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Abstract: The practical application of a multi-objective optimization strategy based on evolutionary
algorithms was proposed to optimize the plastics thermoforming process. For that purpose, in this
work, differently from the other works proposed in the literature, the shaping step was considered
individually with the aim of optimizing the thickness distribution of the final part originated from
sheets characterized by different thickness profiles, such as constant thickness, spline thickness
variation in one direction and concentric thickness variation in two directions, while maintaining
the temperature constant. As far we know, this is the first work where such a type of approach is
proposed. A multi-objective optimization strategy based on Evolutionary Algorithms was applied to
the determination of the final part thickness distribution with the aim of demonstrating the validity
of the methodology proposed. The results obtained considering three different theoretical initial
sheet shapes indicate clearly that the methodology proposed is valid, as it provides solutions with
physical meaning and with great potential to be applied in real practice. The different thickness
profiles obtained for the optimal Pareto solutions show, in all cases, that that the different profiles
along the front are related to the objectives considered. Also, there is a clear improvement in the
successive generations of the evolutionary algorithm.

Keywords: plastics thermoforming; sheet thickness distribution; evolutionary algorithms; multi-
objective optimization

1. Introduction

Thermoforming is a thermoplastic processing technique commonly used in the rigid
packaging industry. A variety of thermoplastic materials can be used in this process,
including semi-crystalline polymers, such as High Density Polyethylene (HDPE) and
Polypropylene (PP) and amorphous polymers, such as Acrylonitrile Butadiene Styrene
(ABS), Polystyrene (PS) and High Impact Polystyrene (HIPS). HIPS is a lightweight and
inexpensive thermoplastic often used in thermoformed food and pharmaceutical packag-
ing containers.

Thermoforming comprises a sequence of interdependent operations and is character-
ized by being sensitive to the intrinsic properties of thermoplastics, namely the lower heat
conduction and the deformation capability strongly dependent on temperature. In general,
the thermoforming comprises: a heating stage, which aims to allow the sheet to acquire the
required deformability; a sheet deformation stage in order to reproduce the contours of
the piece and finally, a cooling stage, which allows the part to be extracted from the mold
without distorting. In this way, the final performance of thermoformed products results
from the sum of all actions that occur in these three main stages. Since there are processing
variables associated with each of the three stages, including the material properties as a
function of temperature, optimizing the thermoforming process is a complex task.

Generally, the optimization of thermoforming, like in the other real word optimization
problems, consists of relating the effect of the operating variables of each stage with the
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performance of the part. Since thermoformed parts are characterized by having a non-
uniform thickness that can hinder their performance, the thickness distribution of the
final part is one of the most used variables to characterize the performance of the part.
Furthermore, the effects of processing parameters on the thermoforming of polymeric
sheets are highly nonlinear and fully coupled, which increases the difficulty of the process
design. The following studies aim at optimizing the sheet deformation stage with the
objective of obtaining thermoformed parts with the most uniform thickness distribution.

Yang and Hung [1] proposed an inverse Artificial Neural Network (ANN) with the
aim of predicting the optimum processing conditions (decision variables), including sheet
temperature, vacuum pressure, plug speed and displacement inside the mold. The network
inputs are the thickness distribution at different positions of molded PET parts, and the
outputs are the processing conditions obtained by the ANN presented, which show a good
agreement between the computed result and experimental data. However, the ANN was
trained using experimental data and the authors were not clear about the optimization
method used. Also, the fact that different inputs for this inverse ANN can produce identical
results at the output side was not discussed.

Chang et al. [2] used a similar inverse ANN to obtain the optimal processing param-
eters of polypropylene foam thermoforming. The studied variables included the mold
temperature, plug speed and displacement, vacuum pressure and time and the heat transfer
coefficient of the plug. Experimental data from tests carried out on a lab-scale thermoform-
ing machine were used to train the ANN, used as an inverse model of the process. Product
dimensions were used as the inverse model inputs and the corresponding processing
parameters as outputs. The feasibility of the proposed method was demonstrated by exper-
imental manufacturing of cups with optimal geometry derived from the computational
method. In almost all points, the deviations between predicted and measured points were
all below 3.5%. Like in the previous paper, the authors did not take into account that
different inputs can produce identical results.

Leite et al. [3,4] developed models to predict and optimize the thermoforming using
ANN defining the processing parameters set as the networks’ inputs and deviations in part
thickness as the outputs. For the ANN data, thermoformed samples were experimentally
produced using a 1 mm polystyrene sheet, using a fractional factorial design (2k−p). The
studied processing variables included heating time and the electric heating power of
the heater panel vacuum time pressure. Preliminary computational studies were carried
out with various ANN structures and configurations with the test data, until reaching
satisfactory models and, afterward, multi-criteria optimization models were developed.
The validation tests were developed with the models’ predictions and solutions showed
that the estimates for them have prediction errors within the limit of values found in
the samples produced. Thus, it was demonstrated that, within certain limits, the ANN
models are valid to simulate the vacuum thermoforming process using multiple parameters,
decision variables and objectives, by means of reduced data quantity.

