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1. Introduction
Throughout this paper, we use the following notations:

®  Zdenotes the ring of integers;
e N:={1,23..}

e Np:=Nu{0};

e forg € C, we denote

[x]:[x:q]:{ =
x, q=1

e (isanr-throotof 1 withr € N.

The purpose of this paper is not only to study the different types of higher-order
twisted (h,q)-Bernoulli numbers and polynomials, which generalize those of [1], but also to
study the relations between these numbers, polynomials, and Dedekind type sums and
related areas.

The main motivation is the study of a g-analogue of the generalized Barnes’ multiple
zeta function (i.e., g-Barnes” multiple zeta function in twisted version) and to introduce a
new type of Dedekind sum. We prove a Dedekind’s type reciprocity law for these new
sums. Our resulting generalized reciprocity formulas recover the results of Apostol [2] and
Ota [3].
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Many mathematicians have studied the so-called twisted Bernoulli numbers and poly-
nomials and their interpolation functions. For more details, one can see Cenkci et al. [4],
Hu-Min Soo [5], Bayad [6], Kim [7], Koblitz [8], and Simsek [9].

Leth € Nand gq,¢ € C, we assume that |g| < 1. By using p-adic g-integral theory,
Simsek [9] defined the generating function of the twisted (4, g)-Bernoulli numbers B ,(zhg) (9)
using the following generating function:

(0 py . logq" +t
}-5/‘7 (t) T thet -1 (1)
_ vy
- 7;) Bn,§ (Q) E
From the above equation, we have
Bot@) =zt S B @ ) =B = S =1,

where 41, denotes the Kronecker symbol and the usual convention of symbolically re-

placing (Béh) (9))" by B,(Zhé) (q) (cf. [9-12]). The link between the twisted (1, g)-extension of
Bernoulli numbers and Frobenius—-Euler numbers is given in [11] by the relation

B0)(0) (togq") Hu(&~1g ™) +nHy -1 (&g )

ng q gqh -1 4

where Hy, (1) denotes the Frobenius—Euler numbers, which are defined as follows.
For u € C with |u| > 1, the Frobenius-Euler numbers H,(u) are defined by using of the
following generating function:

1—u > ¢

et —u

H,,(u) are rational fractions of polynomials and were studied in great detail by Frobe-
nius [13], who was particularly interested in their relationship to Bernoulli numbers [14]
and relation (2.7) in [15].

One can observe that for ¢ = 1, B ")

n,g (Q) = Bigh)(q) (cf. [16]) and ;IES B’(lh)(q) = By, B
are the Bernoulli numbers (cf. [2-32]).
The twisted (4, q)-Bernoulli polynomials are defined in [9] by using the generating

function

(), _ (t+logg")e”
[e¢] t}’l
n=0 :
h) h)

We easily see that B, :(0,9) = B, z(q). From (2), we have

Bl = X} ) el ).

k=0
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The twisted (h, g)-Bernoulli numbers and polynomials of order v are given in [1,10,12])
by their generating functions:

FE1 @) = log !+ T — o
) = 1(:76] 3)
_r;)B hv H n!/
and
]-'C(,Z;)(t,x| a)= ]-'(v) ZB (x,q] 3);—7: 4)

—
where a = (ay, ..., ap).
By using (4), we obtain

v ! n _i 0
B e )= Y1) IBE D).

j=0

Substituting a= (a,...,a) (4), we see that

(v) >N v h v 1 ° b
T (t,x|a) =a"(logqg" +1) ((gqhet)”—l) e

(h v — t?’l
= Z B, (x,q | a )E
From the above, we arrive at the equality

2 B(hv (x,q | 2);—7: :( ) logq +1)° 2( S+]_1 )(éqh)ajet(x+aj)' (5)

Yl— :
From [10,12], we quote the distribution formula.

