‖z∗‖ ≤ β.

Theorem 3 (Solubility). For any set of initial conditions, the discrete system (36) is solvable.

Proof. The proof requires mathematical induction. Notice that the approximations at the
times t0 and t1 are provided by the initial profiles and the explicit systems (37) and (38),
respectively. Thus, let us suppose that the numerical solutions of the discrete model (36) at
the times n− 1 and n are known, for some n ∈ IN−1. Rearranging the recursive equations
of the method, we can readily check that the following equations hold:

µ
(1)
t un

j − un−1
j + iτ

[
−1

2
4(α1)

h +Vj + D + β11|un
j |2 + β12|vn

j |2
]

µ
(1)
t un

j + iλτvn
j = 0, (41)

and

µ
(1)
t vn

j − vn−1
j + iτ

[
−1

2
4(α2)

h +Vj + β12|un
j |2 + β22|vn

j |2
]

µ
(1)
t vn

j + iλτun
j = 0, (42)

for each j ∈ J. Define the function G : Vh × Vh → Vh × Vh by G(η, ν) = (G1(η), G2(ν)), for
each (η, ν) ∈ Vh × Vh, where the functions G1, G2 : Vh → Vh are defined by

[G1(η)]j = ηn
j − un−1

j + iτ
[
−1

2
4(α1)

h +Vj + D + β11|un
j |2 + β12|vn

j |2
]

ηn
j + iλτv|nj , (43)

[G2(ν)]j = νn
j − vn−1

j + iτ
[
−1

2
4(α2)

h +Vj + β12|un
j |2 + β22|vn

j |2
]

νn
j + iλτun

j , (44)

for each η ∈ Vh, ν ∈ Vh, j ∈ J. After some calculations, we readily reach that

Re〈G1(η), η〉 = ‖η‖2 − Re〈un−1, η〉+ Re(iλτ〈vn, η〉), ∀η ∈ Vh, (45)

Re〈G2(ν), ν〉 = ‖ν‖2 − Re〈vn−1, ν〉+ Re(iλτ〈un, ν〉), ∀ν ∈ Vh. (46)



Mathematics 2021, 9, 1765 8 of 31

Using now the Cauchy–Schwarz inequality and bounding from below, it is easy to
check that the following hold:

Re〈G(η, ν), (η, ν)〉 ≥ ‖(η, ν)‖2 − |〈(un−1, vn−1), (η, ν)〉|+ |λτ| · |〈(vn, un), (η, ν)〉|

≥ ‖(η, ν)‖
(
‖(η, ν)‖ − ‖(un−1, vn−1)‖ − λτ‖(vn, un)‖

)
.

(47)

If we let β = ‖(un−1, vn−1)‖+ λτ‖(vn, un)‖+ 1 in the previous lemma, it follows that
there exists (un+1, vn+1) ∈ Vh × Vh which satisfies the discrete system (36). The conclusion
of this result readily follows now by induction.

3. Structural Properties

The present section is devoted to showing that the discrete model (36) satisfies physical
properties which are similar to those satisfied by the continuous system (4). More precisely,
we propose numerical energy and mass functional associated to the scheme (36) which are
conserved conditionally. Various technical lemmas are required to that end.

Lemma 4 (Macías-Díaz [24]). For each i ∈ Ip and k ∈ I2, there exists a unique positive operator
δ

αk/2
xi : Vh → Vh such that 〈−δ

αk
xi u, v〉 = 〈δαk/2

xi u, δ
αk/2
xi v〉, for each u, v ∈ Vh.

Lemma 5. The following equations hold, for each n ∈ IN−1:

Re〈iδ(1)t un, 2δ
(1)
t un〉 = 0, (48)

Re〈Vµ
(1)
t un, 2δ

(1)
t un〉 = δt〈V, µt|un−1|2〉, (49)

Re〈Dµ
(1)
t un, 2δ

(1)
t un〉 = Dδtµt‖un−1‖2

2, (50)

Re〈β11|un|2µ
(1)
t un, 2δ

(1)
t un〉 = 1

2 β11δt〈|un|2, |un−1|2〉, (51)

Re〈β12|vn|2µ
(1)
t un, 2δ

(1)
t un〉 = 1

2 β12〈|vn|2, δ
(1)
t |u

n|2〉. (52)

Proof. To establish (48), notice that the following identities trivially hold:

Re
〈

iδ(1)t un, 2δ
(1)
t un

〉
= Re

(
2i‖δ(1)t un‖2

2

)
= 0. (53)

To prove the identity (49), observe that

Re
〈

Vµ
(1)
t un, 2δ

(1)
t un

〉
=

1
2τ

Re
(〈

V,
∣∣∣un+1

∣∣∣2〉+ 2i Im
〈

Vun−1, un+1
〉
−
〈

V,
∣∣∣un−1

∣∣∣2〉)
=

1
τ

[〈
V,

1
2

(∣∣∣un+1
∣∣∣2 + |un|2

)〉
−
〈

V,
1
2

(
|un|2 +

∣∣∣un−1
∣∣∣2)〉]

= δt

〈
V, µt

∣∣∣un−1
∣∣∣2〉,

(54)

which establishes the second identity. We prove now the formula in part (51). To that end,
notice that

Re
〈

β11|un|2µ
(1)
t un, 2δ

(1)
t un

〉
=

β11

2τ
Re
(〈
|un|2,

∣∣∣un+1
∣∣∣2〉+ 2i Im

〈
|un|2un−1, un+1

〉
−
〈
|un|2,

∣∣∣un−1
∣∣∣2〉)

=
β11

2

[
1
τ

(〈∣∣∣un+1
∣∣∣2, |un|2

〉
−
〈
|un|2,

∣∣∣un−1
∣∣∣2〉)] = β11

2
δt

〈
|un|2,

∣∣∣un−1
∣∣∣2〉.

(55)
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Finally, we must point out that the proofs for the identities (50) and (52) are similar to
the proofs of (49) and (51), respectively, and, for that reason, we omit them here.

Lemma 6. The following equations hold, for each n ∈ IN−2 and k ∈ I2:

〈|vn|2, δ
(1)
t |u

n|2〉+ 〈|un|2, δ
(1)
t |v

n|2〉 = δt(〈|un−1|2, |vn|2〉+ 〈|vn−1|2, |un|2〉), (56)

Re〈−1
2

δ
(αk)
xi µ

(1)
t un, 2δ

(1)
t un〉 = 1

2
δtµt‖δ(αk/2)

xi un−1‖2
2, (57)

Re(〈vn, 2δ
(1)
t un〉+ 〈un, 2δ

(1)
t vn〉) = δt Re(〈un−1, vn〉+ 〈vn−1, un〉). (58)

Proof. Applying distributivity of the inner product and rearranging terms,〈
|vn|2, δ

(1)
t |u

n|2
〉
+
〈
|un|2, δ

(1)
t |v

n|2
〉

=
1
τ

(〈
|vn|2,

∣∣∣un+1
∣∣∣2〉−〈|vn|2,

∣∣∣un−1
∣∣∣2〉+

〈
|un|2,

∣∣∣vn+1
∣∣∣2〉

−
〈
|un|2,

∣∣∣vn−1
∣∣∣2〉)

= δt

(〈∣∣∣un−1
∣∣∣2, |vn|2

〉
+

〈∣∣∣vn−1
∣∣∣2, |un|2

〉)
,

(59)

whence the first identity readily follows. To prove the second identity, we use once again
the distributivity of the inner product and Lemma 4 to see that

Re
〈
−1

2
δ
(αk)
xi µ

(1)
t un, 2δ

(1)
t un

〉
=

1
4τ

Re
〈

δ
(αk/2)
xi un+1 + δ

(αk/2)
xi un−1, δ

(αk/2)
xi un+1 − δ

(αk/2)
xi un−1

〉
=

1
4τ

Re
(∥∥∥δ

(αk/2)
xi un+1

∥∥∥2

2
+ 2i Im

〈
δ
(αk/2)
xi un+1, δ

(αk/2)
xi un−1

〉
−
∥∥∥δ

(αk/2)
xi un−1

∥∥∥2

2

)
,

(60)

which readily establishes the identity. Finally, using again distributivity and rearranging
terms conveniently,

Re
(〈

vn, 2δ
(1)
t un

〉
+
〈

un, 2δ
(1)
t vn

〉)
=

1
τ

Re
(〈

un, vn+1
〉
−
〈

vn, un−1
〉
+
〈

vn, un+1
〉
−
〈

un, vn−1
〉)

= δt Re
(〈

un−1, vn
〉
+
〈

vn−1, un
〉)

.