Sasimowski [5] used experimental data to determine a utility function by regression
analysis in order to calculate the thickness distribution of the thermoformed parts. This
utility function was used to optimize the operating conditions of the machine, namely
heating time, heater temperature, pre-blow time, vacuum time and cooling time. In
all of these works, the ANN was used to predict the behavior evolution of the thermo-
formed parts thickness during information. Thus, no specific optimization method was
described/applied to optimize the results that the trained ANN predicted, being these
modeling results were used to optimize the process based on empirical knowledge.

In all of these works, it was not clear what is the optimization method used. In fact,
ANN is not an optimization method by itself, but a way of predicting output values from a
set of input data, obtained experimentally or computationally, very similar to a regression
model. The ANN, in the present context, works as a modeling program with the aim
of predicting the process performance. To optimize the process, it is necessary to link a
modeling routine with an optimization method through an optimization methodology able
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to deal with the objectives to be optimized, as will be described in Section 3. Additionally,
most of these works are based on experimental data, which makes the process unrealistic
given the time required to do the experiments.

In addition to the general studies on the optimization of thermoforming, it is possible
to find in the literature studies aiming at controlling the different stages of the process,
namely the heating and forming stages.

Regarding the heating stage, the main objective is controlling the sheet temperature
and the temperature fields developing during this step. This is very complex since the
heating methods are indirect, that is, the sheet temperature is controlled by adjusting the
heaters variables, and not directly. Furthermore, determining an optimum processing
window in thermoforming process with the aim of achieving high quality parts is critical.
In practice, the infrared heating stage is crucial since the final thickness distribution of the
thermoformed part is closely related to the temperature of the sheet.

Wang and Nied [6] used a numerical approach based on the finite element method to
obtain inverse solutions for the thermoforming processes. This was done by specifying a
desired final thickness distribution and iteratively solving the system for the temperature
field needed to obtain the desired result. A uniform initial temperature distribution is
used as the initial guess for the iterative optimization procedure. Subsequently, updated
non-uniform initial temperatures are obtained, based on the complete process of simulation
for achieving the final thickness distribution during thermoforming. Suitable inverse
solutions are achieved once the desired thickness distribution is obtained within a specified
tolerance. The sensitivity of final part thickness to perturbations in temperature distribution
is also investigated and shown to be a potential problem for precise thickness control in
industrial applications.

Bordival et al. [7] developed an automatic optimization method of the ovens geometric
parameters to be used in thermoforming. The first time, a simple analytical model, coupled
to a nonlinear constraint optimization method (Sequential Quadratic Programming) allows
one to find the best set of parameters, according to a cost function representing, for example,
the heat flux uniformity. Then, with these optimized parameters, an accurate raytracing
method is used to compute the irradiation resulting from the interaction between lamps and
the thermoplastic sheet. Finally, a control volume method is implemented to solve the three-
dimensional transient heat transfer equation, where the radiation source is approximated
by a diffusion Rosseland model.

Chy and co-authors [8,9] presented a method to control the surface temperature of a
plastic sheet using model predictive control (MPC) to solve the inverse heating problem
(IHP). The model was implemented on a complex thermoforming oven with a large number
of inputs and outputs for precise control of sheet temperatures under hard constraints
on heater temperature and their rates. Even though the MPC controller can handle a
multivariable process, the large number of computations makes it difficult to apply to large
systems such as multi-zone temperature control in a thermoforming machine.

Li and co-authors [10,11] suggested a methodology to compute and optimize the sheet
temperature by controlling the heater temperature. The steady-state optimum distribution
of heater power is first ascertained by a numerical optimization to obtain a uniform sheet
temperature. The time-dependent optimal heater input is then determined to decrease the
temperature difference through the direction of the thickness using the response surface
method and the D-optimal method. The results show that the time-dependent optimum
heater power distribution gives an acceptable uniform sheet temperature in the forming
temperature range by the end of the heating process.