Theorem 1. [Distribution relation]. Let v, n, j € N. We have

(h0) — -1 = hv) Z.Z—i—z —
B, (zq|a)=] Y@t B —,q|a

by, by=0

- -
albi/ a = (alr' te rav)/ b = (bll' te rbv)-
1

*> v
where b =

It is well-known that the distribution relation is useful for the construction of distribu-
tion on the ring of p-adic integers Z,. For more details, see [8], Chap. II. On the other hand,
the above Theorem 1 and the results of Chapter II of Koblitz’s book [8] illustrate that the
twisted (h, g)-Bernoulli polynomials are p-adic in essence and have profound connections
with the special values of certain zeta functions.

In our paper, we will construct these zeta functions, and their study will be further
detailed in Sections 2 and 3.
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Let us now specify the definition of the twisted (%, q)-Bernoulli numbers of order v by
using the following generating function:

FUO(] @) = (logg" +1)°]
(6)

where @ = (ay,--- ,a,) and | t +1og(&q") |< min{| % PR % |} (cf. [10,12]).
By using (1) and (6), we are now ready to give the relation between the numbers

B}Shév) (q] ;) and B,ghg)(q) as follows. From (6), we obtain

(o) ﬁ tVl v log qa]h + a:t
Z m :H ]1/

T (Gq")het!
By substituting (1) into the above, we find that
o h 0) % m [ () 4 a;? n
) B )i =11L B, oo (47) @)

n=0 j=1n=0

By substituting v = 1 into (7), we have
h1)
B (q | a1) = a1By, ("),

Setting v = 2 and 4= (a1,a2) in (7), we have
— h2) " &
a
Z (9] (a1, a2)) 7 Z ,gul ZBlgﬂz ?)
n=0 1=0

By using the Cauchy product in the above, we obtain

Bl (g | (a1,82)) = ("Bl (9")ar +2 B, (4")as) ®)

i p(h i ol I (1 h o
where (lBéa)(q”)) B](gl (g") and (’Béa)(q”)> (lBéa>(q”)) # B](Jr)d a(g") if i AL
By (6), using geometric series, we find that

h,o — L >
Fo]a) = (=1)°(logq" +0°[[a; L (&ghet)ymnrtaone
]:1 yl/'“ryv:O (9)

_ g (1)
7,1;)311’5 (q|a)n!.
For a = (a,---,a), Relation (6) is reduced to

(hov) =N h Vv 1 ’
‘Fﬁ,q (t] a)=(logq"+1t)°a <(§q Mgt — )

where | t 4 log(&q") |<| 27” |.
Observe that if 4 = (1,---,1), then (6) reduces to

n

o ogq"+t\ & (ho), b
Z( |<1,~~,1>>=<°gﬂ> =Y B ) (10)
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which is studied in [1].

Without loss of generality and also for the simplicity of the calculations, in this section,
we treat in detail only the case where ; = (a,...,a). Here, our method can be extended to
the general case.

By replacing x by xy in (4) with y € N, we have

o n log q"* + at et
n;()B;g,lé’v (xy/‘” )t = (((gq hyagat — ) 1)°

After some calculations, we obtain

= oo  (log +atye (* :
ngolgifé (xqu| )Tl! - ((gqh)ayeayt _1)y (Z(@q ) >

From the above, we find that
[eS) 7o) tn
£t (3

is equal to

(log g"® + at)?
((Gq")wew' —1)

Thus, we have

v

S (14 (@) + (@)™ + -+ (gt

((@g"e -1 ( %)ﬁ _
logqh“-i-at)” ZB xy,q | a nl

by+2by+++(y—1)by_q
Z < % ) (ga ha)b1+2b2+~~+(y71)by,1e<x++>yt
by, - by i
bi, by-120 y
byt tby_1=v
By using (4), we have

o 12(1,0) -\ "
n;_OBn,r: (xy,q| a)]’l'

_ T kg
nyl kb <x+ “h=1"k )yt
@ (2g7) " tog g el

0
— bl/...%,lzo ( by, - ,by—l ) ((gqh)ayeayt — 1)0
by+--+by_1=0

R v have Y1 kb (B 21<1 g £

S VN { )@y E ) jant.

