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Abstract: This paper presents a study on the complexity of cargo arrangements in the pallet loading
problem. Due to the diversity of perspectives that have been presented in the literature, complexity
is one of the least studied practical constraints. In this work, we aim to refine and propose a new
set of metrics to measure the complexity of an arrangement of cargo in a pallet. The parameters
are validated using statistical methods, such as principal component analysis and multiple linear
regression, using data retrieved from the company logistics. Our tests show that the number of boxes
was the main variable responsible for explaining complexity in the pallet loading problem.

Keywords: pallet loading problem; complexity; principal components analysis; multiple linear
regression

1. Introduction

With globalization, supply chains have expanded largely in number of partners,
making synchronization essential for their performance. A key issue in performance is the
unitization measure of products used—the pallet—allowing flows between and out of the
distribution centres in the supply chain [1] (storage, cross docking, and transportation of
product distribution). The pallet-loading problem, also known as the manufacturer’s pallet
loading problem, consists in placing a maximum number of identical rectangular boxes
in a single rectangular palette [2]. Further research development has emerged in the last
few years regarding different variants of the problem, e.g., non-identical geometrical forms.
Cutting and packing (C&P) problems are hard combinatorial problems, which arise in the
context of many real-world applications, both in industry and in services [3,4].

In the pallet loading problem, order picking is one of the most important activities
since it is generally difficult and costly. Picking represents about 55% of all warehouse-
related expenses. As such, optimizing the order of picking works should be a priority for
any company [5].

Picking can be either automatic or manual. The former requires an automatized system
of machines as well as a good warehouse organization to optimize the packing flow. The
latter requires at least one picker to manually load a container or a pallet. The location of
the items to be loaded in the pallet can have a significant impact on the loading/unloading
operations. Quantifying how impactful the box/items’ arrangements can be for human
and machine labour is essential to rearrange and optimize the timing and costs of the
operations, both for the client and for ground workers.
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The novelty of this paper is the study of the complexity of cargo arrangements in the
pallet loading problem. Due to the diversity of perspectives that have been presented in
the literature, complexity is one of the least studied practical constraints.

To better understand this topic, we studied how the complexity constraint fits within
the pallet loading problem. A first analysis was performed to characterise this topic and
what concepts were related to it. As there are diverging perspectives about this problem, we
needed to study the multiple approaches that were taken by various authors to handle the
complexity constraint. By knowing the theory behind this problem, it became clear what
type of actions should be taken regarding this constraint. After gathering all the information
needed about both the pallet loading problem and the complexity constraint, a second phase
was started by collecting and analysing data. A set of parameters were created to attempt
to quantify the complexity of each loading process. Using these parameters, logistics data
were collected from a third-party company. Mathematical methods appropriate to this type
of data were used to break it down and give us a better understanding of what creates
more complexity during the loading process of a pallet. This type of research approach is
applied to solve an organizational problem and can be classified as action research [6].

This paper is structured as follows: a literature review and analysis of the approaches
described by other authors on the complexity of the pallet loading problem; Materials and
Methods, where a characterization is given of the problem regarding what might be deemed
complex in pallet cargo arrangements, constraints, and objectives based on the previous
analysis, and definition of metrics to quantify the complexity of each arrangement; the
results of the application of the metrics to samples for data gathering and data validation
through computational tests; finally, we present the conclusions and future directions.

2. Literature Review
2.1. The Role of the Complexity Constraint in the Pallet Loading Problem

The pallet loading problem (PLP), known as the manufacturer’s problem, consists in
arranging products in boxes onto a rectangular pallet to optimize its utilization [7,8]. It is
assumed that the boxes, available in large quantities, should be arranged orthogonally.

This problem has been addressed using several different methods, such as Linear
Programming 0–1 [8–10] for the two-dimensional non-guillotine cutting problem. Ad-
ditionally, heuristics and metaheuristics have been applied to this problem with good
results, such as simulated annealing [11], genetic algorithm [12], tabu search, [8], and block
heuristics [13–15].