(61)

This last chain of identities readily establishes the last property of the lemma.

The next theorem proves the existence of energy-like invariants for (36).



Mathematics 2021, 9, 1765 10 of 31

Theorem 4 (Energy conservation). Let (un, vn)N
n=0 be a solution of (36), and define

En =
1
2

µt

(∥∥∥5(α1/2)
h un

∥∥∥2

2
+
∥∥∥5(α2/2)

h vn
∥∥∥2

2

)
+
〈

V, µt

(
|un|2 + |vn|2

)〉
+ Dµt‖un‖2

2 +
β11

2

〈
|un|2,

∣∣∣un+1
∣∣∣2〉+

β22

2

〈
|vn|2,

∣∣∣vn+1
∣∣∣2〉

+
β12

2

(〈
|un|2,

∣∣∣vn+1
∣∣∣2〉+

〈
|vn|2,

∣∣∣un+1
∣∣∣2〉)

+ λ Re
(〈

un, vn+1
〉
+
〈

vn, un+1
〉)

,

(62)

for each n ∈ IN−1. Then, δtEn = 0, for each n ∈ IN−1.

Proof. Denote the left-hand sides of the two difference equations in (36) by Θn
j and Φn

j ,
respectively, for each j ∈ J and n ∈ IN−1, and define Θn = (Θn

j )j∈J , Φn = (Φn
j )j∈J . Using

that (un, vn)N
n=0 is a solution of (36), calculating the inner product of Θn with 2δ

(1)
t un and

of Φn with 2δ
(1)
t vn, using the identities above and collecting terms, we reach

0 = Re
〈

iδ(1)t un, 2δ
(1)
t un

〉
= Re〈Θn, 2δ

(1)
t un〉

= δt

[
1
2

µt

∥∥∥5(α1/2)
h un−1

∥∥∥2

2
+

〈
V, µt

∣∣∣un−1
∣∣∣2〉+ Dµt‖un−1‖2

2

+
β11

2

〈
|un|2,

∣∣∣un−1
∣∣∣2〉+

β12

2

〈
|vn|2,

∣∣∣un−1
∣∣∣2〉]

+ 2λ Re
〈

vn, δ
(1)
t un

〉
, ∀n ∈ IN−1.

(63)

In similar fashion, notice that the following hold, for each n ∈ IN−1:

0 = Re
〈

iδ(1)t vn, 2δ
(1)
t vn

〉
= Re〈Φn, 2δ

(1)
t vn〉

= δt

[
1
2

µt

∥∥∥5(α2/2)
h vn−1

∥∥∥2

2
+

〈
V, µt

∣∣∣vn−1
∣∣∣2〉+

β22

2

〈
|vn|2,

∣∣∣vn−1
∣∣∣2〉

+
β12

2

〈
|un|2,

∣∣∣vn−1
∣∣∣2〉]+ 2λ Re

〈
un, δ

(1)
t vn

〉
.

(64)

Adding these two last identities, we readily obtain that δtEn−1 = 0, for each n ∈ IN−1.
The conclusion of this result is readily reached now using mathematical induction.

Motivated by this result, the quantities En are called the discrete total energy of the
system (36) at the time tn, for each n ∈ IN−1. In addition, we define the discrete energy
density of the system (36) as

Hn
j = H(un

j , vn
j )

=
1
2

µt

p

∑
i=1

(∣∣∣δ(α1/2)
xi un

j

∣∣∣2 + ∣∣∣δ(α2/2)
xi vn

j

∣∣∣2)+ Vjµt

(∣∣∣un
j

∣∣∣2 + ∣∣∣vn
j

∣∣∣2)+ Dµt

∣∣∣un
j

∣∣∣2
+

β11

2

∣∣∣un
j

∣∣∣2∣∣∣un+1
j

∣∣∣2 + β22

2

∣∣∣vn
j

∣∣∣2∣∣∣vn+1
j

∣∣∣2
+

β12

2

(∣∣∣un
j

∣∣∣2∣∣∣vn+1
j

∣∣∣2 + ∣∣∣vn
j

∣∣∣2∣∣∣un+1
j

∣∣∣2)+ λ Re
(

un
j vn+1

j + vn
j un+1

j

)
,

(65)

for each (j, n) ∈ J × IN−1.
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Lemma 7. The following equations hold, for each n ∈ IN−2 and k ∈ I2:

Im〈−1
2

δ
(αk)
xi µ

(1)
t un, 2µ

(1)
t un〉 = 0, (66)

Im〈Vµ
(1)
t un, 2µ

(1)
t un〉 = 0, (67)

Im〈Dµ
(1)
t un, 2µ

(1)
t un〉 = 0, (68)

Im〈β11|un|2µ
(1)
t un, 2µ

(1)
t un〉 = 0, (69)

Im〈β12|vn|2µ
(1)
t un, 2µ

(1)
t un〉 = 0, (70)

Im〈iδ(1)t un, 2µ
(1)
t un〉 = δtµt‖un−1‖2

2, (71)

Im(〈vn, 2µ
(1)
t un〉+ 〈un, 2µ

(1)
t vn〉) = τδt Im(〈un−1, vn〉+ 〈vn−1, un〉). (72)

Proof. Identity (a) readily follows from the fact that

Im〈− 1
2 δ

(αk)
xi µ

(1)
t un, 2µ

(1)
t un〉 = − Im ‖δ(αk/2)

xi µ
(1)
t un‖2

2, (73)

which obviously yields zero. On the other hand, applying distributivity of the inner
product on both factors, we obtain

Im
〈

iδ(1)t un, 2µ
(1)
t un

〉
=

1
2τ

Im
[

i
(∥∥∥un+1

∥∥∥2

2
+ 2i Im

〈
un−1, un+1

〉
−
∥∥∥un−1

∥∥∥2

2

)]
=

1
τ

[
1
2

(∥∥∥un+1
∥∥∥2

2
+ ‖un‖2

2

)
− 1

2

(
‖un‖2

2 +
∥∥∥un−1

∥∥∥2

2

)]
= δtµt‖un−1‖2

2,

(74)

which establishes Property (f). Finally, notice that distributivity also yields

Im
(〈

vn, 2µ
(1)
t un

〉
+
〈

un, 2µ
(1)
t vn

〉)
= τδt Im

(〈
un−1, vn

〉
+
〈

vn−1, un
〉)

, (75)

which shows the validity of (g). The proofs of Properties (b)–(e) are similar to that of (a).
For that reason, we omit the proofs of the remaining identities.