n=0 bl,---,by,120 bl/ T byil y n!
by+-+by =0

By identifying the coefficients of L; in the above formula, we obtain the g-Raabe

nl
multiplication formula for the polynomials B,%U) (x,q| a).
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Proposition 1 ([10,12]). Let 4= (a,---,a),v,y €N, g€ Cwith | q |< 1and " = 1 with
¢ # 1. Then, we have

y—1
a) " kby
(h o) _ . v h) k=1
B (xy,q| a) - y Zl>0 ( blr"';by_l )(gq)

blr---/by— =
b1+---+by,1:‘0
bi+2by+3b3+ -+ (y—1)by 1,
h, 1 2 3 1
B(g?( ! ,qylﬂ)
y
We can rewrite ]-' ( | a ) defined in (9), as follows:

FO| ) = (—1)1’[[01]-2(2)(10% ke k]‘[ﬁ (11)

k=0

—>t”

_ v3 )
_; vq\an'

Now, we give some identities related to our twisted Bernoulli polynomials of higher order.
Let

ti’l

() S o a%* _ v ph ragal
Fag (tx| a)=(logq+1t) (Go) = 1) —7;]8"@ (x,q \ a)n',

where 4 = (a,--- ,a). By the well-known identity

1 _ 1 + (gqh)aeat NS (gqh)a(mfl)ea(mfl)t
(Cq")tett — (Gq")meomt —1 '

we obtain

n mxt

> t v e
;B (mx,q| a ) (logq —i—at) W

ah — aah ajt ’ 1 ?
log q +at “em <Z ]> (Wem_l

=

v
(logq +ut e (gum ahmpamt _ 1>
X<1+§{Zqﬂheat+ _|_€ m— 1 quh( )ea(m_l)t)
- , o 1 ’
= (logq” +at> e (émﬂqahmemmf_‘l)
(% a_ah\ay aqat (xa ah\2wp 200at
S I O [

01 ey 120

« (gaqah)ucm,la(mfl)ezxm,la(mfl)t

B log g™ + at vemxt y ( v )
(éfqh)maemut -1 50 K1, 01

% (gaqah>a1+2a2+---+(m71)a,,,,1eut(uq+21x2+~~-+(m71)u¢m,1).
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From the above, we have

() tn
Z B,gflév) (mx,q | ;> p}

n=0

_ m™? (log g™ + atm ° Y ( v )
av (é’q)ameamt -1 w150 N1, , M1

x, 0204+ (m—1)ay, 1 )
atm| -4+ ——"-—————""—
a ahyay+20p+-+(m—1)ay, <ﬂ m
x (E0g°hy a2t (m—T)an 1,

_ (am)fv Z ( . IU/ - ) (gaqah)uc1+21x2+---+(m71)1xm,1

Q1 ey —120

ucl +20p 4o+ (m—1)ay 1 at"
X Z B éma ( m = /qam 7’1! .

By comparing the coefficients of t" on both sides of the above, we arrive at the
following result.

Proposition 2. Lef = (a,---,a),v,meN, g€ Cwith| g |<1and {" = 1with & # 1.
Then, we have

B(h,v) mx, E’ - (ma)*" ( (% )
vi (mxq|d) = (ma) P SR (P

a1+ _1=0

<@ Bl (5 + L g | d),

wherey = aq + 2y + -+ -+ (m — Day, 1.

Remark 1. We give some particular cases with = (a,---,a).

e Taking q — 1, by Proposition 2, we obtain

(h,l)) - —_ n—o 0 ay (hZ) l —
B”,'Z (mx | @) = (am) o ;1>0 ( A1, ey K1 )§ B”é’m”(a +m | a).

a1+t 1=0

e Inaddition, if § = 1 in the above, we deduce the well-known Carlitz’s multiplication formula

[17]:
©) (mx) = m"~® v (%, Y
B (mx) = B (X +4).
(mx) =m M,HWZW]ZO ( &y, ) (u m)

Wty =0
*  Ifv = 1in Proposition 2, then the Raabe formula for the usual Bernoulli polynomials is given
by
m—1 ]
Bn(mx) — 1 Z B, (x + m) (12)

j=0

e In[23], Kim investigated several properties of symmetry for the p-adic invariant integral on
Zy. By using symmetry for the p-adic invariant integral on Z,, Kim proved (12). Ifa = 1
and ¢ =1, 4" — A, then we arrive at Luo’s formula [26]:

BY (mx, A) = m"? ) ( . .v . ))LVB,(f’) (x + %,/\"‘).

a1, -1 >0
Wty =0
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By using (12), we obtain

[ tn
LB (a1 d)
—v

= (logg™™ + utm)vn;

emxt

v agahyy paty
v ((th)umeamt _ 1)1} 061,--,0¢Zm:120( K1, &1 )(g q ) e

From the above, we obtain

2 (h —\ t"
YE)B,S/;) (mx,q | a);

" (am)"

~v,ocm71 ) &' ayZB"@W( " a )T

= (am)™°

0] ey — 1>0< a1

(amt)

2 x
* LGt
= (am) ot ( v ) g™
= ZO R (0
(e n X )71] (h'U) ma ti’l
;; (n—j)! 5"'“( X )n'

Thus, we arrive at the following result.

Corollary 1. Letv,m € N, g € Cwith | g |[< 1 and {" = 1 with  # 1. We have

B,S{lg) (mx, q | ;>

(am)n=e T azm 120 ]Zo( )( “h"'vffxm—l )

ay+e g 1=0

(e (2 4+ L) B (g1 1),

where y = aq + 20y + - -+ (m — 1)ay,_q.

Form =1, v =1, from Corollary 1, we obtain

Nl

h h L n N\ ik
B (o) = B ) = X ) I8,

(cf. [9]).

Corollary 2. Letv € N, g € Cwith | q |< 1and " = 1 with  # 1. Then, we have the reduction
formula

h, L/ n ho—
B ) = 3 (B @B ) e N
k=0

where B( )(x q) :== (h 2 (x,q | Z) and B(h’v) (q) == B(h’v)(O,q |d); a=(1,---,1) holds
true between the twisted (h q)-Bernoulli polynomials B( )( ,q) and the twisted (h, q)-Bernoulli
numbers Br(llfé,v D (q) of order (h,v —1).
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Proof. By using (10), we have

v—1
= po) o H_ (logg" 4t logg" +1)
L Bug (x,q)n! - <qh§et -1 qhget —1 ¢

n=0
_ v g1y, 2 ("
—ng)Bng (Q)HYE)BM(Z’Q)H
© n k n—k
_ (h) " (no-1) t
= n;Ok;O Bk,g (x, Q)Hank,g (9) (n—K)!

[
agk
N
1=

ho—1 h n "
k=0 Bﬁ‘j‘@ )(q)B,E’g(x,Q)< k )) n!

here, we use the Cauchy product. By comparing the coefficients of ;—n, on both sides of the
above equation, we then arrive at the desired result. [J

2. Twisted Barnes’ Type (h, q)-Zeta Functions

In this section, we construct interpolation functions of the twisted (h, q)-Bernoulli
polynomials and numbers of higher order. We also give some interesting identities related
to these functions. Throughout this section, we study the complex s-plane. Let g € C with
|g|<land " =1 ({isanrthrootof 1) & # 1.

By (1) and (2), we define the following functions:

(13)

Note that the numbers bilhé)(q) are related to the so-called Apostol-Bernoulli num-

bers [26,27] and twisted (4, q) Bernoulli numbers.
We decompose (2) as follows:

lo
EN@ = BN )5 1)

From the above and the relation (13), we find that

h —(n h h
B\ (q) = (log g~ "V )o1), () + b1} (0).
Let us define

(14)

observe that bn}g(O, q) = by(zhg(q )-

For0 <z <1,by applifing the Mellin transformation to the above equation, we obtain

() = L [ sapm
GM(s,2) = F(s)/o 2B (—t,2)dt (15)

_ ni) (ffqh) '

(n+2z)s’
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e8]
it is easy to see that the series s — 2

lgl <land " = 1.
We easily see that

~ (2")"
g"(s1) =) =Y (&) . (16)

which denotes the Riemann zeta function.