In the PLP, the complexity constraint (which measures how complex the pattern
required to be loaded is) is one of the hardest to address because manual pallet loading may
not be adequate, e.g., due to the possibility of the patterns being misunderstood by loading
personnel, thus making the operation take longer to perform. In addition, the usage of
automatized mechanisms for packing may not be the most suitable to make complex cargo
arrangements. The financial aspects are also to be considered. These situations highlight
the existing limitations of human and technological resources. The increase in complexity
in packing patterns usually translates into greater material handling effort. That effort
is more significant if the complexity of the pattern causes changes in the way the box
loading is carried out. Instead of being able to load the boxes with clamps or forklift trucks,
the complexity of the pattern may force a manual loading of the boxes, which makes the
process much more difficult. In case there are no alternative box loading methods that
optimize the process, the pattern must conform with the limitations of the technology
used [7].

In the literature, when studying complexity constraints, the concepts of guillotine
patterns and robot packable pattern are often mentioned. A loading pattern is said to
be guillotineable if, for example, a parallelepiped is being transported and that object is
subjected to multiple cuts parallel to its faces. By doing so, smaller parallelepipeds are
obtained, which represent the numerous stacked boxes. Although this arrangement is
easy to pack and describe, it is not always the proper option for loading pallets due to the
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instability of the cargo during transportation. This situation is more critical in pallets when
other operations are needed to restrain the boxes and make transportation safe—such as
shrink-wrapping or interlocking [16].

The other pattern—the robot packable pattern—is calculated by placing the first box
in the bottom left behind corner of the container and then placing the remaining boxes
either on the right, front, or on top of the first one [17–19]. A guillotineable pattern is also a
robot packable pattern due to the way the boxes’ faces coincide with each other and with
the container or pallet, but the opposite situation does not occur. The boxes are packed
by a robot equipped with an elevating mechanism parallel to the base of the container or
pallet. Each box is lifted and released in the correct position using vacuum cells. Due to
the nature of this pattern, robots used to pack boxes possess extra constraints so that there
are no collisions between previously packed boxes and the boxes to follow. Hence, there
cannot be any boxes packed in front of, to the right of, or above the destination of the boxes
the robot is currently placing. Boxes can also be placed manually in the pallet, although
that operation is likely to take longer to perform than completing the same task with an
automatized system.

To handle these constraints, multiple authors have presented different solutions.
Morabito and Arenalest [20] proposed an AND/OR graph approach, which consists of
an algorithm combining two basic strategies: backtracking, which chooses all available
non-final paths to be explored, and hill-climbing, which chooses the optimal path and
keeps discarding remaining ones. Hifi [21] used an approximate algorithm containing
additional constraints, such as stability constraints. Egeblad and Pisinger [19] proposed a
local search algorithm that searches for potential solutions by making local changes to the
current solution until an optimal solution is found or when a time limit is elapsed. The
authors report that this solution performs better in medium-sized instances [19].

In the end, the robot packable pattern can be considered as an automatized variation
of the guillotineable pattern, due to its usage in robotic systems, while the guillotineable
pattern is more adequate in manual loading because it is easy to understand and pack from
the picker’s perspective.

2.2. A Typology for C&P Problems by Wäscher

Considering that the pallet-loading problem is a C&P problem, it is possible to apply
the typology of Wäscher et al. [22] to characterise it, which is a revised and improved
version of the one created by Dyckhoff [23]. The version we are using here is composed of
five different categories:

• Dimensionality (one, two, three, and as a problem variation, more than three dimensions);
• Type of assignment (output value maximization, where a set of large items is insuffi-

cient to accommodate a set of small items ready to be packed, forcing the usage of all
large objects while removing the need for any selection, and input value minimization,
where a set of large objects can fully accommodate all smaller ones, which changes
the goal towards minimizing the value of large items to be used);

• The shape of small items (regular items, such as rectangular or circular shaped items,
and irregular items, which do not have a well-known geometrical shape);

• The assortment of large objects (a single element, where this scenario can have two
variations: (1) when the extension of the large object may be fixed in all dimensions;
(2) when at least one dimension is variable in its extension, and several large objects);

• The assortment of small items (identical small items of similar shape and size, weakly
heterogeneous assortment, where the small items can be grouped into a low number
of classes when compared to the total number of items, and strongly heterogeneous
assortment, where nearly all items are treated as an individual entity).

