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Abstract: We apply the method of differential inequalities for the computation of upper bounds for the
rate of convergence to the limiting regime for one specific class of (in)homogeneous continuous-time
Markov chains. Such an approach seems very general; the corresponding description and bounds
were considered earlier for finite Markov chains with analytical in time intensity functions. Now
we generalize this method to locally integrable intensity functions. Special attention is paid to the
situation of a countable Markov chain. To obtain these estimates, we investigate the corresponding
forward system of Kolmogorov differential equations as a differential equation in the space of
sequences l1.

Keywords: inhomogeneous continuous-time Markov chain; weak ergodicity; rate of convergence;
sharp bounds; differential inequalities; forward Kolmogorov system

1. Introduction

In this paper we consider the problem of finding the upper bounds for the rate of
convergence for some (in)homogeneous continuous-time Markov chains.

To obtain these estimates, we investigate the corresponding forward system of Kol-
mogorov differential equations.

Consideration is given to classic inhomogeneous birth–death processes and to special
inhomogeneous chains with transitions intensities, which do not depend on the current
state. Namely, let {X(t), t ≥ 0} be an inhomogeneous continuous-time Markov chain with
the state spaceX = {0, 1, 2, . . . , }. Denote by pij(s, t) = P{X(t) = j|X(s) = i}, i, j ≥ 0, 0 ≤
s ≤ t, the transition probabilities of X(t) and by pi(t) = P{X(t) = i}—the probability that
X(t) is in state i at time t. Let p(t) = (p0(t), p1(t), . . . , )T be probability distribution vector
at instant t. Throughout the paper it is assumed that in a small time interval h the possible
transitions and their associated probabilities are

pij(t, t + h) =

 qij(t)h+αij(t, h), if j 6= i,

1− ∑
k∈X ,k 6=i

qik(t)h+αi(t, h), if j = i,

where supi≥0 ∑j≥0 |αij(t, h)| = o(h), for any t ≥ 0. We also suppose that the transition
intensities qij(t) ≥ 0 are arbitrary non-random functions of t, locally integrable on [0, ∞)
and, moreover, that there exists a positive number L such that

sup
i∈X

(
∑

k∈X ,k 6=i
qik(t)

)
≤ L < ∞, (1)
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for almost all t ≥ 0. Then the probabilistic dynamics of the process X(t) is given by the
forward Kolmogorov system

d
dt

p(t) = A(t)p(t), (2)

where A(t) is the transposed intensity matrix i.e., aij(t) = qji(t), i, j ∈ X .
We can consider (2) as the differential equation with bounded operator function in the

space of sequences l1 (see details, for instance in [1]) and apply all results of [2].
Throughout this paper by ‖ · ‖ (or by ‖ · ‖1 if ambiguity is possible) we denote the

l1-norm, i.e., ‖p(t)‖ = ∑i∈X |pi(t)| and ‖A(t)‖ = supj∈X ∑i∈X |aij(t)|. Let Ω be a set of
all stochastic vectors, i.e., l1 vectors with non-negative coordinates and unit norm. Then
‖A(t)‖ ≤ 2L for almost all t ≥ 0, and p(s) ∈ Ω implies p(t) ∈ Ω for any 0 ≤ s ≤ t.

Recall that a Markov chain X(t) is called weakly ergodic, if ‖p∗(t)− p∗∗(t)‖ → 0 as t→
∞ for any initial conditions p∗(0) and p∗∗(0), where p∗(t) and p∗∗(t) are the corresponding
solutions of (2).

We consider, as in [3], the four classes of of Markov chains X(t) with the following
transition intensities:

(i) qij(t) = 0 for any t ≥ 0 if |i− j| > 1 and both qi,i+1(t) = λi(t) and qi,i−1(t) = µi(t)
may depend on i;

(ii) qi,i−k(t) = 0 for k > 1, qi,i−1(t) = µi(t) may depend on i; and qi,i+k(t), k ≥ 1,
depend only on k and does not depend on i;

(iii) qi,i+k(t) = 0 for k > 1, qi,i+1(t) = λi(t) may depend on i; and qi,i−k(t), k ≥ 1,
depend only on k and does not depend on i;

(iv) both qi,i−k(t) and qi,i+k(t), k ≥ 1, depend only on k and do not depend on i.
Each such process can be considered as the queue-length process for the corresponding

queueing system MX
t /MX

t /1.
Then type (i) transitions describe Markovian queues with possibly state-dependent

arrival and service intensities (for example, the classic Mn(t)/Mn(t)/1 queue); type (ii)
transitions allow consideration of Markovian queues with state-independent batch arrivals
and state-dependent service intensity; type (iii) transitions lead to Markovian queues with
possible state-dependent arrival intensity and state-independent batch service; type (iv)
transitions describe Markovian queues with state-independent batch arrivals and batch
service. We can refer to them as a MX

t /MX
t /1 queueing model following the original

paper [4], see also [3,5,6].
The paper is organized as follows. Section 2 introduces a description of the problem.