The function g‘g’? (s,z) interpolates the polynomials bnhg (z,q) at negative integers as
follows: "
b,¢(2,9)
(n)q _ g +
Qq,g (1-mn,z)= . ,nerLr. 17)
We easily see from the above that
by2(9)
W)eq N _ 1 +
gqlg(l n) = /M€ VAR (18)

We now construct higher-order interpolation functions.
The Mellin transform of (11) is given by

- 1

206 1 D=5y [ e e

9,6

and we obtain

1 0 v dt
Z(h,v) — 1 / tsfvfltvfk
i | U (1 )tose g H e

Hence, from the above, we define the zeta functions Z(hgv)( s, a )

Definition 1. Lets,q € Cwith |q| < 1and " = 1 with ¢ # 1. We define

Z(h )

& - 1 1 00 ps—k—144
| H” "‘ZO( ) q )kr(s>/0 ﬁ(gqh)aje*ﬂjt_l’ (19)

j=1

where R(s) > v+ 1and R(a;) > 0,1 <j< 0.

In [20], the authors gave another kind of the twisted Barnes zeta function.
By substituting v = 1 into (19), we have

B 00 ay xap\n lo ha; oo hay xay \n
Z,;%l)(ﬂﬂl):a% s(Z (q g ) _ ngl Z(q C ) )_al quij()

s s—1
n=1 n n=0 n

(. [9D).
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From (19), we find that

(gqh)ﬂ1”1+-~~+avnv

h,
M _ < v ) i
- . 0 e Mp=1 (a1ng + - -+ apny)’

j=1
0 1 any+--+ayhy
+< 1 )k’g(q) i (th)
s—1 1y, =1 (a1 + - - 4 apny)s—!
v 1o ajny+--+ayhy
(%) o8t (e#')
S

(s—1)(s—2)---(s—v) nl,mz,n:,,:1 (a1ng + -+ -+ ayny )50
From the above, we arrive at the following main theorem

Theorem 2. [Explicit formula]. Let s, q € C, q= (a1, ,ap), with |g] <1, R(s) >v,veN
and {" = 1 with ¢ # 1. Then, we have

z(s HuZ( )( )é““”s—klaﬁs (20)

0 j=0

where o et
h 17 Tlolly
g o @)
s|a)= . 21
b 1 a) nl,.;vzl (a1n1 + -+ ayny)® -
We now give some special values of the function Cl%v) (s, 3) as follows:
Corollary 3. Let (s) > v. Then, we have
ﬂ1n1+"'+111;1’lv
o ¢q"
g(hli (S,x|;): Z ( ) .
G )
. . . . (h/z;) — X
(i) Difference equation of the function (s,x| a):
h, h, 1
Gy sx 1] a) = (s, @) - —, (22)
(h,v) =\,
(ii) Distribution relation of the function Ty (s,x| a):
s7 ) (o = N () 2 h0) i
by (s,x | d) = Y (20") e s x+ 1 | a). 23)

j=0

(iii) For real number y,

BL0 s, (b} | @) = Z(@q) sl {v e Lh 1D,

=
where
" (s, x| @) ifR(x) > 0
a) = (24)
(s | d) ifx =0,
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We note that it is easy to prove Corollary 3 from the definition { ;hév) (s,x, ;)
Observe that if v = 1 and a = 1, then (24) reduces to (15) and (16), that is,

¢ (s, x) i R(x) > 0
3005, 1) =
Céhév) (s)ifx =0.
Remark 2. We give comments on some special cases.
*  Substituting ay = --- = a, = 1 into (20), for s,¢,q € C with Re(s) > v, | q |< 1 and
¢" =1,r € Z, Theorem 2 recovers the results of [10] (p. 488).
e Ifv =1, then Theorem 2 reduces to
h1 - —s (i
200 (s | @) = =gl . (s),
where i ., i
gy — v 40¢" _logg" <= g"¢"
Cae(s) = nX::l ns s—1 n;l ns—1’ @)

In [29], Simsek defined and studied the (, q)-Hurwitz zeta function which is related to the
function @g’g (s):

* _ 1- 9,2
gg,q(S,Z) = @gq@ (s,2).