In weakly heterogeneous assortments, items with identical shape and size that are
placed with different orientations are treated as different kinds of items. C&P problems
contain two sets of elements: small and large items. Small items need to be placed inside



Mathematics 2021, 9, 1742 4 of 20

larger items so that all small items in a subset can lie entirely on the large items preventing
small items from overlapping [18].

Applying Wäscher’s Typology to the Pallet Loading Problem

Though the pallet-loading problem might be considered a 2D problem by some
authors, here, it will be treated as a 3D problem. Packing boxes into a pallet may not be
viewed as a 3D problem if the arrangement does not involve the placement of boxes on
top of other boxes. That does not usually happen because companies want to use the least
possible number of pallets to transport cargo, therefore filling the pallets with boxes is the
good approach.

In the pallet loading problem, both scenarios (output value maximization and input
value minimization) classified by Wäscher et al. [22] suit this problem because in real life,
there are situations where there could be a limited number of available pallets or there are
functionally an infinite number of available pallets.

The first situation requires a maximization of the “value” of small objects. If that
number represents the packing of boxes per pallet, then that should be the case to consider
for this problem, since the larger the number of boxes packed in one pallet, the more
complex the arrangement of the packing can be. That also occurs when having an elevated
heterogeneous assortment, because it makes the act of packing less linear due to the increase
in available options on sorting the items. This type of assortment is rather common in
companies that deal with multiple types of items, such as Amazon, and it is the one
considered in this pallet loading problem.

The large object to consider for this problem is the pallet. This object is very commonly
used worldwide to transport cargo in warehouses and can be made of many materials, such
as wood, metal, and plastic. Multiple worldwide organizations have created standards for
the dimensions of their pallets, such as ISO (International Organization for Standardization).
This means that there is a diversity of pallets when it comes to size, although some have
similar dimensions. For this problem, one should consider the existence of multiple large
objects (with either a heterogeneous or homogeneous assortment of large objects) since in a
large warehouse environment, there is usually a mass unloading or loading of boxes from
different destinations, each using different sized pallets.

The smallest items to consider in this problem will be rectangular boxes, which is
the most common box format, and it is the best one to use when attempting to minimize
trim-loss, which refers to the patterns formed by the empty space after the small objects
are placed on the large object.

Although a significant number of papers have addressed the PLP using exact and
heuristics mathematical models, the complexity of the pallet loading will be addressed here
from the perspective of the picking personnel. Furthermore, as far as we know, multivariate
analysis has not been described in the literature addressing this problem, hence the novelty
of this research.

3. Materials and Methods

Upon analysing what literature refers to as being complex in the pallet loading prob-
lem, one question arises: does the perspective of the authors match the perspective of the
picking personnel? To assess that analysis, a third-party logistics company was visited to
hold discussions with the workers who load pallets daily and establish what they consider
to be complex in the pallet loading process, and a case study was conducted [24]. The
company—Luis Simões—operating in the Iberian Peninsula, was available to help us
understand how the processes related to the loading of pallets work and what are the most
meaningful difficulties during picking operations. The company facilitated a tour of one
of their warehouses where some of the working staff were invited to explain procedures
while colleagues would simultaneously execute the operations being described. Upon
hearing the pickers’ opinion on the complexity of their tasks, a set of metrics was created to
replicate that complexity in the pallet loading process. A new visit to that same warehouse
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allowed us to obtain samples to be measured according to the metrics created. Each worker
was asked to rate the loading process using those same metrics. Some ratings could be
directly obtained by observing the packed pile. Other parameters were extracted from an
Excel file generated from the input provided by pickers after concluding the task of loading
all the boxes to the pallet. The metrics were then adjusted according to the information
gathered via the Excel input file and direct observation of the pile. A measurement scale
was used to qualify and/or quantify the data variables in statistics and different kinds of
techniques was used for statistical analysis.