Theorem 5 (Mass conservation). If (un, vn)N
n=0 is a solution of (36), then δt Mn = 0 for each

n ∈ IN−2, where

Mn = µt

(
‖un‖2

2 + ‖vn‖2
2

)
− λτ Im

(〈
un, vn+1

〉
+
〈

vn, un+1
〉)

, ∀n ∈ IN−1, (76)

is the discrete total mass of the system at the time tn. The discrete individual discrete masses as
the quantities

Mn
1 = µt‖un‖2

2 − λτ Im〈un, vn+1〉, ∀n ∈ IN−1, (77)

Mn
2 = µt‖vn‖2

2 − λτ Im〈vn, un+1〉, ∀n ∈ IN−1, (78)

and they are conserved if λ = 0.
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Proof. Let Θn and Φn be as in the proof of Theorem 4, for each n ∈ IN−2. Calculating the
inner product of Θn and Φn with 2µ

(1)
t un and 2µ

(1)
t vn, respectively, using the identities in

the previous lemma. Collecting terms, we note that

δtµt‖un−1‖2
2 = Im

〈
iδ(1)t un, 2µ

(1)
t un

〉
= Im〈Θn, 2µ

(1)
t un〉

= Im
〈(
−1

2
4(α1)

h +V + D + β11|un|2 + β12|vn|2
)

µ
(1)
t un + λvn, 2µ

(1)
t un

〉
= 2λ Im

〈
vn, µ

(1)
t un

〉
,

(79)

and

δtµt‖vn−1‖2
2 = Im

〈
iδ(1)t vn, 2µ

(1)
t vn

〉
= Im〈Φn, 2µ

(1)
t vn〉

= Im
〈(
−1

2
4(α2)

h +V + β22|vn|2 + β12|un|2
)

µ
(1)
t vn + λun, 2µ

(1)
t vn

〉
= 2λ Im

〈
un, µ

(1)
t vn

〉
,

(80)

for each n ∈ IN−2. Observe that, indeed, the individual discrete masses are conserved if
λ = 0. On the other hand, adding the last two identities, we readily check that

δt Mn−1 = δt

[
µt

(
‖un−1‖2

2 + ‖vn−1‖2
2

)
− λτ Im

(〈
un−1, vn

〉
+
〈

vn−1, un
〉)]

= δtµt

(
‖un−1‖2

2 + ‖vn−1‖2
2

)
− 2λ Im

〈
vn, µ

(1)
t un

〉
− 2λ Im

〈
un, µ

(1)
t vn

〉
= 0,

(81)

for each n ∈ IN−2, which is what we wanted to prove.

After this last result, we refer to the quantities Mn as the total mass of the discrete
model (36) at the time tn, for each n ∈ IN−1. Moreover, we define the density of mass at the
point (xj, tn) as the number

Rn
j = R(un

j , vn
j ) = µt(|un

j |2 + |vn
j |2)− λτ Im

(
un

j vn+1
j + vn

j un+1
j

)
, (82)

for each (j, n) ∈ J × IN−1. It is worth noticing that the quantities En and Mn in the last
theorems are clearly the discrete counterparts of the total energy and the total mass of
associated to the continuous system (36), respectively.

Corollary 2 (Mass non-negativity). Let (un, vn)N
n=0 be a solution of (36), and suppose that

|λ|τ < 1. Then, the quantities Mn are non-negative and constant.

Proof. It only remains to prove that the quantities Mn are non-negative. Using Young’s
inequality, we obtain that

Mn ≥ µt

(
‖un‖2

2 + ‖vn‖2
2

)
− 1

2
λτ
(
‖un‖2

2 + ‖vn+1‖2
2 + ‖vn‖2

2 + ‖un+1‖2
2

)
= (1− |λ|τ)µt

(
‖un‖2

2 + ‖vn‖2
2

)
≥ 0,

(83)

for each n ∈ IN−1. This obviously completes the proof.

The proof of the following result is similar to that of Corollary 2.

Corollary 3 (Boundedness). Suppose that (un, vn)N
n=0 is a solution of (36), and that η0 ∈ R+

satisfies |λ|τ < η0 < 1. Then, max
{
‖un‖2

2, ‖vn‖2
2
}
≤ 2(1− η0)

−1M0 , for each n ∈ IN ,
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4. Numerical Properties

To start with, we introduce the continuous functional

L1(ψ1, ψ2) = i
∂ψ1

∂t
−
[
−1

2
4α1 +V(x) + D + β11|ψ1|2 + β12|ψ2|2

]
ψ1 − λψ2, (84)

L2(ψ1, ψ2) = i
∂ψ2

∂t
−
[
−1

2
4α2 +V(x) + β22|ψ2|2 + β12|ψ1|2

]
ψ2 − λψ1, (85)

for each (x, t) ∈ ΩT , and the next discrete functions, for each (j, n) ∈ J × IN−1:

L1(un
j , vn

j ) = iδ(1)t un
j +

1
2
4(α1)

h µ
(1)
t un

j −Vjµ
(1)
t un

j − Dµ
(1)
t un

j

− β11

∣∣∣un
j

∣∣∣2µ
(1)
t un

j − β12

∣∣∣vn
j

∣∣∣2µ
(1)
t un

j − λvn
j ,

(86)

and
L2(un

j , vn
j ) = iδ(1)t vn

j +
1
2
4(α2)

h µ
(1)
t vn

j −Vjµ
(1)
t vn

j

− β22

∣∣∣vn
j

∣∣∣2µ
(1)
t vn

j − β12

∣∣∣un
j

∣∣∣2µ
(1)
t vn

j − λun
j .

(87)

Using this nomenclature, we agree that

L(ψ1(x, t), ψ2(x, t)) = (L1(ψ1(x, t), ψ2(x, t)),L2(ψ1(x, t), ψ2(x, t))), (88)

L(ψ1(xj, tn), ψ2(xj, tn)) = (L1(ψ1(xj, tn), ψ2(xj, tn)), L2(ψ1(xj, tn), ψ2(xj, tn))), (89)

for each (x, t) ∈ ΩT and (j, n) ∈ J × IN−1.

Theorem 6 (Consistency). If ψ1, ψ2 ∈ C5,4
x,t (ΩT), then there exist constants C, C′, C′′ > 0 which

are independent of h and τ, such that, for each (j, n) ∈ J × IN−1, the following hold:∣∣L(ψ1(xj, tn), ψ2(xj, tn))−L(ψ1(xj, tn), ψ2(xj, tn))
∣∣ ≤ C(τ2 + ‖h‖2

2), (90)∣∣∣H(ψ1(xj, tn), ψ2(xj, tn))−H(ψ1(xj, tn+ 1
2
), ψ2(xj, tn+ 1

2
))
∣∣∣ ≤ C′(τ2 + ‖h‖2

2), (91)∣∣∣R(ψ1(xj, tn), ψ2(xj, tn))−R(ψ1(xj, tn+ 1
2
), ψ2(xj, tn+ 1

2
))
∣∣∣ ≤ C′′τ. (92)

Proof. Use Taylor’s theorem, Lemma 2 and the conditions of regularity, there are constants
C1,k, C2,k,i, C3,k, C4,l ∈ R which are independent of h and τ, for i ∈ Ip, k ∈ I2 and l ∈ I3,
such that the next hold, for each (j, n) ∈ J × IN−1:∣∣∣∣δ(1)t ψk(xj, tn)−

∂ψk
∂t

(xj, tn)

∣∣∣∣ ≤ C1,kτ2, (93)∣∣∣∣µ(1)
t δ

(α1)
xi ψk(xj, tn)−

∂α1 ψk
∂|x|α1

(xj, tn)

∣∣∣∣ ≤ C2,k,i(τ
2 + h2

i ), (94)∣∣∣V(xj)µ
(1)
t ψk(xj, tn)−V(xj)ψk(xj, tn)

∣∣∣ ≤ C3,kτ2, (95)∣∣∣∣∣ψ1(xj, tn)
∣∣2µ

(1)
t ψ1(xj, tn)−

∣∣ψ1(xj, tn)
∣∣2ψ1(xj, tn)

∣∣∣ ≤ C4,1τ2, (96)∣∣∣∣∣ψ1(xj, tn)
∣∣2µ

(1)
t ψ2(xj, tn)−

∣∣ψ1(xj, tn)
∣∣2ψ2(xj, tn)

∣∣∣ ≤ C4,2τ2, (97)∣∣∣∣∣ψ2(xj, tn)
∣∣2µ

(1)
t ψ2(xj, tn)−

∣∣ψ2(xj, tn)
∣∣2ψ2(xj, tn)

∣∣∣ ≤ C4,3τ2. (98)

The first inequality of the conclusion follows from the triangle inequality. The proof of
the second inequality is similar. Finally, to prove the last inequality, observe firstly that the
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regularity conditions on ψ1 and ψ2 assure that there exist constants C5,k, C6 ∈ R which are
independent of h and τ, for k ∈ I2, such that∣∣∣µt|ψk(xj, tn)|2 − |ψk(xj, tn+ 1

2
)|2
∣∣∣ ≤ C5,kτ2, (99)∣∣∣λτ Im

(
ψ1(xj, tn)ψ2(xj, tn+1)− ψ2(xj, tn)ψ1(xj, tn+1)

)∣∣∣ ≤ C6τ. (100)

The third inequality of this result readily follows now assuming that τ < 1, using the
triangle inequality, and letting C′′ be a suitable constant in terms of C5,1, C5,2 and C6.