Section 3 considers the explicit form of the reduced intensity matrices. In Section 4, we
obtain upper bounds for the rate of convergence. Section 5 concludes the paper.

2. Preliminaries

The problem of estimating the rate of convergence, like the very fact of convergence,
is very important for studying the long-run (limiting) behavior of continuous time Markov
chains with time varying intensities, see detailed discussion, examples and references in [7].
The simplest and most convenient for studying the rate of convergence to the limiting
regime is the method of the logarithmic norm, see, for example [1,3,8].

However, there are situations in which this approach does not give good results.
Next, we show the possibility of using a different approach in such cases, namely the

method of differential inequalities.
Another (but similar) approach is to use piecewise-line Lyapunov functions, see, for

example, [9–12].
Consider here the two simplest examples of bounding the rate of convergence for

differential equations.
Let firstly

dx
dt

= Px
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be a system of differential equations with x = (x1, x2)
T , and P =

(
−5 8

2 −5

)
. Put

d1 = 1, d2 = 2, and z = Dx = (d1x1, d2x2)
T . Then dz

dt = DPD−1z, both column sums

for P∗ = DPD−1 equal to −1. Hence the logarithmic norm γ(P∗) = supi

(
p∗ii + ∑j 6=i p∗ji

)
equals −1, and we obtain a sharp upper bound on the rate of convergence ‖z(t)‖ ≤
e−t‖z(0)‖. Such a situation is typical if the matrix of the considered system is essentially
non-negative (i.e., all off-diagonal elements are non-negative for any t ≥ 0). Note that the
corresponding eigenvalues of P are −1,−9.

On the other hand, let P =

(
−3 8

−2 −3

)
. Then corresponding eigenvalues of P

are −3 ± 4i. On the other hand, the “weighting” logarithmic norm P is not less than
1. In principle, here it is also possible to reduce the matrix to the exact value of the
logarithmic norm (−3), see [2], but the corresponding transformation will be complex and
difficult to implement. The best result (Ce−3t) here can be obtained using the Lyapunov
function (which does not work well in a countable situation), but the use of differential
inequalities gives us an estimate like Ce−(3+ε)t for any positive ε, see the corresponding
description below, in Section 4. This approach deals with the sums of the columns for
various combinations of the signs of the coordinates of the solutions of the system; it is
described further in Section 4. It was first proposed in our recent papers; see [3] for the case
of finite Markov chain with analytical (in t) intensities.

In this paper, it is shown that this method can be applied in a more general situation
of locally integrable intensities, and, which is most difficult, for a countable chain that does
not lend itself to direct reasoning and requires rather fine approximation estimates.

3. Explicit Forms of the Reduced Intensity Matrices

Due to the normalization condition p0(t) = 1−∑i≥1 pi(t), we can rewrite the system (2)
as follows:

d
dt

z(t) = B(t)z(t) + f(t), (3)

where
f(t) = (a10(t), a20(t), . . . )T , z(t) = (p1(t), p2(t), . . . )T ,

B(t)=


a11−a10 a12−a10 · · · a1r−a10 · · ·
a21−a20 a22−a20 · · · a2r−a20 · · ·
· · · · · · · · · · · · · · ·

ar1−ar0 ar2−ar0 · · · arr−ar0 · · ·
...

...
...

...
. . .

. (4)

Let y(t) = z∗(t) − z∗∗(t) be the difference of two solutions of system (3), and
y(t) = (y1(t), y2(t), . . . , )T . Then, in contrast to the coordinates of the vector p(t), the
coordinates of the vector y(t) have arbitrary signs.

Consider now the ‘homogeneous’ system

d
dt

y(t) = B(t)y(t), (5)

corresponding to (3). As was firstly noticed in [13], it is more convenient to study the rate
of convergence using the transformed version B∗(t) of B(t) given by B∗(t) = TB(t)T−1,
where T is the upper triangular matrix of the form
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T =



1 1 1 · · · 1 · · ·
0 1 1 · · · 1 · · ·
0 0 1 · · · 1 · · ·
...