In the analysis of this information, we applied a principal components analysis to
determine the most important parameters within the complexity of the pallet loading
problem. Ultimately, a multiple linear regression was used to determine a mathematical
model that can predict the complexity of any given loaded pallet.

3.1. Metrics to Analyse Complexity

Packing a pallet manually—although it may seem linear—involves more variables
than might be expected. Each parameter will be evaluated by using a Likert scale ranging
from 1 to 10, where 1/10 is a parameter that does not add much complexity into the loading
operation or is not applicable to the respective scenario, and 10/10 would be a parameter
adding greater complexity. These metrics only consider situations where one person is
singlehandedly loading a single pallet. The following paragraphs will explain each of the
nine parameters created to evaluate the complexity of the pallet loading problem.

The first parameter is the number of boxes. Regardless of the size and weight of each
box, the higher the number of boxes being packed, the more time consuming it is to arrange
them properly in the stack. This parameter is rated 10/10 when there are 80 or more boxes
since it is rare to have this many boxes being packed into a single pallet.

The second parameter refers to the average box weight. This parameter measures the
accumulated fatigue inflicted on the worker by the weight of the boxes. This parameter is
rated 10/10 for weights of 15 kg or higher. This weight is used as the maximum rate of
the scale because a worker should not carry weight volumes over 23 kg due to a high risk
of injury (stress/damage to the back, knees, or arms) [25]. Therefore, to maintain a safety
margin, the weight of 15 kg was considered instead of 23 kg.

The third parameter is the percentage of fragile boxes to pack. Some boxes have a
specific orientation to be carried/placed or are too frail to have boxes placed on top of them.
Therefore, these boxes require special attention when carrying and loading them onto the
pallet. It is considered as a maximum rating when the pallet packs contain a percentage
over 50% of fragile boxes.

The next parameter is the average maximum width. Some boxes with a large disparity
of measurements, such as a box with 160 × 160 × 20 cm, may struggle to be packed due to
increased length. The centre of gravity will tend to be far from the picker, which may cause
the box to fall. The maximum rate for this parameter is 180 cm, which is a size close to an
adult person’s height. That is because the arm span of an individual, when compared to its
height, has a ratio of approximately 1 [26].

The fifth parameter created is the number of box types to label. The company uses a
label system with a unique barcode for each type of box being packed. When the packed
pallet reaches its destination, the clients can scan the code to check what was received.
Although it does not add much complexity to the process, it can be very time consuming—
according to the workers—should they need to label many types of boxes.

The sixth parameter is the number of boxes to separate within a pile, or number
of boxes to pack in columns. Though required by only a few clients, this parameter
is considered by the working personnel at Luis Simões SA as one of the most complex
constraints as it requires not packing different types of boxes in the same stack. For example,
a product X can only be piled with other products X, never in stacks of products Y or Z.
What makes this parameter so complex is that, depending on the quantities and sizes of
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each type of box, the height of each subpile may have a greater variation, which may force
the pickers to reload the boxes to achieve a final stack with a balanced size.

The seventh parameter is the number of upper boxes required to make a surface for
another packed pallet. To maximize the space of a truck’s container, it is possible to stack
small, loaded pallets. For that, the boxes in the upper surface must be stable enough and
properly rearranged to make sure the stacked pallet does not fall. Rearranging the boxes
may take some time and increase the complexity of the loading operation.

The eighth parameter is the height difference between worker and pile. One of the
major struggles of the manual pallet loading process is the maximum reach of the worker
to the top of the pile. If the worker is short and the pile is high, he/she will struggle to
place the final boxes in the upper layer of the pile. This scenario represents one with the
highest difficulty. Numerically, this parameter is measured by the difference of heights
between the worker and the pile. The maximum difficulty is represented by a difference of
at least 35 cm between the worker and the pile.