More recently, Erchiqui and co-authors [12–15] proposed the application of two differ-
ent meta-heuristic algorithms, Simulated Annealing (SA) and Evolutionary Algorithms
(EA) to detect, from a fixed and random set of temperatures of the radiant zones of the
oven, the best temperatures that must be assigned to the heating zones in order to ensure a
uniform sheet temperature. For numerical heating analysis, the nonlinear heat conduction
problem is solved by a specific 3D volumetric enthalpy-based computational method.
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However, these studies only considered the effects of the heating phase on the final
thickness distribution of the thermoformed parts, having a starting point a sheet with
constant thickness, that is, the aim is to determine how to heat the different zones of the
sheet in order to induce uniform thickness on the final part.

Furthermore, an important limitation of the methodologies proposed in the literature
lies in the fact that the process is intrinsically multi-objective, and the different stages
cannot be considered independent. In reality, the results of one stage of the process depend
strongly on the remaining stages, the final part thickness distribution does not depend only
on the heating, but also on the initial thickness of the sheet used. Therefore, the main aim
of the work is to apply multi-objective strategies to optimize the plastics thermoforming
process. The intention is to propose a more global methodology that can take into account
the different steps and characteristics of this process, as described in the next section.
However, due to its complexity, only the stage of the sheet deformation will be considered
here. More specifically, the aim is to study the influence of the initial sheet thickness
distribution on the optimization of the process. For that purpose, three different initial
thickness distribution sheets will be considered. As far as we know, there is no work
in the literature that addresses the problem from this point of view. From an industrial
perspective, the fabrication of the sheets to be thermoformed must be changed if economic
and/or environmental gains can be obtained.

The paper is organized as follows: in Section 2 the details of thermoforming related to
optimization are explained, Section 3 addresses the concepts of multi-objective optimization
and the algorithm used, in Section 4 the results and discussion for the optimization of
thermoforming are presented and in Section 5 the conclusions are stated.

2. Thermoforming
2.1. The Process

Figure 1 illustrates schematically the thermoforming phases and the optimization
sequence. The phase order is indicated by open arrows and consist basically of: (A)
producing a plastic sheet, typically by extrusion; (B) heating the sheet until it can be
deformed without breaking; (C) shaping the sheet against the contours of a mold by
applying a pressure difference on both sides, either by vacuum or pressurized air; (D)
cooling the product obtained to make it possible to remove it from the mold and (E) remove
the part from the mold. Each one of these phases has particular characteristics that must be
considered when optimizing the process, either in terms of what concerns the operating
conditions (e.g., heating and cooling times, air pressure and oven temperatures) and/or
design parameters (e.g., sheet thicknesses, heater location, heating methods and mold
geometry) [16,17].

Figure 2 shows schematically how the shaping process evolves. The heated sheet is
forced to deform by the action of a pressure differential between both sides of the sheet.
Initially, this deformation is uniformly distributed, but when it touches the cold mold
surfaces the plastic material is frozen and only the remaining part of the sheet continues
to deform. This implies that the last part of the sheet touching the mold will present the
lowest thickness, since that the total volume of the sheet is conserved. This corresponds to
the region of the lower corners in Figure 2B.
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thickness during deformation.

Therefore, the most important objective when producing a thermoformed part is to
guarantee that its final thickness is as uniform as possible. This requirement is necessary
in order to be possible to accomplish two main objectives, mainly in the shaping phase:
to minimize the amount of material necessary and to maximize the mechanical behavior
and/or other required characteristics.

To produce a part with uniform thickness, it is possible to act in different phases of
the process. First, as shown in Figure 3, it is possible to produce sheets with different
thicknesses at different regions of the part to be produced. Therefore, in the regions where
more deformation occurs during the shaping phase, and, as a consequence, the thickness
of the part will be smaller, it is possible to increase the thickness of the original sheet. Three
situations are possible, as illustrated in Figure 3: (A) constant sheet thickness, (B) variable
sheet thickness in one direction (x) and (C) variable sheet thickness in two directions (x and
y). However, the processes used to produce the sheets are different, which must be taken
into account in any optimization process since the costs can be very different as well. While
(A) and (B) can be produced by extrusion, (C) must be produced by injection molding,
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given the specific and complicated geometry. While the sheet with constant thickness (A)
can be produced in the usual way, using a flat die and a calender, to produce sheet (B) it is
necessary to change the die and the calender rolls in order to induce different thicknesses.
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Secondly, the sheet deformation during the shaping phase depends on the mechanical
properties of the polymeric material used at the heating temperature. This temperature
dependency makes it possible to obtain different sheet deformations in order to control
the thickness distribution, that is, in the regions where more deformation is required, the
temperature must be lower [11,18]. Figure 4 illustrates schematically the process of heating
the plastic sheet. Several parameters can be considered: (i) the number of heaters, for
example, for sheets with higher thickness two heaters can be used, one each side; (ii) the
distance between the heaters bank and the sheet; (iii) the dimensions of each individual
heater and (iv) temperature of each individual heater. This approach is illustrated in
Figure 4, where a mesh of heaters (e.g., ceramic heaters) can be used, each one with the
possibility of having different temperature distributions. In any case, it is fundamental
to control the correct temperature in the entire sheet surface. In practice, and given the
lower heat conductivity of plastics, a temperature gradient along the thickness of the sheet
will arise. Furthermore, and if radiation heating is used, due to geometric reasons, the
temperature at the center of the sheet will be higher than in its edge [19,20]. From the
practical point of view and after the heating phase, the temperature of the entire sheet
must be in the range of the forming temperatures. This temperature window is intrinsic to
each polymer.
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Third, a straightforward way of minimizing the difference of thicknesses in the part
thermoformed is related to the process of shaping. For that purpose, several thermo-
forming variants can be used: female mold (as illustrated in Figure 2), male mold, plug
assisted, bubble forming, bubble forming and plug assisted and other combinations of the
above [21–25].