...
...

. . . · · ·
0 0 0 · · · 1 · · ·
· · · · · · · · · · · · · · · · · ·


. (6)

Let u(t) = Ty(t). Then the system (5) can be rewritten in the form

d
dt

u(t) = B∗(t)u(t), (7)

where u(t) = (u1(t), u2(t), . . . )T is the vector with the coordinates of arbitrary signs. If one
of the two matrices B∗(t) or B(t) is known, the other is also (uniquely) defined.

The approach based on the differential inequalities (see [3]) seems to be the most
general. On the other hand, if B∗(t) is essentially non-negative (i.e., all off-diagonal
elements are non-negative for any t ≥ 0), then the method based on the logarithmic norm
gives the same results, but in a much more visual form, see [3].

Let us write out the form of the matrix B∗(t) for each class of chains; in more detail,
the corresponding transformations can be seen in [3].

For X(t) belonging to class (i) (inhomogeneous birth–death process) one has

B∗(t) = TB(t)T−1 =
−
(
λ0 + µ1

)
µ1 0 · · · 0 · · · · · ·

λ1 −
(
λ1 + µ2

)
µ2 · · · 0 · · · · · ·

. . .
. . .

. . .
. . .

. . . · · ·

0 · · · · · · λr−1 −
(

λr−1 + µr
)

µr · · ·

· · · · · · · · · · · · · · · · · · · · ·

. (8)

For X(t) belonging to class (ii) (which corresponds to the queueing system with batch
arrivals and single services), one has

B∗(t) = TB(t)T−1 =



a11 µ1 0 · · · 0

a1 a22 µ2 · · · 0

a2 a1 a33 µ3 · · ·

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. (9)

For X(t) belonging to class (iii) (which corresponds to the queueing system with
single arrivals and group services), one has B∗(t) = TB(t)T−1 =

−
(
λ0 + b1

)
b1 − b2 b2 − b3 · · · · · ·

λ1 −
(
λ1 + ∑

i≤2
bi
)

b1 − b3 · · · · · ·

. . .
. . .

. . .
. . .

. . .

0 · · · · · · λr−1 −
(
λr−1 + ∑

i≤r
bi
)
· · ·

. . .
. . .

. . .
. . .

. . .

. (10)

Finally, for X(t) belonging to class (iv) (which corresponds to the queueing system
with state-independent batch arrivals and group services), one has
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B∗ = TB(t)T−1 =



a11 b1 − b2 b2 − b3 · · · · · ·
a1 a22 b1 − b3 · · · · · ·

. . .
. . .

. . .
. . .

. . .

ar−1 · · · · · · a1 arr · · ·
· · · · · · · · · · · · · · · · · ·


, (11)

where

T−1 =



1 −1 0 · · · 0 · · ·
0 1 −1 · · · 0 · · ·
0 0 1 · · · 0 · · ·
...

...
...

. . . · · ·
0 0 0 · · · 1 · · ·
· · · · · · · · · · · · · · · · · ·


.

Remark 1. Generally speaking, for models of the first and second classes, the matrix B∗(t) is
always essentially non-negative; at the same time, for models of the third and fourth classes, this
requires some additional assumptions. Under essential non-negativity of B∗(t) all bounds on the
rate of convergence can be obtained via logarithmic norm, see [3]. However, in the general case, this
approach may not work, and the method of differential inequalities described in our previous papers,
see [3,14], would be more effective.

Thus, in this paper we will consider chains of the third and fourth classes with a
countable state space. For simplicity of calculations, we will additionally assume that the
size of the simultaneously arriving and/or servicing group of customers does not exceed
some fixed number, say R, i.e., that all qij(t) = 0 for |i− j| > R and any t ≥ 0.

Let {di, i ≥ 1} be a sequence of non-zero numbers such that infk |dk| = d > 0. Denote
by D = diag(d1, d2, . . . ) the corresponding diagonal matrix, with the off-diagonal elements
equal to zero. Let w(t) = Du(t) in (7), then we obtain the following equation

d
dt

w(t) = B∗∗(t)w(t), (12)

where
B∗∗(t) = DB∗(t)D−1 =

(
b∗∗ij (t)

)
i,j≥1

. (13)

If we write out B∗(t) =
(

b∗ij(t)
)

i,j≥1
, then

b∗∗ij (t) =
di
dj

b∗ij(t), |i− j| ≤ R, (14)

and our assumption implies b∗∗ij (t) = b∗ij(t) = 0 for any t ≥ 0 if |i− j| > R.