The final parameter to measure is the number of heavy boxes to pack. For this metric,
a heavy box is considered as weighing at least 8 kg. Once again, having a special focus on
particularly heavy boxes is crucial, as they may cause physical damage to workers when
not following security directives while moving boxes. Recommendations advise bending
the knees, and keeping boxes around waist level when lifting to minimize the risk of injury.
Bending the back while attempting to pick up the box, holding it without placing the hands
firmly in its base and extremities, and lifting weight above shoulder level are must-avoid
situations for any worker involved [25]. It is sometimes necessary to place heavy boxes
in a very low or very high spot. Under those circumstances, it may be better to request
assistance from other workers to help to decrease the effort applied. A 10/10 score will be
given to this parameter if the pallet is packed with 18 or more heavy boxes. If the pallet
is not packed with boxes weighing at least 8 kg, then this variable is classified with 1 out
of 10.

3.2. Sample Retrieval

Having defined the metrics, the next step is to apply it in real-life situations to gather
enough data weighing each metric and increase the metric system’s accuracy. The Luís
Simões SA corporation was once again available to enable this procedure. The data
gathering process is as follows:

• Each worker, upon completing the loading process of a pallet, will print and a label
with (a) a barcode and (b) other necessary numerical information to be stuck to the
packed pallet prior to shipping. Two of such numbers will help to differentiate each
packed pallet and each order.

• At the end of the day, the software system will create an Excel file with all the data
collected by the workers.

• During the box loading process, each box is scanned so that the Excel file contains
information such as the time the box was picked, the quantity, and its dimensions.

• After compiling data from the two numbers affixed to each pallet from multiple
packed pallets, each picker would rate the complexity of the pallet he/she packed
from 1 to 10.

Although most of the data needed to extract and measure according to the developed
metrics can be easily obtained from that Excel file, some of the data could only be attained
via indirect methods, and some could not be obtained at all. Having come to this conclusion,
it was deemed necessary to introduce changes to the metrics’ system.

After obtaining the file, the next step was to extract the data of the samples retrieved
according to each previously described parameter. As the information had been previously
parametrised and organised, it was possible to quickly extract the values for the number of
boxes, average box weight, average maximum box width, number of box types to separate
within the pile, and number of heavy boxes to pack.
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When it comes to box fragility, such information is not obtainable directly. To dis-
tinguish fragile boxes from non-fragile boxes, each box had to be analysed one by one
according to certain characteristics inherent to the materials of the product and the box
itself. Four different ratings were given to each box. For a box to be considered non-fragile,
both the product and the box had to be consistent and resistant. If the box itself had
signs that it could rupture without damaging the goods, then it would be rated differently
from the previous ones. For example, in some cardboard boxes, there is a part where the
cardboard is taped. If a significant area of the tape is not attached to the cardboard itself,
then it could be a fragile point from where the tape could be ripped off by an edge of
a heavy box and slightly damage the package. Although this can be a problem under
certain circumstances, it is not significant enough compared to the other two scale units
where boxes are considered fragile. In products where there is no cardboard wrapping the
product, if the upper area of contact is too small or is made of non-resistant materials, they
can be considered as fragile.

Not all products are contained inside cardboard boxes. When the product is in direct
contact with other boxes, the object must be resistant enough at all points of contact to avoid
causing any damage. The end of the fragility scale is when both the box and the product
can be easily destroyed if a heavy box is placed on top of them. In this analysis of the
fragility of the boxes, it was always taken into consideration how the analysed boxes would
fare with heavy boxes. This was because some packages considered as fragile could take
many boxes on top of them without causing damage since the cumulative weight could be
low enough. Some boxes display a symbol indicative of how many similar boxes can be
handled in a single stack—which should always be considered during the loading process.

After analysing the number of box types to label, it was decided to fine-tune this
metric to evaluate the homogeneity of boxes—this metric now rates the number of box
types. This change was made because it is more important to focus on the homogeneity of
boxes than on the labelling process since the latter only occurs in specific circumstances
and is only required by certain clients.

Given that the information input for the parameter that measures the number of upper
boxes that will serve as a base to stack another packed pallet is not collected directly by the
company and is also dependent on the methods applied by each worker to pile the boxes,
we have decided to dismiss this metric. We have set a new metric that measures the time
spent packing a full pallet, considering the significance of this variable in the assessment of
the time allocated to the loading process takes. The time registered for the first and the last
layer of boxes loaded were subtracted to obtain the time spent loading the pallet.