2.2. Numerical Modeling

During the inflation process, the polymer sheet deforms due to the pressure difference
imposed on both sides. Additionally, due to the deformation process, internal stresses are
generated, which will limit the deformation promoted by the pressure difference. If the
balance from those two loads is not null the velocity of the sheet changes, that is, there is a
non-null acceleration.

For the adopted numerical approach, the polymer sheet is discretized into different
computational cells as illustrated in Figure 5A. Moreover, the sheet is assumed to be thin
enough to allow resorting to a membrane formulation, thus it is discretized into planar
triangular cells each one with thickness tk (Figure 5B).

Considering the conditions above, the conservation of linear momentum is given by:

ρ
∂2u
∂t2 = ∇·σ+ ρg, (1)

where t is time, ρ is the density, u is the displacement vector, σ is the Cauchy stress tensor
and g is the gravitational acceleration vector. Following the classical Finite Volume Method
approach, Equation (1) is integrated into the space in a computational cell with volume
Ω and surrounded by the surface Γ, which, after applying the Gauss Divergence theorem
results in: ∫

Ω
ρ

∂2u
∂t2 dΩ︸ ︷︷ ︸

Inertia

=
∮

Γ
n ·σdΓ︸ ︷︷ ︸

Surface Forces

+
∫

Ω
ρgdΩ︸ ︷︷ ︸

Body Forces

, (2)

which shows that the acceleration of the computational cell is affected by the surface and
body forces. For the body forces, only the weight due to gravity is considered, which can
be obtained by:

FBody = ρgVc (3)

where Vc is the computational cell volume.
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Figure 5. Geometry and illustrative mesh (A) and computational cell (B) of the polymeric sheet.

The surface forces are of two types, namely external and internal forces. Following
the membrane formulation, the external forces are due to the pressure difference between
the inner and outer surfaces and the internal forces result from the stress induced by the
material deformation. Based on Equation (2), where, in each time step, the acceleration of
each computational cell is an explicit function of the applied loads, the surface forces are
the sum of the internal and external forces and can be calculated by the following equation:

FSur f ace =
∮

Γ
n ·σdΓ =

∫
AS

pnsdAS +
∫

A f

n f · τdA f = Fpressure + Finternal (4)

where p is the imposed pressure difference, τ the internal stress vector, AS the cell surface
area (see Figure 5), with normal vector ns and A f the cross-sectional cell area, with normal
vector n f . The internal forces are calculated at each cell cross section along the thickness.
Due to the quick deformation process that takes place in thermoforming, which has
been shown to be mostly elastic since the original shape of the sheet if the plastic part is
heated [26], for this problem, the relation between the internal stresses was assumed to be
based on the elasticity theory:

τ = C : ε (5)

where C is the stiffness fourth-order constitutive tensor and ε the strain tensor. In this,
τ and ε must be work conjugate pairs of stresses and strains respectively. Considering
the membrane formulation, the elastic solid undergoes through large displacements, large
rotations and large strains and non-linearity cannot be neglected, the proper work conjugate
pair of stresses and strains are the Second Piola–Kirchhoff stress tensor, for τ and the Green–
Lagrange strain tensor, for ε, which is given by:

ε =
1
2

(
FT·F− I

)
(6)

In Equation (6), F is the deformation gradient tensor, given by the derivative of each
component of the deformed position x vector with respect to each component of the
reference position X vector, and I is the unit tensor. This formulation is equivalent to the
hyperelastic Saint Venant–Kirchhoff model [27].

On the implemented explicit numerical procedure, at each time step all the loads are
calculated with Equations (3)–(7) and the acceleration of each cell is given by Equation (2).
This allows one to calculate the new cell position and advance to the next time step.