In addition, if ¢ = 1, then géhg (s) is reduced to g,gh) (s) (cf. [16]).

Ifv=1,and q — 1, then Theorem 2 reduces to the twisted zeta functions which interpolate
the twisted Bernoulli numbers:

where " =1,r € Z.
The Lerch transcendent ®(z,s,a) (cf. e.g., [32] p. 121, [21]) is the analytic continuation of
the series

1 z z
D(z,5,a) = E+(a+1)s+ (u+2)s+~~~
o0 Zn
= ngoi(nwwl)s,

The above series converges for (a € C\Zg , s € C when |z| < 1; R(s) > 1 when |z| = 1),
where

Zy =7 U{0}, Z= ={-1,-2,-3,--- }.
Hence, the function @;hg (s) is related to ®(z, s, a) as follows:

log 4"
0 () = ("e,5,1) - BLo(ges - 1,1).

By substituting s = 1 — n, n € Ninto (19) and using Cauchy’s residue theorem for the

Hankel contour, we obtain the following theorem:

Theorem 3. [Values at negative integers]. Let n € N and a= (a1, -+ ,ay). Then, we have

(ho) 4 =y n!
Zg A=nla) =0

o (-1)°B{"") (q] ).
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From the above theorem, we arrive at the following corollary:

Corollary 4. Let n,v € N. Thus, we have

n+v)! v Z 1 k
Bl 3 =TT (1) (tos )

By substituting v = 2 into Theorem 2, we have

2" (s |0

& a) 2 /2 1 k(hrz) oo s

oi_ :E)(k)(logqh) =k DT
aj

j=1

Thus, we find that

h, h,
2761 d) = mnl (s | @)+ 2mas 2 (log )6 s~ 1] @)

3. Twisted (h, q)-Dedekind Type Sums

In this section, we define twisted (/, 9)-Dedekind type sums. We state and prove their
reciprocity law. For more details on the elliptic analogue for the Dedekind reciprocity laws,
see [6].

Let us recall the Apostol-Dedekind sums s, (%, k):

k—
50 (k) = ZiiBCZ) 26)

where I and k are coprime integers with k > 0, n is a positive integer, and B, (x) is the nth
Bernoulli function, which is defined as follows:

Bu(x) = Bu(x — [x]),if n > 1,

wnd (x— (o) ifxeZ
—= _J Bi(x—|x]g), ifx
Bl(x){ 0, if x € Z,

where B, (x) is the Bernoulli polynomial.
For even values of n, the sums s, (h, k) are relatively uninteresting. However, for odd
values of 1, these sums have a reciprocity law, first proved by Apostol [2]:

(1 -+ 1) (hK" s, (h, k) + kK", (k, 1)) 27)
n+1 . . )
= nBu1+ ), < ! —]i_ ! >(—1)]BjBn+1jh]k"H],
=1

where (h,k) = 1. If n = 1, then the Apostol-Dedekind sums reduce to the classical
Dedekind sums.
We are ready to define the (h, q)-twisted Dedekind sums.
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Definition 2. Let h and k be coprime integers with k > 0. Then, we define

,1. . .
g(h) J () (B
Sean(nk) = L (24" o (1), 28)

=1

where hy is an integer number and

bt (x0) = b (v~ [xlc,0),
where br(:l,lg) (x,q) is defined in (14).

Example 1. By substituting ¢ = 1 into (28), we have

k=1 '
_ N T g (hi
]; £ ()

by substituting hy =1, = 1 and q — 1 into (28), (28) reduces to (26).

By substituting & = 1 into (28) and using (13), we obtain

S (k) = ol (Cq’“) h”(,]c q)

]:1
b(h

— é(rl”)kmlm Z( ) m—l+1

By using the well-known alternating sums of powers of consecutive (, q)-integers for

b5y (9),

k-1 gquhlb(h])(k q) — b(hl)(o )
b bhyym—1 __ mg \ mg 7’
Y S = .

(cf. [10]), we then obtain the following Theorem.