Lemma 8 (Ferreira [25]). Let (ωn)N
n=0 and (ρn)N

n=0 be arrays of non-negative numbers for which
there exists C0 ≥ 0 with the property that the following hold:

ωm+1 ≤ ρm+1 + C0τ
m

∑
n=0

ωm, ∀m ∈ IN−1. (101)

If n ∈ IN , then ωn ≤ ρneC0nτ .

To prove stability, take two solutions of our scheme (36) associated to two sets of
initial data. In notation, we assume that (u, v) represents a solution for (36), and that (ũ, ṽ)
solves the discrete problem but with initial profiles described by functions φ̃1, φ̃2 : Ω→ C.
Concretely, the following discrete initial-boundary-value problem holds:

iδ(1)t ũn
j = −1

2
4(α1)

h µ
(1)
t ũn

j + Vjµ
(1)
t ũn

j + Dµ
(1)
t ũn

j + β11

∣∣∣ũn
j

∣∣∣2µ
(1)
t ũn

j

+ β12

∣∣∣ṽn
j

∣∣∣2µ
(1)
t ũn

j + λṽn
j ,

iδ(1)t ṽn
j = −1

2
4(α2)

h µ
(1)
t ṽn

j + Vjµ
(1)
t ṽn

j + β22

∣∣∣ṽn
j

∣∣∣2µ
(1)
t ṽn

j + β12

∣∣∣ũn
j

∣∣∣2µ
(1)
t ṽn

j + λũn
j ,

such that


ũ0

j = φ̃1(xj), ∀j ∈ J,
ṽ0

j = φ̃2(xj), ∀j ∈ J,
ũn

j = ṽn
j = 0, ∀(j, n) ∈ ∂J × IN ,

(102)

for each (j, n) ∈ J × IN−1.

Lemma 9. Let ε = (εn)N
n=0 and ζ = (ζn)N

n=0 be sequences in Vh. If m ∈ IN−1 then

τ
m

∑
n=1

δt Im
[
〈εn−1, ζn〉+ 〈ζn−1, εn〉

]
= Im

(
〈εm, ζm+1〉+ 〈ζm, εm+1〉 − 〈ε0, ζ1〉 − 〈ζ0, ε1〉

)
. (103)

Proof. After substituting the definition of the operator δt at the left-hand side of the
identity (103) and performing algebraic operations, we obtain that

m

∑
n=1

τδt Im
[
〈εn−1, ζn〉+ 〈ζn−1, εn〉

]
=

m

∑
n=1

Im
[
〈εn, ζn+1〉+ 〈ζn, εn+1〉 − 〈εn−1, ζn〉 − 〈ζn−1, εn〉

]
= Im

[
〈εm, ζm+1〉+ 〈ζm, εm+1〉 − 〈ε0, ζ1〉 − 〈ζ0, ε1〉

]
.

(104)

Observe that most of the terms inside the sums cancel out. The conclusion readily
follows now.
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Lemma 10. Let (u, v) and (ũ, ṽ) be solutions of (36) and (102), respectively, and let us define
εn = un − ũn and ζn = vn − ṽn, for each n ∈ IN . For each (j, n) ∈ J × IN−1, define

Pn
j =

(
β11

∣∣∣un
j

∣∣∣2 + β12

∣∣∣vn
j

∣∣∣2)µ
(1)
t un

j −
(

β11

∣∣∣ũn
j

∣∣∣2 + β12

∣∣∣ṽn
j

∣∣∣2)µ
(1)
t ũn

j , (105)

Qn
j =

(
β22

∣∣∣vn
j

∣∣∣2 + β12

∣∣∣un
j

∣∣∣2)µ
(1)
t vn

j −
(

β22

∣∣∣ṽn
j

∣∣∣2 + β12

∣∣∣ũn
j

∣∣∣2)µ
(1)
t ṽn

j . (106)

There is a constant C ≥ 0 which is independent of h and τ, such that, for each (j, n) ∈
J × IN−1,

max{|Pn
j |, |Qn

j |} ≤ C
(
|εn−1

j |+ |εn
j |+ |εn+1

j |+ |ζn−1
j |+ |ζn

j |+ |ζn+1
j |

)
. (107)

Proof. It is straightforward.

Theorem 7 (Stability). Assume that (u, v) and (ũ, ṽ) are solutions of the problems (36) and (102),
respectively, and define εn = un − ũn and ζn = vn − ṽn, for each n ∈ IN . Assume that the
condition (

2λ + 4C′ + 1
)
τ < 1 (108)

is satisfied. Then, there exists a constant C′ ≥ 0 which is independent of τ and h, such that

µt

(
‖εn‖2

2 + ‖ζn‖2
2

)
≤ µt(‖ε0‖2

2 + ‖ζ0‖2
2)e

(
λ+ 4C′+1

2

)
T , ∀n ∈ IN . (109)

Proof. Obviously, the next problem is satisfied, for each (j, n) ∈ J × IN−1:

iδ(1)t εn
j = −1

2
4(α1)

h µ
(1)
t εn

j + Vjµ
(1)
t εn

j + Dµ
(1)
t εn

j + Pn
j + λζn

j ,

iδ(1)t ζn
j = −1

2
4(α2)

h µ
(1)
t ζn

j + Vjµ
(1)
t ζn

j + Qn
j + λεn

j ,

such that


ε0

j = φ1(xj)− φ̃1(xj), ∀j ∈ J,
ζ0

j = φ2(xj)− φ̃2(xj), ∀j ∈ J,
εn

j = ζn
j = 0, ∀(j, n) ∈ ∂J × IN ,

(110)

where Pn
j and Qn

j are as in Lemma 10. Then, there is C′ ≥ 0 independent of h and τ, with
the property that, for each n ∈ IN−1,

max{‖Pn‖2
2, ‖Qn‖2

2}

≤ C′
(
‖εn−1‖2

2 + ‖εn‖2
2 + ‖εn+1‖2

2 + ‖ζn−1‖2
2 + ‖ζn‖2

2 + ‖ζn+1‖2
2

)
.

(111)

Obtain the inner product of the first vector Equation of (110) with 2µ
(1)
t εn and calculate

the imaginary parts. Meanwhile, in the second equation, obtain the inner product with
2µ

(1)
t ζn and calculate imaginary parts. By Theorem 5,

δ
(1)
t ‖ε

n‖2
2 = 2 Im〈Pn, µ

(1)
t εn〉+ 2λ Im〈ζn, µ

(1)
t εn〉, ∀n ∈ IN−1, (112)

δ
(1)
t ‖ζ

n‖2
2 = 2 Im〈Qn, µ

(1)
t ζn〉+ 2λ Im〈εn, µ

(1)
t ζn〉, ∀n ∈ IN−1. (113)
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It is readily checked then that that there exists C′′ ≥ 0 independent of τ and h,
such that