On all the numerical studies performed in this work an elastic modulus of 10 MPa was
employed, which is representative of HIPS at the usually employed processing temperature
of 140 ◦C [28]. Moreover, the material was assumed to be incompressible, thus, a Poisson’s
ratio of 0.5 was considered.
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2.3. Experimental Assessment

The modeling computational results were assessed using the circular cup illustrated
in Figure 6 [29]. The experimental work was performed on a modified Illig thermoforming
machine that allows individual monitoring and control of the main thermoforming vari-
ables. The heater bank included 110 Elstein 125 W ceramic radiators (each 120 × 60 mm).
Square portions of the sheet were cut and manually clamped (fixed) on all four sides,
in such a way that the material was not allowed to slide into the mold cavity. Once the
heating stage is completed and a uniform sheet temperature of 150 ◦C is reached, the
frame (holding the sheet) moves toward the forming station. The lower mold section
moves vertically, clamping the sheet circularly. The parts were vacuum-formed at 0.7 bar.
After forming and cooling, the cups were extracted, cut into four equal portions along a
line passing by the center of the base midpoint and their thicknesses along that line and
circumferentially were measured with a caliper (precision of 0.01 mm). At least five cups
were produced for each set of variables. The results are generally presented along the arc
length but correspond to averages in the circumferential direction. The material used in the
sheets is a mixture of 50% Polystyrene (PS Laquerene 1540) with 50% Impact Polystyrene
(HIPS Laquerene 7240), both produced by Elf-Atochem.
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The theoretical results were computed using a commercial software T-SIM using a
K-BKZ viscoelastic model whose material properties are described in [29] and by using the
OpenFOAM considering the hyperelastic Saint Venant–Kirchhoff model for the material.
As can be seen, the computational results show a good agreement with the experimental
measurements, the behavior of both theoretical models being very similar. In fact, re-
garding the simulation of the thickness distribution in thermoforming, it is possible to
find, throughout the literature, several works that use hyperplastic models (e.g., Ghobad-
nam [30], Bernard et al. [31], Oueslati et al. [32], Jeet et al. [33]) and viscoelastic models
(e.g., Cha et al. [34], Atami et al. [28]). Although researchers are increasingly turning to
viscoelastic models for thermoforming applications, according to O’Connor et al. [35], there
is little agreement on the best model to use for any given polymer material.

Furthermore, the use of hyperelastic models is based on the experience reported by
Schmidt and Carley [26] and Rosenzweig et al. [36]. They described the “plastic memory”,
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where blown bubbles returned completely to their original flat sheet form, either by
suddenly releasing the forming pressure or by annealing spheroidal bubbles at a proper
temperature. The observation of complete recovery has led the authors to conclude that
elastic-like behavior can be ascribed to the processes of blowing soft plastic sheets.

Therefore, and considering that the main objective of this work is to evaluate the
optimization process and not to predict more accurately the thickness distribution, and
for computation time reasons, a hyperelastic model was chosen to predict the plastic sheet
behavior during the forming process.

3. Multi-Objective Optimization
3.1. Multi-Objective Evolutionary Algorithms

In a Multi-Objective Optimization Problem (MOP), the goal is to minimize all ob-
jectives simultaneously, that is, to find feasible solutions where every objective function
is minimized. A multi-objective optimization problem with m objectives and n decision
variables can be formulated as follows:

min
x∈Ω

f(x) ≡ ( f1(x), . . . , fm(x))

subject to gi(x) ≤ 0, i ∈ {1, . . . , p}
hj(x) = 0, j ∈ {1, . . . , q}

l ≤ x ≤ u

(7)

where x is the decision vector, i.e., x ∈ Ω ⊆ Rn, f is the objective vector of m objective
functions, that is, f ∈ Ω ⊆ Rm, gi are p inequality constraint functions and hj are q equality
constraint functions and l and u are the vectors of the lower and upper bounds on decision
variables, respectively.

Solutions are compared in terms of Pareto dominance, that is, a solution x is said
to dominate a solution y (x ≺ y), if and only if fi(x) ≤ fi(y), for all i ∈ {1, . . . , m} and
f j(x) < f j(y) for at least one j ∈ {1, . . . , m}. If all objectives do not conflict with each
other, there exists a unique solution that minimizes all the objectives. In general, there are
multiple conflicting objectives giving rise to a set of optimal solutions—the Pareto optimal
set, instead of a single optimal solution. A feasible solution, x∗ is Pareto optimal if and only
if there is no other solution y ∈ Ω, y 6= x∗, that y ≺ x∗. These solutions are incomparable
to each other since none of these solutions can be said to be better than others.