4. Upper Bounds on the Rate of Convergence

Let us first consider a general finite system of linear differential equations, which we
will write in the form

d
dt

x(t) = B∗(t)x(t), t ≥ 0, (15)

where x(t) = (x1(t), . . . , xS(t))
T , and let D now be the corresponding finite diagonal matrix.

The simplest situation with analytical (in t) coefficients b∗ij(t) has been studied in [3,14,15].
The method of estimating under such assumption is based on the fact that, in this case, on
any finite interval, each coordinate has a finite number of sign changes, which means that
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the semiaxis can be divided into intervals, on each of which the signs of the coordinates
are constant. Consider such an (t1, t2). Choose the signs of dk-s so that all dkxk(t) > 0.
Hence ‖w(t)‖ = ‖x(t)‖D = ∑S

k=1 dkxk(t) ≥ d‖x(t)‖1 can be considered as the correspond-
ing norm.

Let ∑S
i=1 b∗∗ij (t) ≤ −αD(t), for any j, then

d
dt
‖w(t)‖ = d(∑k wk)

dt
= ∑

i,j
b∗∗ij (t)wj(t) ≤ −αD(t)‖w(t)‖. (16)

Then

‖w(t)‖ = ‖Dx(t)‖1 ≤ e−
∫ t

s αD(τ)dτ‖Dx(s)‖1, t1 < s < t < t2, (17)

for the corresponding matrix D and corresponding function αD(t). Hence, we have

‖x(t)‖1 ≤
max |dk|
min |dm|

e−
∫ t

s αD(τ)dτ‖x(s)‖1, (18)

for any t1 < s < t < t2, and by continuity, for all t1 ≤ s < t ≤ t2.
Let now s, t be arbitrary, 0 ≤ s ≤ t < ∞. Then for any interval with fixed signs of

coordinates we have bound (18) with the corresponding D and αD(t). Let now α∗(t) =
min αD(t), and d∗(S) = d∗ = max |dk |

|dm | , where the minimum and maximum are taken over
all possible combinations of coordinate signs of the solution x(t), for any 0 ≤ s ≤ t. Then
we obtain the following general estimate

‖x(t)‖1 ≤ d∗(S)e−
∫ t

s α∗(τ)dτ‖x(s)‖1, (19)

Let there exist positive numbers M, β such that

e−
∫ t

s α∗(τ) dτ ≤ Me−β(t−s), 0 ≤ s ≤ t. (20)

Consider now an arbitrary interval [0, t∗]; if our original coefficients are locally inte-
grable, they can be approximated arbitrarily accurately by a continuous functions. In turn,
a continuous function can be approximated arbitrarily accurately by an analytic function.
As a result, instead of the integrable B∗(t), we obtain an analytic B̄∗(t), such that

∫ t∗

0
‖B∗(τ)− B̄∗(τ)‖dτ ≤ ε. (21)

Denote now by W(t, s) and W̄(t, s) the Cauchy operators for (15) and the respective
system with matrix B̄∗(t). Then, if (20) holds, in accordance with Lemma 3.2.3 [2] (see [2],
pp. 110–111) we obtain

‖W(t, s)− W̄(t, s)‖ ≤ Md∗e−β(t−s)
(

eMd∗
∫ t

s ‖B
∗(τ)−B̄∗(τ)‖dτ − 1

)
≤ Md∗e−β(t−s)

(
eMd∗ε − 1

)
. (22)

Hence we have the following statement.

Lemma 1. Let all b∗ij(t) be locally integrable on [0, ∞). Let inequality (20) hold. Then

‖x(t)‖1 ≤ d∗(S)Me−β(t−s)‖x(s)‖1, (23)

for any solution of (15) and any 0 ≤ s ≤ t.
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Let us now return to a countable system (7) and consider the corresponding
truncated system

d
dt

u(n, t) = B∗(n, t)u(n, t), (24)

where B∗(n, t) =
(

b∗ij(t)
)n

i,j=1
.

Below we will identify the finite vector with entries (a1, . . . , an) and the infinite vector
with the same first n coordinates and the others equal to zero.