Theorem 4. [Explicit evaluation for h = 1]. Let m and k be positive integers. Then, we have

s (1 ) = f( m >b< (q )(gk kp\t) o ok g) — by )z+z,;('1)).

Cqm = I (m — 1+ 2)km—1+1

In [3], Ota showed how to prove Apostol’s reciprocity law by using values at non-
positive integers of Barnes” double zeta function. In this section, we give a generalization
of Apostol’s reciprocity law.

By substituting v = 2 and q= (k, h) into (21), and by using a method similar to that
in , then we have

Z (s | (kh)) =

" . (é‘th ) knq+hny i - log th . (gth ) knq+hny

B I TR T B DN TR T
(n1/”2)5‘é(0r0) (711,1’12)7&(0,0)
kny+hny
h
o) & (8")
ey X o

ny,np=0 (kl’l1 + hn2)572
(7’1117’12)7‘é (0,0)
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Setting ny = a + mh and ny = b + nk, wherea =0,1,2,--- ,h—1,b=0,1,2,--- ,k—1
and m,n =0,1,2,---,00) in the above,

22 (s | (1K) =

" ak-+bh+hk(m+n)
. (o)

kY.

a mod hmn=0
b mod

(ak + bh + hk(m +n))$

( th>ak+bh+hk(m+n)

_2hklogq
o r%dhm;O (ak + bh + hk(m +n))s~1
b mod k

< th ) ak~+bh+hk(m+n)

hk(log q")
+7
(s-D)(s-2) g Z(;g Qm;O (ak + bh + hk(m +n))s—2

where }* means that the above sum take pairs on non-negative integers (1, n) with the
exception of (0,0) when ak + bh = 0. Putting m + n = j in the above, we then obtain

2002 (s | (k) =

< (+1) (g™
(ak + bh + Iikj)®

)ak+bl1+hkj

Wy
a mod hj=0
b mod k
ak+bh-+hkj
o (j+1)(gg™)

_ 2hkloggh
sl L Z (ak 4 bh + hkj)>—1

a mod hj=0
b mod k

) ak-+bl+hkj
s G+ 1) (20"

hk(logq”l )2
ey L (ak & bl 7 )2

a mod hj=0
b mod k

After some elementary calculations in the above, we easily see that

(s | (k) =

, ak+bh+hkj
cox (ak + bh + hkj) (gqm)
a mod h j=0 (ak+bh+hkj)5
b mod k
o\ Ok
ak + bh\ & (éq )
+hka n%d h<1 Ik ) ;0 (ak + bh + hkj)s
b mod k /
) ak+bh-+hkj
2log g™ cox (ak +bh + hk]) <th1>
T, mmanis (ak + bh + hkj)s—1
b mod
.\ Akt hkj
_ 2nkloggh v (1- ak + bh % (Cq 1)
= a mod It hk i=0 (ak + bh + hkj)s—1
b mod k
k-+Dh-+1kj
fogt? e g (ke bk (2"
=D a mod h]Z(:) (ak + bh + hk]')s—z
b mod k
>ak+bh+hk]'

h

JHkllogg) g (1—“k+bh)§ Sl

CRNCI - hk ) = (ak + bh + hkj)s~2
b mod k
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By using (22) in the above, we find that it is equal to

Ds | (k) =
(k)= Z Cq ak+bh5qc . {ak+bh})

a mod h
b mod k

ak bh 1-s
—(hk)“s + (ak+bh )
(@ > ik

CIEEDY (thl)ak+bh< “k”’)s ({“"“’h})

a mod h
b mod k

CY (e )umh( ak;{bh)(ak+bh )

(a,b)eB

2 ak+bh ak + bh
Rt 8 (g) s (s -2 {F 5 )

a modh
b mod k

2—s
2(1k)** log g" ny ) (ak + bh
R F (o) !
(a,b)eB

2(hk)2=5 log g™ ak-+bh ﬂk+bh ﬂk"‘bh
_2 )571 g9 Y (érq’ﬁ) (1 )3,7,;( { ik })

a mod h
b mod k

1-s

2(hk)>~5 log g1 by \ AR _ ak 4+ bh\ [ ak + bh B

T Y (@) L T
(a,b)eB

(hk)3’s logth 2 h ak+Dbh ak + bh
+ (571()(572) ) Zd h(‘fq 1) 39e\ =3
a mo
b mod k