In order to facilitate the decision-making process, an a posteriori method in which the
search for an approximation (as close and diverse as possible) to the Pareto optimal set is
performed before the decision-making process. Thus, the decision-maker can select the
most suitable solution from this set according to their preferences. The Pareto optimal set
provides valuable information with respect to the trade-offs between alternatives.

There is a large variety of approaches to solving MOPs. The designated classical (or
traditional methods) are known as scalarization methods in which the MOP is reformulated
and solved as a single objective optimization problem [37]. However, usually, scalarization
functions involve several parameters that can be difficult to define in order to obtain
different approximations to the Pareto optimal solutions. Other approaches are based
on Evolutionary Algorithms (EAs). EAs are meta-heuristics that mimic the process of
evolution of a population of individuals over generations. The fittest individuals to the
environment will survive over time and therefore will be likely to reproduce. The offspring
are generated by genetic operators, such as crossover and mutation and inherit the parent
characteristics. Basically, in EAs, a population of individuals representing a candidate
solution to the problem evolves using two mechanisms: Selection and Variation. The quality
of each individual is measured using a fitness function that, in optimization problems, is
related to the objective or objectives functions for single or multi-objective optimization
problems, respectively. The selection mechanism guarantees that the best individuals have
a higher probability of being selected for generating offspring. The variation mechanism
provides the generation of new individuals by application of genetic operators.
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Multi-Objective Evolutionary Algorithms (MOEAs) are EAs for solving MOPs. There
are advantages to using this type of algorithms. They work with a population of candidate
solutions, which makes it possible to approximate the entire Pareto optimal set in a single
run. The performance of any MOEA is strongly related to the efficacy of its Selection mech-
anism that guides the search in the objective space, balancing convergence and diversity
and also the variation mechanism that is responsible for the generation of offspring. A
common approach to simulating natural selection in MOEAs consists of assigning fitness
values to individuals in the population according to its quality for the MOP being solved.
In terms of the type of fitness function used, MOEAs can be classified into three different
types: dominance-, scalarizing- and indicator-based algorithms.

Dominance-based approaches calculate an individual’s fitness on the basis of the
Pareto dominance relation [38] or according to different criteria [39]. Scalarizing-based
approaches [40] incorporate traditional mathematical techniques based on the aggregation
of multiple objectives into a single parameterized function. Indicator-based approaches
use performance indicators for fitness assignment; pairs of individuals are compared using
some quality measure such as the hypervolume indicator [41,42]. The fitness value reflects
the loss in quality if a given solution is removed [42,43].

3.2. SMS-EMOA

The multi-objective evolutionary optimization algorithm used in this work is based
on the SMS-EMOA [32] and implemented in MATLAB. The outline of the SMS-EMO is
given by Algorithm 1.

Algorithm 1 SMS-EMOA

P0 ← initialize() % Initialize population at random with µ individuals
k← 0
Repeat

qk+1 ← generate(Pk) % generate offspring by genetic operators
Pk+1 ← selection(Pk ∪ {qk+1}) % select µ best individuals

k← k + 1
Repeat until the stopping criterion is fulfilled

The search starts from an initial population of µ individuals randomly generated
satisfying the boundary constraints of the decision variables. In each generation, one
parent is selected at random from the population and a single offspring is produced by
application of a variation procedure. In this procedure, a Gaussian mutation with covari-
ance matrix adaptation [44] is applied to the parent to produce a single offspring. Next, a
deterministic selection procedure selects the µ best individuals to the next generation. The
selection involves the non-dominated ranking of the population and the computation of
the hypervolume contribution of each individual of the population.

The non-dominated sorting procedure is illustrated in Figure 7. First, the Pk ∪ {qk+1}
individuals are ranked according to a non-dominated sorting procedure defining f fronts
of sets of non-dominated individuals [28]. A rank is assigned to each front representing its
level of domination. All solutions belonging to each front are incomparable. The first front
F1 contains the non-dominated solutions in Pk ∪ {qk+1}. The second front F2 contains all
non-dominated solutions in Pk ∪ {qk+1}\F1. This procedure is repeated until all solutions
in Pk ∪ {qk+1} are included in a front. Any solution in front Fi+1 is dominated by at least
one solution of front Fi for i ≥ 1.
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Afterward, the hypervolume contribution [39] of each individual in the last front
Pk ∪ {qk+1} is computed. Hypervolume definition guarantees that any non-dominated
solution will not be replaced by a dominated solution since non-dominated solutions will
have a higher hypervolume contribution than dominated ones. Hypervolume allows one
to obtain a well-distributed set of solutions in the objective space as well as to guide the
search toward the Pareto optimal front.