2µt

(
‖εm+1‖2

2 + ‖ζm+1‖2
2

)
= 2µt

(
‖ε0‖2

2 + ‖ζ0‖2
2

)
+ 4τ

m

∑
n=1

Im〈Pn, µ
(1)
t εn〉

+ 4τ
m

∑
n=1

Im〈Qn, µ
(1)
t ζn〉+ 2τλ

m

∑
n=1

δt Im
[
〈εn−1, ζn〉+ 〈ζn−1, εn〉

]
≤ 2µt

(
‖ε0‖2

2 + ‖ζ0‖2
2

)
+ 2λτµt

(
‖εm‖2

2 + ‖ζm‖2
2 + ‖ε0‖2

2 + ‖ζ0‖2
2

)
+ τ

m

∑
n=1

(
2‖Pn‖2

2 + ‖εn−1‖2
2 + ‖εn‖2

2 + 2‖Qn+1‖2
2 + ‖ζn−1‖2

2 + ‖ζn+1‖2
2

)
≤ 2(1 + λτ)µt

(
‖ε0‖2

2 + ‖ζ0‖2
2

)
+
(
4C′ + 1

)
τ

m

∑
n=1

(
‖εn−1‖2

2 + ‖εn‖2
2 + ‖εn+1‖2

2 + ‖ζn−1‖2
2 + ‖ζn‖2

2 + ‖ζn+1‖2
2

)
≤ 2

(
1 +

(
λ +

4C′ + 1
2

)
τ

)
µt

(
‖ε0‖2

2 + ‖ζ0‖2
2

)
+ 4
(
4C′ + 1

)
τ

m−1

∑
n=1

µt

(
‖εn‖2

2 + ‖ζn‖2
2

)
+
(
4C′ + 1

)
τµt

(
‖εm+1‖2

2 + ‖ζm+1‖2
2

)
.

(114)

Subtract (4C′ + 1)τµt
(
‖εm+1‖2

2 + ‖ζm+1‖2
2
)
. Then, (101) is satisfied, for each m ∈

IN−1, using C0 = 2(4C′ + 1),

ωm = µt

(
‖εm‖2

2 + ‖ζm‖2
2

)
, ∀m ∈ IN , (115)

ρm =

(
1 +

(
λ +

4C′ + 1
2

)
τ

)
µt

(
‖ε0‖2

2 + ‖ζ0‖2
2

)
, ∀m ∈ IN . (116)

The conclusion of this result is reached now using Lemma 8.

The following result is now straightforward.

Corollary 4 (Uniqueness). For any initial data, the problem (36) has a unique solution.

We establish next the convergence properties of our finite-difference scheme. To
that end, we assume that (ψ1, ψ2) represents a pair of sufficiently smooth solutions of the
initial-value problem (4). As a consequence,{

L1(ψ1(xj, tn), ψ2(xj, tn)) = ζn
j , ∀(j, n) ∈ J × IN ,

L2(ψ1(xj, tn), ψ2(xj, tn)) = ξn
j , ∀(j, n) ∈ J × IN .

(117)

Obviously, ζn
j and ξn

j represent here the local truncation errors.

Theorem 8 (Convergence). Let ψ1, ψ2 ∈ C5,4
x,t (ΩT), and let (ψ1, ψ2) solve (4). There is C5 ≥ 0

independent of τ and h, such that the numerical solution converges to that of the continuous
problem (4), whenever 2C5τ < 1.
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Proof. Let (u, v) be the solution of problem (36). For the sake of convenience, let us define
ηn

j = ψ1(xj, tn)− un
j and θn

j = ψ2(xj, tn)− vn
j , for each n ∈ IN . Notice that (η, θ) satisfies

the problem

iδ(1)t ηn
j = −1

2
4(α1)

h µ
(1)
t ηn

j + Vjµ
(1)
t ηn

j + Dµ
(1)
t ηn

j + Pn
j + λθn

j + ζn
j , ,

iδ(1)t θn
j = −1

2
4(α2)

h µ
(1)
t θn

j + Vjµ
(1)
t θn

j +Qn
j + ληn

j + ξn
j ,

such that

{
η0

j = θ0
j = 0, ∀j ∈ J,

ηn
j = θn

j = 0, ∀(j, n) ∈ ∂J × IN ,

(118)

for each (j, n) ∈ J × IN−1. Here, for each (j, n) ∈ J × IN−1, we agree that

Pn
j =

(
β11|ψ1(xj, tn)|2 + β12|ψ2(xj, tn)|2

)
µ
(1)
t ψ1(xj, tn)

−
(

β11

∣∣∣un
j

∣∣∣2 + β12

∣∣∣vn
j

∣∣∣2)µ
(1)
t un

j ,
(119)

and
Qn

j =
(

β22|ψ2(xj, tn)|2 + β12|ψ1(xj, tn)|2
)

µ
(1)
t ψ2(xj, tn)

−
(

β22

∣∣∣vn
j

∣∣∣2 + β12

∣∣∣un
j

∣∣∣2)µ
(1)
t vn

j .
(120)

Using the regularity of ψ1 and ψ2 and Theorem 6, there exists a constant C ≥ 0
independent of τ and h, such that max{|ζn

j |, |ξn
j |} ≤ C(τ2 + ‖h‖2

2), for each (j, n) ∈ J × IN .
As in the previous theorem, there is C1 ≥ 0 independent of h and τ, such that

max{|Pn
j |, |Qn

j |} ≤ C1

(
|ηn−1

j |+ |ηn
j |+ |ηn+1

j |+ |θn−1
j |+ |θn

j |+ |θn+1
j |

)
, (121)

for each (j, n) ∈ J × IN−1. This means that there is C2 ≥ 0, such that, for each n ∈ IN−1,

max{‖Pn‖2
2, ‖Qn‖2

2}

≤ C2

(
‖ηn−1‖2

2 + ‖ηn‖2
2 + ‖ηn+1‖2

2 + ‖θn−1‖2
2 + ‖θn‖2

2 + ‖θn+1‖2
2

)
.

(122)

From here, it is easy to reach the formulas

δ
(1)
t ‖η

n‖2
2 = 2 Im〈Pn, µ

(1)
t ηn〉+ 2λ Im〈θn, µ

(1)
t ηn〉+ 2 Im〈ζn, µ

(1)
t ηn〉, (123)

δ
(1)
t ‖θ

n‖2
2 = 2 Im〈Qn, µ

(1)
t θn〉+ 2λ Im〈ηn, µ

(1)
t θn〉+ 2 Im〈ξn, µ

(1)
t θn〉, (124)

for each n ∈ IN−1. Moreover, there exist C3, C4 ≥ 0 independent of τ and h, such that(
1−

(
λ +

4C2 + 1
2

)
τ

)
µt

(
‖ηm‖2

2 + ‖θm‖2
2

)
≤ 2(4C2 + 1)τ

m−1

∑
n=1

µt

(
‖ηn‖2

2 + ‖θn‖2
2

)
+

τ

4

m

∑
n=1

(
2‖ζn‖2

2 + 2‖ξn‖2
2 + ‖ηn−1‖2

2 + ‖ηn+1‖2
2 + ‖θn−1‖2

2 + ‖θn−1‖2
2

)
≤ C3(τ

2 + ‖h‖2
2)

2 + 2
(

4C2 +
5
4

)
τ

m−1

∑
n=1

µt

(
‖ηn‖2

2 + ‖θn‖2
2

)
+

τ

2
µt

(
‖ηm‖2

2 + ‖θm‖2
2

)
.

(125)
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Subtract τ
2 µt
(
‖ηm‖2

2 + ‖θm‖2
2
)

from both ends of this inequalities, we notice now
that (101) is satisfied, for each m ∈ IN−1, letting C0 = 2

(
4C2 +

5
4
)
, ωm = µt

(
‖ηn‖2

2 + ‖θn‖2
2
)

and ρm = C3(τ
2 + ‖h‖2

2)
2, for each m ∈ IN . Lemma 8 guarantees now that

µt

(
‖ηn‖2

2 + ‖θn‖2
2

)
≤ C5(τ

2 + ‖h‖2
2)

2, ∀(j, n) ∈ J × IN , (126)

where C5 = C3eC0T . From this, it follows that ‖ηn‖2, ‖θn‖2 ≤
√

C5(τ
2 + ‖h‖2

2), for each
(j, n) ∈ J × IN , which implies that the solution of (36) converges to that of (4).