(k)35 (log 41 L\ A+ ( ak + bh 3=s
s 2)> > (e") T
(a,b)eB

(k)3 (log g™ ) _ak+bh 1.\ ak+bh . ak+bh
e Lo (1T ) (@) (s -2

(k) (log g/ )’ B\ ak+Dbh\ (ak+bh O\
(¢1) L W)

where
B={(a,b)€eZxZ:0<a<h-1,0<b<k—1,ka+hb>kh}.
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Since {ka+hb:0<a<h—1,0<b<k—1,a,be Z}isacomplete set of represen-
tatives modulo Kk, by using (23), (15), and (16), we easily obtain

ZWA (s | (k) =
ogq" 1 1
(G (s = 1) + 1kG [ (s) ) — HBE (G0 (s — 2) + kGl (s — 1))

+%(g5’g)( 3) + kG (s~ 2))
AR T hy h ) k})
o a mod h<§q ) 1 < { h
_ppl-s h (h1)
e b mod k(gq ) g ( { })
(o) ot (s,

{
(@) "ol (-1

h
4 2losg g2y
a mod h

hy
28T pp2-s

b mod k
(logg™)® 5 1\ () ak
e L (6) g (s-24
a mod h
(logq")* 5 m\" o) (.. [bh
etk . gdk@”’]) Ge \5= 2% ()

By using the above, we arrive at the following theorem.
Theorem 5. Let s,q € C, with R(s) > 4and |q| < 1and || < 1. Then, we have

20D (s | (k) =

0 (s — 1)+ hkg 1 (s) — B ) (s —2) 4 ’““;’gf’ (s 1)

i L (o)

a mod h

(=45 1)
sy (éth)bhg'?(s'{ ‘)

b mod k
2logg" 17125 &g
T s kh !
a modh
bh
ZIOthl 2—s
—==21—hk
b modk
__(logq)® k35
(s—1)(s—2)

(logg)*
i =L

a mod h(
b mod k(
where the function {, #(s) is defined in (25).

By using Theorem 5, we prove the reciprocity law of the (4, q)-twisted Dedekind sums
in the next theorem.
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Theorem 6. [Reciprocity law]. Let h and k be coprime integers with k > 0. Let n € N. Then, we
have

(kh" ) (k) + S (n, k)) 4 2loggt (khnﬂsggjm(k,h)+hkn+lsé’jq{21+1(h,k))

log g™ n (h) n (h)
+(rg+1)(n422) (kh +25§,;,n+2(k’h) + hk" 25 q]n+2(h k))

n( Byt @l () +By 2 (0) h I (h I (h
= ( Y e +1§ )_‘_hk(nB’(Lgl)(q)—l—lqunHB}S_ﬁig(q))—I—lqunlzB;(q_&%,g(q),

where Bn+2 g(q | (h,k)) is defined in (8).

Proof. By substitutings =1 —n, (n € Z™") into Theorem 5 and using (17) and (18), after
some calculations, we arrive at the desired result. [

Remark 3. We point out how we recover, from our Theorem 6, some known results.
. By substituting g — 1 and ¢ = 1 into Theorem 6, we obtain the result of Ota ([3], [p. 8, Theorem

B)):

ki) (k) + kS

n
- n+1( 1(12422((77 k)) +Bn+1) + hknB,.

)., K)

Consequently, Theorem 6 is a generalization of Ota’s theorem ([3], [p. 8, Theorem B]).

e Bysubstituting hy = 1and ¢ = 1, g — 1 into Theorem 6, then we easily arrive at (27). Thus,
Theorem 6 is also a generalization of Apostol’s reciprocity theorem [2] for odd n.

e In[29], Simsek constructed p-adic (&, q)-Dedekind sums and Hardy—Berndt type sums. In
the future, we will study the properties of the twisted p-adic Dedekind sums associated with
our objects of study here.
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