Rewrite system (24) as

d
dt

u(n, t) = B∗(t)u(n, t) + (B∗(n, t)− B∗(t))u(n, t). (25)

Denote by V(t, s) and V(n, t, s) the Cauchy operators for (7) and (24), respectively.
Suppose that n > S, and that, in addition

u(0) = u(n, 0) = u(S, 0), ‖u(0)‖1 ≤ 1. (26)

Then one has from (7)

u(t) = V(t)u(0) = V(t)u(n, 0). (27)

On the other hand, from (25) we have

u(n, t) = V(t)u(n, 0) +
∫ t

0
V(t, τ)(B∗(n, τ)− B∗(τ))u(n, τ) dτ. (28)

Hence in any norm we obtain the bound

‖u(t)− u(n, t)‖ ≤
∫ t

0
‖V(t, τ)‖‖(B∗(n, τ)− B∗(τ))u(n, τ)‖ dτ. (29)

Denote sup |dk |
|dm | = d̂ < ∞, where supremum is taken over all possible combinations of

coordinate signs of the solution u(t) of (7), under assumption |k−m| = 1.
Put now D∗ = diag(d∗(1), d∗(2), . . . ).
Note that according to (14) the matrix B∗∗(t) has nonzero entries only on the main

diagonal and at most R diagonals above and below it. Then

‖B∗(t)‖1D∗ = ‖B∗∗(t)‖1 ≤ K = 2Ld̂R, (30)

for almost all t ≥ 0. Then
‖V(t, s)‖1D∗ ≤ eK(t−s) ≤ eKt∗ . (31)

On the other hand, all elements of the first n−R columns of the matrix (B∗(n, τ)− B∗(τ))
are zeros for any τ ≥ 0. Hence, all the first n− R coordinates of the corresponding vector
(B∗(n, τ)− B∗(τ))u(n, τ) are also zeros too, and

‖(B∗(n, τ)− B∗(τ))u(n, τ)‖1D∗ ≤ K
n

∑
k=n−R

d̂k|uk(t)|. (32)

Put D∗∗ = diag(d̂2, d̂4, . . . ) and w∗(t) = D∗∗u(t).
Then, instead of (30) and (31) we have

‖B∗(t)‖1D∗∗ = ‖D∗∗B∗D∗∗
−1
(t)‖1 ≤ K∗ = 2Ld̂2R, (33)

and
‖V(t, s)‖1D∗∗ ≤ eK∗(t−s) ≤ eK∗t∗ , (34)

respectively.
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Then

‖u(n, t)‖1D∗∗ =
n

∑
k=1

d̂2k|uk(n, t)| ≤ eK∗t∗
S

∑
k=1

d̂2k|uk(n, 0)| ≤ eK∗t∗ d̂2S
S

∑
k=1
|uk(n, 0)|. (35)

Then (35) and (26) imply the bound

d̂2n−2R
n

∑
k=n−R

|uk(n, t)| ≤
n

∑
k=1

d̂2k|uk(n, t)| ≤ eK∗t∗ d̂2S. (36)

Then

n

∑
k=n−R

d̂k|uk(n, t)| ≤ d̂n
n

∑
k=n−R

|uk(n, t)| ≤ eK∗t∗ d̂2S+2R−n. (37)

Finally, for the right-hand side of (29) we have the bound

∫ t

0
‖V(t, τ)‖1D∗‖(B∗(n, τ)− B∗(τ))u(n, τ)‖1D∗ dτ ≤ eKt∗Kt∗eK∗t∗ d̂2S+2R−n, (38)

which tends to be zero at n→ ∞.
Hence we have the following statement.

Lemma 2. Let assumptions of Lemma 1 be fulfilled for any S. Then, under assumption (26), and
for any fixed ε > 0, t∗ > 0, we obtain ‖u(t)− u(n, t)‖1D∗ < ε for sufficiently large n, for any
t ∈ [0, t∗].

As a result, Lemmas 1 and 2 guarantee an estimate of the form

‖u(t)‖1 ≤ Me−βt‖u(0)‖1D∗ . (39)

Consider now two arbitrary solutions p∗(t) and p∗∗(t) of the forward Kolmogorov
system (2) with the corresponding initial conditions p∗(0) and p∗∗(0). Denote by p∗0(t) and
p∗∗0 (t) the respective vector functions with coordinates 1, 2, . . . (i.e., without zero coordinates).