5. Numerical Simulations

The present section is devoted to describe our computational implementation of
the finite-difference scheme (36), and to provide numerical simulations that illustrate the
capability of the scheme to preserve the energy and the mass of the system. Our description
of our implementation and the simulations are carried out in the one-dimensional case,
that is, when p = 1. Moreover, for simplification purposes, let a = a1, b = b1, h = h1, and
M = M1. Throughout this section, we represent the approximations in vector form as

wn = (w0, w1, w2, . . . , wM)> ∈ CM+1, ∀n ∈ IN , ∀w = u, v. (127)

For computational purposes, we define next various matrices, all of them with sizes
equal to (J + 1)× (J + 1). To start with, we let An

u = I + D−u + 1
2 τG(α1) − τEn

u and Bn
u =

D+
u − 1

2 τG(α1) + τEn
u, for each n ∈ IN , where I, D±u and En

u are diagonal matrices defined
through their diagonal entries by the formulas

I = diag
(

1, 0, 0, 0, . . . , 0, 1
)

, (128)

D±u = diag
(

0, i± τ[V(x1) + D], i± τ[V(x2) + D], . . . , i± τ[V(xJ−1) + D], 0
)

, (129)

and
En

u = diag
(

0, β11|un
1 |2 + β12|vn

1 |2, β11|un
2 |2 + β12|vn

2 |2, . . . ,

. . . , β11|un
J−1|2 + β12|vn

J−1|2, 0
)

, ∀n ∈ IN ,
(130)

and for each α ∈ (1, 2], we define

G(α) = − 1
hα



0 0 0 0 · · · 0 0
g(α)−1 g(α)0 g(α)1 g(α)2 · · · g(α)J−2 g(α)J−1

g(α)−2 g(α)−1 g(α)0 g(α)1 · · · g(α)J−3 g(α)J−2

g(α)−3 g(α)−2 g(α)−1 g(α)0 · · · g(α)J−4 g(α)J−3
...

...
...

. . .
...

...
g(α)1−J g(α)2−J g(α)3−J g(α)4−J · · · g(α)0 g(α)1

0 0 0 0 · · · 0 0


. (131)

For each n ∈ IN , we also introduce the matrices An
v = I + D−v + 1

2 τG(α2) − τEn
v and

Bn
v = D+

n − 1
2 τG(α2) + τEn

v , for each n ∈ IN , where the new matrices D±v and En
v are

diagonal, and they are defined as

D±v = diag
(

0, i± τV(x1), i± τV(x2), i± τV(x3), . . . , i± τV(xJ−1), 0
)

, (132)

and
En

v = diag
(

0, β22|vn
1 |2 + β12|un

1 |2, β22|vn
2 |2 + β12|un

2 |2, . . . ,

. . . , β22|vn
J−1|2 + β12|un

J−1|2, 0
)

, ∀n ∈ IN ,
(133)
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Observe that the approximations at the times t0 of the discrete model are provided
exactly through the initial conditions in (36). Moreover, the approximations at the time
t1 are provided explicitly through Formulas (37) and (38). Meanwhile, the recursive
equations of the discrete model can be alternatively expressed in terms of the nomenclature
introduced in this work as{

An
uun+1 = Bn

uun−1 + 2τλvn
∗ , ∀n ∈ IN−1,

An
v vn+1 = Bn

v vn−1 + 2τλun
∗ , ∀n ∈ IN−1,

(134)

where the (J + 1)-dimensional vectors un
∗ and vn

∗ are given by

un
∗ =

(
0, un

1 , un
2 , un

3 , . . . , un
J−1, 0

)>
, ∀n ∈ IN , (135)

vn
∗ =

(
0, vn

1 , vn
2 , vn

3 , . . . , bn
J−1, 0

)>
, ∀n ∈ IN . (136)

It is worth pointing out that our computer implementation in Appendix A is based on
the recursive system (134).

Example 1. In the following, we use the constants in Table 1. Meanwhile, the parameters α1 and
α2 change values between simulations, and V(x) = 1

2 x2, for each x ∈ Ω. On the other hand,
φ1(x) = φ2(x) = 1√

π
exp(−x2), for each x ∈ Ω. Throughout, we fix the computer parameters

τ = 0.05 and h1 = 0.1. In our simulations, we consider three cases for the differentiation orders α1
and α2, namely,

Case 1. α1 = 1.1 and α2 = 1.9.

Case 2. α1 = 1.5 and α2 = 1.5.

Case 3. α1 = 1.9 and α2 = 1.1.

Under these circumstances, Figures 2–4 provide the approximate solutions for the problem
(4), using the values of Cases 1–3, respectively. In each figure, the graphs provide the behavior of
the following , versus (x, t): (a) Re ψ1; (b) Re ψ2; (c) Im ψ1; (d) Im ψ2; (e) |ψ1|; (f) |ψ2|. Figure 5
provides approximations for the energy functionals for these problems. More precisely, the left
column of that figure provides approximate graphs of the discrete energy densityH versus (x, t),
while the graphs of the total energy E versus t are shown on the right column. We used Case 1
(top row), Case 2 (middle row) and Case 3 (bottom row). Obviously, the total energy of the system
is approximately constant, as expected from the theoretical results. Finally, Figure 6 provides a
similar analysis for the mass functionals of the mathematical model (4). The results show that the
mass is approximately constant in all the cases, in agreement with the theoretical results proved in
this manuscript.

Example 2. Next, we illustrate computationally the rate of convergence of (36). To that end, we use
the values in Table 1 and the other parameters in the previous examples. Take a temporal period equal
to 0.5 and set α = α1 = 1.5. The exact solution of the problem is approximated letting τ = 1× 10−5

and h = h1 = 0.005. Define ετ,h(xj) = ψ1(xj, tN) − uN
j and ζτ,h(xj) = ψ2(xj, tN) − vN

j ,
for each j ∈ J. For convenience, define ετ,h = (ετ,h(xj))j∈J and ζτ,h = (ζτ,h(xj))j∈J . Let
ητ,h = (ετ,h, ζτ,h). Notice that

‖ητ,h‖2
2 = ‖ετ,h‖2

2 + ‖ζτ,h‖2
2. (137)

Introduce the convergence rates

ρτ,h = log2

(‖η2τ,h‖2

‖ητ,h‖2

)
(138)
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and

στ,h = log2

(‖ητ,2h‖2

‖ητ,h‖2

)
. (139)

Table 2 summarizes our computational investigation on the convergence of the scheme. The
simulations show that (36) is quadratically convergent, as predicted by Theorem 8.

Table 1. Table of the parameter values employed in the numerical simulations of this work.

p a1 b1 T β11 β12 β22 λ D

1 −5 5 10 1.5 0.5 1.5 0.5 2

Table 2. Table of absolute errors in the Euclidean norm and (a) temporal and (b) spatial rates of convergence for various
values of the parameters τ and h. The experiment corresponds to that described in Example 2.