The hypervolume contribution computation is straightforward for problems with two
objectives [41]. The approximations to the ideal vector (z∗i ) and the nadir vector (znad

i )
computed in the current population are used to normalize objectives functions to the same
order of magnitude in the interval [0,1]. The normalized objective function f norm

i for the
i-th objective function is computed by:

f norm
i =

fi − z∗i
znad

i − z∗i
. (8)

The solutions of the worst-ranked non-dominated front are sorted in ascending order
according to the values of the first normalized objective function. A sequence that is
additionally sorted in descending order is obtained since the solutions are mutually non-
dominated. Then, the hypervolume contributions of the solutions can be obtained by
computing the rectangle area as illustrated in Figure 8. Given a sorted front with r solutions
F = {s1, s2 . . . , sr}, the hypervolume contribution of solution si (I(si)) is computed by [39]:

I(si) = ( f1(si+1)− f1(si))× ( f2(si−1)− f2(si)) (9)

where i = 2, . . . , r− 1.
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In Figure 8, it can be seen that the hypervolume contribution of solution b is inferior
to c, as the area covered by b is smaller, which implies that this solution will not be selected
in the next generation.

The µ best individuals in terms of the domination ranking are selected to be the
progenitors of the next generation. On the last front, the individual with the worst hy-
pervolume contribution is discarded. This process is repeated until the stopping criterion
is fulfilled.

4. Case Study
4.1. The Optimization Problem to Solve

In the present study, the cup illustrated in Figure 9 was thermoformed with constant
temperature, a female mold and three types of sheets (as shown in Figure 3): constant
thickness, linear spline variation and concentric spline variation. The aim was to determine
the sheet thickness profile in order to: (i) minimize the initial sheet volume, as it implies
less material use (f1); (ii) minimize the minimum thickness found in the cells of the mesh
used in the modeling calculations without hindering its mechanical behavior, as it is related
with the capacity of the polymer sheet deformability, representing indirectly a measure
of the thickness heterogeneity (f2); and (iii) minimize the thickness heterogeneity, that is,
the difference between the thickness of the part and a reference thickness, as defined by
Equation (10) (f3).

f3 =
1
M

M

∑
i=1

|t0 − ti|
t0

(10)

where M is the number of points located in a line defining the center of the cup in direction
x, t0 is a reference thickness defined by the user and ti are the thicknesses of the M points.

This is a bound constrained multi-objective optimization problem with the following
decision variables and objectives limitations (dimensions in meters):

2.0× 10−3 ≤ xi ≤ 4.0× 10−3

Minimum thickness ≥ 1.0× 10−4 (11)

where xi is the sheet thickness of the constant thickness along the x direction. The thickness
along the x direction is then imposed using a spline variation based on the 10 control
points (see Figure 3), or the thickness of the five control points determining the concentric
thickness variation, from the center to the border of the circle represented in Figure 3C.
First, three bi-objective problems were considered (Cases 1 to 3), one for each case of sheet
thickness variation and taking into account objectives f1 and f2, with the aim of showing
the effectiveness of the methodology in solving this problem. Then, two bi-objective
problems using objectives f1 and f3 were considered (Cases 4 and 5, respectively with spline
and concentric variations), the aim being to approach the solutions to a more realistic
industrial situation.

The multi-objective evolutionary algorithm used in this work is based on the SMS-
EMOA. Considering the characteristics of the multi-objective optimization problem being
solved, different configurations and search mechanisms can be adopted for SMS-EMOA.
Thus, as described in Section 3.2, Gaussian mutation with covariance matrix adaptation was
selected as the variation procedure, since the problem being solved comprises continuous
variables. simultaneously, the hypervolume metric was chosen to provide well-distributed
alternative solutions in the objective space. The configuration, including the parameter
values of the algorithm, takes into account the considerable computational effort required
to compute the objective function values. The population size was set to 20 individuals.
The selection was carried out using a uniform distribution and variation was performed
by the CMA evolution strategy operator [8], which is designed to work with real number
representations. The maximum number of generations was set to 20.
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Figure 9. Part dimensions: square cup with rounded vertices.

4.2. Results and Discussion

For Case 1, the sheet with constant thickness, both objectives (volume and thermo-
formed part minimum thickness) are in harmony, which means that the solutions of all
generations are located in a line and the single optimal solution is the one more near the
minimum of these two objectives. The same does not occur for the other two cases.