One can write u(t) = T(p∗0(t)− p∗∗0 (t)). Then (see for instance [8]), the following
inequality holds: ‖p∗(t)− p∗∗(t)‖1 ≤ 2

d‖u(t)‖1.
Finally we obtain the following statement.

Theorem 1. Let the assumptions of Lemma 1 hold for any natural S. Then X(t) is weakly ergodic
and the following bound on the rate of convergence holds:

‖p∗(t)− p∗∗(t)‖1 ≤
2M

d
e−βt‖p∗0(0)− p∗∗0 (0)‖1D∗ . (40)

Remark 2. A specific model (which belongs to both classes (iii) and (iv)) was investigated in [16]
by the method described here.

Namely, in this paper, the queueing model with possible transitions and respective
intensities of single arrival λ(t) and service of group of two customers µ(t) was consid-
ered. Hence

B∗(t) =
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=



−λ(t) −µ(t) µ(t) 0 0 0 · · ·
λ(t) −(λ(t) + µ(t)) 0 µ(t) 0 0 · · ·

0 λ(t) −(λ(t) + µ(t)) 0 µ(t) 0 · · ·
0 0 λ(t) −(λ(t) + µ(t)) 0 µ(t) · · ·
0 0 0 λ(t) −(λ(t) + µ(t)) 0 · · ·

. . .
. . .

. . .
. . .

. . .
. . .

. . .

· · · · · · · · · · · · · · · · · · · · ·


.

Let δ > 1 be a positive number. Put
d1 = 1, d2 = 1/δ, dk = δk−2, k ≥ 3 if all coordinates of solutions are positive;
|dk| = δk−1, k ≥ 1 otherwise.
Then one has,

α∗(t) ≥ min
[
λ(t)

(
1− δ−1

)
, µ(t)(1 + δ)−

λ(t)
(

δ2 − 1
)

, µ(t)
(

1− δ−1
)
− λ(t)(δ− 1)

]
. (41)

Moreover, d = δ−1, d̂ = δ, d∗k = δk−1, for k ≥ 1.
In particular, if the process X(t) is homogeneous i.e., λ(t) = λ and µ(t) = µ are

positive numbers, then
∫ ∞

0 α∗(t)dt = +∞ is equivalent to α∗ > 0 and this is equivalent to

0 < λ < µ. Put δ =
√

µ
λ . Hence,

α∗ = min

[(√
µ−
√

λ
)2

, λ

(
1−

√
λ

µ

)]
. (42)

In the paper [16] the specific example with periodic intensities was considered.
Namely, let λ(t) = 2 + sin 2πt and µ(t) = 4− cos 2πt. Put δ = 11

10 . Then,
∫ 1

0 α∗(t) dt ≥
1

22 > 0, X(t) is exponentially weakly ergodic and has the 1-periodic limiting mean (a
Markov chain has the limiting mean m(t), if limt→∞(m(t)− E(t, k)) = 0 for any k, E(t, k)
is the mathematical expectation of X(t) under initial condition X(0) = k ). Now, applying
the known truncation technique (see the detailed discussion and bounds in [8]), one can
compute all probability characteristics of the queue-length process X(t). Some of the
corresponding graphs are shown in Figures 1–4; see detailed discussion in [16].
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Figure 1. The mean E(t, 0) and E(t, 100) for t ∈ [0, 28], this figure shows the rate of convergence.
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Figure 2. The mean E(t, 0) and E(t, 100) for t ∈ [28, 29], this figure shows approximation of the
limiting mean.
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Figure 3. Probability p2(t) for t ∈ [0, 28] and initial conditions X(0) = 0 and X(0) = 100; this figure
shows the rate of convergence.
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Figure 4. Probability p2(t) for t ∈ [28, 29] and initial conditions X(0) = 0 and X(0) = 100; this figure
shows approximation of the limiting probability p2(t).
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5. Conclusions

In this paper, we have substantiated one of the most general methods for studying
the rate of convergence to limit characteristics for weakly ergodic Markov chains with
continuous time. Namely, the applicability of the method of differential inequalities for
countable inhomogeneous processes in the case of a nonsmooth dependence of intensities
as functions of time is shown. Thus, studying models with continuous time from the theory
of queues, biology, physics and other sciences, and obtaining guaranteed estimates of the
rate of convergence, we can both make sure that the influence of the initial conditions of the
system disappears with increasing time, and build the main characteristics of the system to
control them.
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