(a) Temporal study of convergence

0.04 h = 0.02 h = 0.01

τ ‖εt,h‖2 ρτ,h ‖εt,h‖2 ρτ,h ‖εt,h‖2 ρτ,h

0.02/20 1.2783× 10−2 − 3.4758× 10−3 − 8.8854× 10−4 −
0.02/21 3.5439× 10−3 1.8508 9.2893× 10−4 1.9037 2.2993× 10−4 1.9502
0.02/22 9.5353× 10−4 1.8940 2.5436× 10−4 1.8687 5.8602× 10−5 1.9722
0.02/23 2.4988× 10−4 1.9320 6.6350× 10−5 1.9387 1.4386× 10−5 2.0263
0.02/24 6.7002× 10−5 1.8990 1.7215× 10−5 1.9464 3.7194× 10−6 1.9515

(b) Spatial study of convergence

τ = 0.02 τ = 0.01 τ = 0.005

h ‖εt,h‖2 στ,h ‖εt,h‖2 στ,h ‖εt,h‖2 στ,h

0.08 4.6852× 10−2 − 1.3239× 10−2 − 3.5547× 10−3 −
0.04 1.2783× 10−2 1.8739 3.5439× 10−3 1.9003 9.5353× 10−4 1.8984
0.02 3.4758× 10−3 1.8508 9.2893× 10−4 1.9316 2.5436× 10−4 1.9064
0.01 8.8854× 10−4 1.9958 2.2993× 10−4 2.0143 5.8602× 10−5 2.1178
0.005 2.4345× 10−4 1.8678 6.6720× 10−5 1.7850 1.6445× 10−5 1.8333

Before closing this section, it is important to point out that the extension of the
Gross–Pitaevskii system to the fractional scenario (4) was proposed as a natural general-
ization of the classical Bose–Einstein condensates. Within that context and to the best of
our knowledge, the theory of fractional operators has not found a solid justification via
experimentation. However, the mathematical and numerical investigation of fractional ex-
tensions of this system is a difficult problem whose interest circumscribed to mathematical
and numerical areas. Nevertheless, the authors hope that some potential applications of
the present work will surface in the near future using some well-known applications of
fractional derivatives (see Appendix B), and that the mathematical and numerical ideas
developed in this work will lead to propose and analyze new computational methods for
other physically relevant systems.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Approximate solutions for the problem (4) using the parameters in Table 1, and the computational time-steps
h = 0.1 and τ = 0.05 for the finite-difference method (36). We used V(x) = 1

2 x2, and initial data φ1(x) = φ2(x) =
1√
π

exp(−x2). The graphs provide the behavior of (a) Re ψ1, (b) Re ψ2, (c) Im ψ1, (d) Im ψ2, (e) |ψ1|, and (f) |ψ2|, versus

(x, t). In these simulations, we used α1 = 1.1 and α2 = 1.9.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. Approximate solutions for the problem (4) using the parameters in Table 1, and the computational time-steps
h = 0.1 and τ = 0.05 for the finite-difference method (36). We used V(x) = 1

2 x2, and initial data φ1(x) = φ2(x) =
1√
π

exp(−x2). The graphs provide the behavior of (a) Re ψ1, (b) Re ψ2, (c) Im ψ1, (d) Im ψ2, (e) |ψ1|, and (f) |ψ2|, versus

(x, t). In these simulations, we used α1 = α2 = 1.5.
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(a) (b)

(c) (d)

(e) (f)

Figure 4. Approximate solutions for the problem (4) using the parameters in Table 1, and the computational time-steps
h = 0.1 and τ = 0.05 for the finite-difference method (36). We used V(x) = 1

2 x2, and initial data φ1(x) = φ2(x) =
1√
π

exp(−x2). The graphs provide the behavior of (a) Re ψ1, (b) Re ψ2, (c) Im ψ1, (d) Im ψ2, (e) |ψ1|, and (f) |ψ2|, versus

(x, t). In these simulations, we used α1 = 1.9 and α2 = 1.1.
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(a) (b)
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1

1.5
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(c) (d)

0 2 4 6 8 10

0.5

1

1.5

2

(e) (f)

0 2 4 6 8 10

0.5

1

1.5

2

Figure 5. Approximate solutions for the problem (4) using the parameters in Table 1, and the computational time-steps
h = 0.1 and τ = 0.05 for the finite-difference method (36). We used V(x) = 1

2 x2, and initial data φ1(x) = φ2(x) =
1√
π

exp(−x2). (left column) Approximate graphs of the discrete energy densityH versus (x, t). (right column) Graphs of
the total energy E versus t. We used α1 = 1.1 and α2 = 1.9 (a,b), α1 = 1.5 and α2 = 1.5 (c,d), and α1 = 1.9 and α2 = 1.1 (e,f).
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(c) (d)
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(e) (f)
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1.7

Figure 6. Approximate solutions for the problem (4) using the parameters in Table 1, and the computational time-steps
h = 0.1 and τ = 0.05 for the finite-difference method (36). We used V(x) = 1

2 x2, and initial data φ1(x) = φ2(x) =
1√
π

exp(−x2). (left column) Approximate graphs of the discrete mass densityR versus (x, t). (right column) Graphs of the
total massM versus t. We used α1 = 1.1 and α2 = 1.9 (a,b), α1 = 1.5 and α2 = 1.5 (c,d), and α1 = 1.9 and α2 = 1.1 (e,f).

6. Conclusions

In this work, we study a finite-difference method for the coupled system of
Gross–Pitaevskii equations with space-fractional derivatives in the Riesz sense. We prove
the existence of solutions of our discretization for any set of initial conditions using a
complex fixed-point theorem. Inspired by the existence of invariants in the continuous
system, we show that some discrete forms of energy and mass functions are constant in
time. As its continuous counterpart, we also prove the non-negativity of the mass function
and the uniform boundedness of the approximations by imposing suitable numerical con-
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straints. We present a rigorous numerical analysis for the method, obtaining a second order
of consistency in space and time for the solutions. Moreover, we show that the discrete
energy and mass densities are consistent approximations of the continuous functionals.
We also provide conditions to guarantee the stability and the uniqueness of the numerical
solutions, and we prove the convergence of the system. The theoretical results show that
the method is quadratically convergent. It is worth pointing out that analyses of stability
and convergence were carried out using a discrete version of Gronwall’s inequality. A
Matlab implementation of the numerical model is provided in the Appendix of this work,
and we used to produce approximations to the solutions of our continuous model. The
results show that the energy and mass are approximately constant, in agreement with the
theoretical results derived in this work, and improving computationally efforts already
reported [20,26].

It is worth pointing out that there are already some reports by these same authors
on the design of numerical methods to solve double Gross–Pitaevskii-type systems with
fractional diffusion, most notably the papers by Serna-Reyes et al. [26] and Serna-Reyes
and Macías-Díaz [20]. In both works, the same system of fractional partial differential
equations is investigated using a finite-difference methodology, the fractional derivatives
are of the Riesz type, and they are discretized using fractional-order centered differences.
To start with, the proofs for the existence of solutions of the numerical model are more
complicated in the case of the published papers [20,26]. Indeed, the arguments in those
cases require using some fixed-point theorem in view of the nonlinear nature of those
works. Meanwhile, in the present work, the existence of solutions is readily established
using matrix arguments. This is due to the linear nature of the numerical solved. Moreover,
the uniqueness in the present case is derived at the same time as the existence. In terms of
conservation of energy, all the numerical models are capable of preserving this quantity
except [26]. All the numerical models have a consistency of the second order in both space
and time, and they are all stable and quadratically convergent in both space and time, for
sufficiently small values of the computer parameters. Finally, in terms of implementation,
the present numerical methodology is easy to implement computationally, in view that the
code only requires solving a couple of linear systems at each time steps. On the other hand,
the finite-difference schemes reported in [20,26] are harder to code. This is again due to
the nonlinear nature of the numerical models. Since the solution functions are complex-
valued, implementations of Newton’s method are useless in this point. To overcome this
shortcoming, those methods were implemented using a recursive approach.