Figure 10 shows the random initial population and the non-dominated solutions of
the last generation for optimization Case 2, which comprises seven solutions. In this case,
the sheet thickness is a spline generated from the 10 decision variables represented by
black dots in the graphs, provided in Figure 11. It is clear that there is improvement along
the 20 generations. The Pareto optimal front of the last generation presents some gaps
between the solutions due to the thermoforming problem characteristics, as the location of
the 10 points used to generate the sheet spline thickness are fixed and equally spaced along
the x axis, which limits the search space.
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Figure 11. Thickness profile for solutions Ps1, Ps4 and Ps7 (Figure 9): left—black points are the
decision variables, dashed line is the spline and the continuous line the part thickness profile a x = 0;
right—sheet and part thickness profiles for x = 0.

The sheet and final part thickness profiles of solutions Ps1, Ps4 and Ps7 are illustrated
in Figure 11. As can be seen in the graphs, the thickness profiles perpendicular to the spline
(Figure 11-left), when moving from solutions Ps1 to Ps7 the final part profile, are more
uniform. From the point of view of the Decision-Maker, this seems to indicate that Ps7 is
the best solution for practical purposes. This evidences the great advantage of performing
this type of multi-objective optimization. Not only does the algorithm converge to better
solutions, but it can also provide the Decision-Maker a set of solutions from which he
can choose the best one to be applied in the real thermoforming practice, in this case,
solution Ps7. Another characteristic of the solutions shown is that for x equal to zero
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(Figure 11-left) the sheet spline thickness is the same in all cases (t ≈ 2.0 × 10−3 m), which
produces identical part profiles in the transversal direction, as illustrated by the graphs of
Figure 11-right.

Figure 12 shows the Pareto optimal solutions for all the cases studied. As can be seen,
in Case 3 (concentric spline), the optimization converges to five non-dominated solutions,
identified by black dots. The final part thickness profile of four solutions for this case, Pc1,
Pc2, Pc4 and Pc5 are represented in Figure 13 (solution Pc3 was not represented due to
its similarity with solution Pc2). The black dots identify the location of the points used
to generate the symmetrical concentric spline represented by a dashed line, the decision
variables. Again, from solution Pc1 to solution Pc5, the profile obtained is more uniform,
as in Case 2. Also, it is important to note that, in this case, the part thickness profile is the
same in all directions, as the sheet thickness presents an axisymmetric distribution.
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Figure 12. Non-dominated solutions for all cases: flat thickness, spline and concentric spline.

Figure 14 shows the part thickness profile of the unique solution found for Case 1,
Pf1. As can be seen, the profile obtained is very similar to that of solutions Ps7 and Pc5 of
the previous cases studied. This confirms that the optimization strategy is working and
identify solutions with physical meaning, since different starting points, corresponding to
diverse initial sheet thickness profiles, led to identical solutions when those solutions are
located in the same region of the search space, as can be seen in Figure 12.
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and the continuous line the part thickness profile a x = 0.

Finally, Figure 15 shows the non-dominated solutions of the 20th generation for Cases
4 and 5, considering spline and concentric sheet thickness variation and t0 equal to 0.5 mm.
As previously, the gaps between the solutions are due to the problem constraints related
to a limited search space. It is clear that, as expected, the concentric variation produces
much better results concerning the uniformity of the thickness. Solutions P’s3 and P’c3
are the same as those obtained previously, that is, solutions Ps7 and Pc5. However, the
solutions found depend strongly on the value chosen for t0. A practical alternative consists
of finding the desired thickness profile for the final part through a mechanical analysis, for
example, as suggested in the scheme of Figure 1.
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Figure 15. Non-dominated solutions of the 20th generation for Cases 4 (Spline) and 5 (Concentric), t0

equal to 0.5 mm.

Also, it is important to note that technically and economically it is difficult to produce
concentric initial sheet variations, as it implies high costs, mainly when the parts are to be
produced in big quantities, as is commonly the case.

5. Conclusions

Faced with the complexity of the real optimization problem in the field of plastics
thermoforming described in this paper, the applicability of a multi-objective optimization
strategy was proposed to deal with the process forming phase. The aim was to determine
the better sheet thickness distribution that allows the production of parts with the least
amount of material while assuring the appropriate characteristics of the final part. A
reduction of circa 30% in the volume of the material used can be obtained when comparing
the solutions of the initial population and the ones in the Pareto front.

The main scientific contribution of this work is to add a new approach to control the
thickness distribution of thermoformed parts, in addition to the variations of technique and
differential heating previously mentioned. Since the final thickness of the parts depends
on the initial thickness of the sheet, several solutions are proposed for adjusting the initial
thickness of the sheet in order to achieve the most favorable thickness.

The results obtained showed that the methodology proposed was able to capture the
singular features of the process allowing us to conclude that the strategy proposed might
be successfully applied in the optimization of the various steps of plastics thermoforming.
This work constitutes a further step to support design approaches associated with this
important plastics processing technology.
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