Finally, to measure the height difference between the worker and the packed pallet,
each worker would register his/her height. As the Excel file has no automatic record on
how high the packed pallet is that data were obtained by inputting the area of the pallet
and of each box. These were successively subtracted until the pallet area remaining was
approximate to 0. Another layer would then be calculated.

Before the application of this method, the measurement was conducted by sorting the
boxes by weight—heavier boxes are usually placed in the base of the pallet—and, when
all the boxes were packed, the tallest box of each layer would be added, with the result
being the total height of the packed pallet. With this method, the more boxes the pallet
had, the less accurate it proved to be. Despite this problem, this latter method was accurate
enough for the purpose. After obtaining the height of the pallet and loaded boxes, the
value obtained was subtracted to the height of the worker who loaded the boxes.

After explaining each parameter and how they were extracted, Table 1 will show the
final set of metrics and respective scaling and units according to the following example:
parameter: rating (range of values). To simplify the representation of the variables, each
will be represented by a number. The parameter representing the evaluation of the loading
process that was performed by each worker is represented by the number 0.



Mathematics 2021, 9, 1742 8 of 20

Table 1. Parameters and respective scaling, rating (range of values) and units.

Parameter Scaling, Rating (Range of Values) and Unit of Measurement

1-Number of boxes:
1 (up to 5 boxes), 2 (6 to 10 boxes), 3 (11 to 15 boxes), 4 (16 to 20 boxes), 5 (21 to

30 boxes), 6 (31 to 40 boxes), 7 (41 to 50 boxes), 8 (51 to 60 boxes), 9 (61 to 80
boxes), 10 (over 80 boxes).

2-Average box weight: 1 (up to 1.5kg), 2 (1,6 to 3kg), 3 (3,1 to 4.5kg), 4 (4.6 to 6kg), 5 (6.1 to 7.5kg), 6 (7.6
to 9kg), 7 (9.1 to 10.5kg), 8 (10.6 to 12kg), 9 (12.1 to 15kg), 10 (over 15 boxes).

3-Percentage of fragile boxes: 1 (up to 5%), 2 (6 to 10%), 3 (11 to 15%), 4 (16 to 20%), 5 (21 to 25 %), 6 (26 to
30%), 7 (31 to 35%), 8 (36 to 40%), 9 (41 to 50%), 10 (over 50%).

4-Average box maximum width:
1 (up to 18 cm), 2 (19 to 36 cm), 3 (37 to 54 cm), 4 (55 to 72 cm), 5 (73 to 90 cm), 6

(91 to 108 cm), 7 (109 to 126 cm), 8 (127 to 144 cm), 9 (145 to 162 cm), 10
(over 162 cm).

5-Number of box types:
1 (1 or 2 types), 2 (3 or 4 types), 3 (5 or 6 types), 4 (7 or 8 types), 5 (9 or 10 types),

6 (11 or 12 types), 7 (13 to 15 types), 8 (16 to 18 types), 9 (19 or 20 types), 10
(over 20 types).

6-Number of box types to pack in columns: 1 (does not apply), 2 (does not apply), 3 (up to 4 types), 4 (4 types), 5 (5 types),
6 (6 types), 7 (7 types), 8 (8 types), 9 (9 types), 10 (over 10 types).

7-Time spent loading a pallet:
1 (up to 5 min), 2 (6 to 10mins), 3 (11 to 15mins), 4 (16 to 20mins), 5 (21 to

25mins), 6 (26 to 30mins), 7 (31 to 35mins), 8 (36 to 40mins), 9 (41 to 45mins), 10
(over 45mins).

8-Height difference between worker and pile:

1 (top of the pile below waist level), 2 (top of the pile between waist level and
worker’s height), 3 (pile up to 5cm taller than worker), 4 (pile 6 to 10cm taller),
5 (pile 11 to 15cm taller), 6 (pile 16 to 20cm taller), 7 (pile 21 to 25cm taller), 8

(pile 26 to 30cm taller), 9 (pile 31 to 35cm taller), 10 (pile over 35cm taller).