After the completion of this work, various avenues of research remain open in the
investigation of fractional systems with associated energy functions. It is worth recalling
that there are already various reports available in the literature on energy-conserving
methods for a wide family of mathematical models and their fractional extensions [27,28].
Those fractional extensions have been mainly established for the case of Riesz space-
fractional mathematical models [29]. Unfortunately, the property of energy conservation
has not been studied in depth for Caputo time-fractional hyperbolic systems. There are very
few reports in the literature which address this topic [30]. In fact, only some few reports for
the parabolic case have shown some success in preserving the dissipation of free energy in
those systems [31]. To this day, this problem remains open, and its solution is one of the
avenues of research that should be tackled after the successful completion of so many on
energy-conserving methods for space-fractional partial differential equations. In particular,
the authors of this work are interested in developing dissipation-preserving methods for
time-space-fractional extensions of the model investigated in the present manuscript, using
Caputo fractional operators in time and Riesz fractional derivatives in space.
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Appendix A. Matlab Code

The following is a Matlab implementation of the finite-difference method (36), using
the vector representation (134) for the recursive equations. It is important to point out here
that we chose to provide a Matlab implementation of the numerical model in view that
scientists are more familiarized with this computer language rather than with C/C++ or
Fortran. However, the translation of this code to those programming languages is relatively
straightforward for programmers with minimal knowledge of C/C++ or Fortran.

function [X,Y,phi1 ,phi2 ,H,R,t,Energy ,Mass]=gp

function H=fracmatrix(M,alpha ,h)
g=zeros(1,M);
g(1)=gamma(alpha +1)/gamma (0.5* alpha +1)^2/h^alpha;
for l=1:M-1
g(l+1)=(1-( alpha +1) /(0.5* alpha+l))*g(l);
end
H=zeros(M,M);
for l=1:M
for m=1:M
H(l,m)=g(abs(l-m)+1);
end
end
end

a1=-5;
b1=5;
T=10;

alpha1 =1.9;
alpha2 =1.1;
beta11 =1.5;
beta12 =0.5;
beta22 =1.5;
lambda = -0.5;
D=2;
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tau =0.05;
h=0.1;

x=a1:h:b1;
t=0:tau:T;
M=length(x);
N=length(t);

Ha1=fracmatrix(M,alpha1 ,h);
Ha2=fracmatrix(M,alpha2 ,h);
Ha3=fracmatrix(M,0.5* alpha1 ,h);
Ha4=fracmatrix(M,0.5* alpha2 ,h);

V=0.5.*x.^2;

u1=exp(-x.^2)./sqrt(pi);
v1=exp(-x.^2)./sqrt(pi);

u2=u1+1i.*tau .*( -0.5.*u1*Ha1 -V.*u1 -D.*u1 -lambda .*v1...
-(beta11 .*abs(u1).^2+ beta12 .*abs(v1).^2).*u1);
v2=v1+1i.*tau .*( -0.5.*v1*Ha2 -V.*v1 -lambda .*u1...
-(beta12 .*abs(u1).^2+ beta22 .*abs(v1).^2).*v1);

A1=diag(1i-tau.*V-tau.*D) -0.5.*tau.*Ha1;
A2=diag(1i+tau.*V+tau.*D)+0.5.* tau.*Ha1;
B1=diag(1i-tau.*V) -0.5.* tau.*Ha2;
B2=diag(1i+tau.*V)+0.5.* tau.*Ha2;

Energy=zeros(size(t));
Mass=zeros(size(t));

[X,Y]= meshgrid(x,t);
phi1=zeros(size(X));
phi2=zeros(size(X));
H=zeros(size(X));
R=zeros(size(X));
phi1 (1,:)=u1;
phi1 (2,:)=u2;
phi2 (1,:)=v1;
phi2 (2,:)=v2;

H(1,:) =0.25.*( abs(u1*Ha3).^2+ abs(u2*Ha3).^2+ abs(v1*Ha4).^2+ abs(v2*
Ha4).^2) ...

+0.5.*V.*(abs(u1).^2+ abs(u2).^2+ abs(v1).^2+ abs(v2).^2) ...
+0.5.*D.*(abs(u1).^2+ abs(u2).^2) +0.5.* beta11 .*abs(u1).^2.* abs(u2).^2

...
+0.5.* beta22 .*abs(v1).^2.* abs(v2).^2 ...
+0.5.* beta12 .*(abs(u1).^2.* abs(v2).^2+ abs(v1).^2.* abs(u2).^2) ...
+lambda .*real(u1.*conj(v2)+v1.*conj(u2));
R(1,:)=abs(u1).^2+ abs(u2).^2+ abs(v1).^2+ abs(v2).^2 ...
-lambda .*tau.*imag(u1.*conj(v2)+v1.*conj(u2));
Energy (1)=h*sum(H(1,:));
Mass (1)=h*sum(R(1,:));

for n=3:N
a=tau.*( beta11 .*abs(u2).^2+ beta12 .*abs(v2).^2);
b=tau.*( beta12 .*abs(u2).^2+ beta22 .*abs(v2).^2);
u3=linsolve(A1 '-diag(a), (A2 '+diag(a))*u1 ' + 2.* lambda .*tau.*v2 ' )';
v3=linsolve(B1 '-diag(b), (B2 '+diag(b))*v1 ' + 2.* lambda .*tau.*u2 ' )';



Mathematics 2021, 9, 1765 29 of 31

u1=u2;
u2=u3;
v1=v2;
v2=v3;

phi1(n,:)=u3;
phi2(n,:)=v3;

H(n-1,:) =0.25.*( abs(u1*Ha3).^2+ abs(u2*Ha3).^2+ abs(v1*Ha4).^2+ abs(v2*
Ha4).^2) ...

+0.5.*V.*(abs(u1).^2+ abs(u2).^2+ abs(v1).^2+ abs(v2).^2) ...
+0.5.*D.*(abs(u1).^2+ abs(u2).^2) +0.5.* beta11 .*abs(u1).^2.* abs(u2).^2

...
+0.5.* beta22 .*abs(v1).^2.* abs(v2).^2 ...
+0.5.* beta12 .*(abs(u1).^2.* abs(v2).^2+ abs(v1).^2.* abs(u2).^2) ...
+lambda .*real(u1.*conj(v2)+v1.*conj(u2));
R(n-1,:)=abs(u1).^2+ abs(u2).^2+ abs(v1).^2+ abs(v2).^2 ...
-lambda .*tau.*imag(u1.*conj(v2)+v1.*conj(u2));
Energy(n-1)=h*sum(H(n-1,:));
Mass(n-1)=h*sum(R(1,:));
end
Energy(N)=Energy(N-1);
Mass(N)=Mass(N-1);
H(N,:)=H(N-1,:);
R(N,:)=R(N-1,:);

end

Appendix B. Fractional Calculus

It is important to recall that Riesz space-fractional operators have been derived mathe-
matically from physical systems with long-range interactions. Indeed, it has been estab-
lished thoroughly that (parabolic or hyperbolic) partial differential equations with Riesz
diffusion are obtained as the continuum limit of some particle systems with long-range
interactions. This continuum-limit process involves the application of several operators,
like Fourier series transform, the limit when the distance between consecutive particles
goes to zero along with the inverse Fourier transform [32,33].

More precisely, suppose that s is a real number in the set {1, 2} and allow α > 0. We
restrict our attention to the one-dimensional case and consider an array of particles on
a straight line whose motion equations are described by the coupled system of ordinary
differential equations

dsun

dts (t) = In(u(t)) + F(un(t)), ∀t ∈ R+, ∀n ∈ Z. (A1)

In this context, un is a function that stands for the displacement of the nth particle with
respect to the equilibrium point and F denotes the nonlinear interaction of the oscillators
with some external force: Meanwhile, we use h to denote the distance existing between two
consecutive oscillators. Moreover, a general form for the interaction function In is fixed as

In(u(t)) =
∞

∑
m=−∞

m 6=n

J(n, m)[un(t)− um(t)], ∀t ∈ R+, ∀n ∈ Z, (A2)



Mathematics 2021, 9, 1765 30 of 31

where J ∈ L2(Z) is such that J(n, m) = J(n−m) = J(m− n) for each pair m, n ∈ Z. For
the sake of convenience, we introduce the function

Jα(k) =
∞

∑
n=−∞

n 6=0

e−ikn J(n), ∀k ∈ R, (A3)

and assume that the following is satisfied:

Aα = lim
k→0

Jα(k)− Jα(0)
|k|α ∈ R \ {0}. (A4)

On both ends of (A1), apply the Fourier series transform. Next, take the limit h→ 0
and obtain finally the inverse Fourier transform. In such way, the following fractional
partial differential equation is reached:

∂su
∂ts (x, t)− hα Aα

∂αu
∂|x|α (x, t)− F(u(x, t)) = 0, ∀(x, t) ∈ R×R+. (A5)

Here, the fractional derivative of order α is understood in the sense of Riesz [32]. It is
worth pointing out here that more details on these derivations are provided in [34].
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