9-Number of heavy boxes to pack:
1 (1 or 2 boxes), 2 (3 or 4 boxes), 3 (5 or 6 boxes), 4 (7 or 8 boxes), 5 (9 or 10
boxes), 6 (11 or 12 boxes), 7 (13 or 14 boxes), 8 (15 or 16 boxes), 9 (17 or 18

boxes), 10 (over 18 boxes).

4. Results

After extracting the samples, the data were analysed using IBM SPSS Statistics for
Windows, version 26.0. In Tables A1 and A2, it is possible to see the absolute and scaled
values for each variable in each sample. Please refer to Table 1 for correspondence between
the variable number and respective designation.

Factor analysis, specifically the principal component analysis (PCA) with varimax
rotation (using Kaiser Normalization), was applied. The principal component analysis is
a factorial analysis technique that transforms a set of correlated variables into a smaller
number of independent variables, which correspond to a combination of the original ones.
These new variables are known as principal components [27]. This technique is often seen as
a data reduction method. Another main characteristic of this method is the reduction of the
presented information into a smaller number of variables, the principal components, which
represent the most relevant information contained in the original variables. The principal
components will be sorted by highest to lowest in terms of importance. That importance is
translated into a higher variance rate of the collected data. The first component explains
the highest variance rate. The second explains a rate not explained by the previous one, etc.
The most irrelevant component is the one that contributes the least to the total variance of
the data [28].

To validate the usage of the PCA in a set of variables, some authors propose different
rules for data validation. MacCallum et al. [29] applied a rule that suggested a minimum
of five observations per variable.

To check how consistent the number of observations is, one technique that can be
used is Cronbach’s Alpha value [30]. This value has a range from 0 to 1 and evaluates the
reliability of the data obtained. Although, in the literature, most authors only consider as
acceptable a value above 0.7, only a value below 0.5 can be considered as unacceptable.
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Values between 0.5 and 0.7 are considered as questionable, requiring further analysis to
determine if the data are adequate. It is worth noting that this value is sensitive to the
correlation and number of variables tested. Having few variables may cause a low alpha
score, as well as a low correlation between the variables. One cause for low correlation is
having variables that measure irrelevant data. These issues can cause a test to be wrongly
discarded, therefore, Cronbach’s Alpha must be carefully used [30,31].

The Cronbach’s Alpha obtained for the nine independent variables is 0.701, which
is rated as acceptable [32]. The next step is to run the PCA analysis. One of the possible
outputs while performing the PCA in SPSS is the KMO and Bartlett’s test of sphericity.
This test checks how adequate each individual variable is as well as considering the whole
grouping of variables together. Similar to Cronbach’s Alpha, the output of this test ranges
from 0 to 1. Values above 0.8 are considered adequate for factor analysis, while values
below 0.6 show that the samples used are not good enough [30]. The intermediate values
indicate that the set of variables has average quality in terms of factor analysis usage.

The KMO value of 0.636 is classified as reasonable, which means the data tested are
good enough for a PCA, although that value should ideally be a bit higher. The sigma
value of Bartlett’s test of sphericity is below 0.05, which means the tested set of variables
is adequate for a PCA by demonstrating that the correlations’ matrix, shown in Table A3,
possesses significant correlations between the nine variables, rejecting the hypothesis that
the correlations matrix is an identity matrix.

Table 2 indicates the descriptive statistics for all variables. It is worth highlighting the
mean of the variable 1, the number of boxes, which is much higher than other variables.
Additionally, the standard deviation of variable 6, the number of column piles, indicates
there is a large amount of data variation in the observation retrieved for this variable. The
values used in Table 2 are scaled and are not the original measurements. The correspon-
dence column shows the range of values that matches the values in the mean column. For
example, a mean of 8.39 for the Number Boxes of variable translates into 51 to 60 boxes,
according to the scale shown in Table 1.

Table 2. Descriptive statistics.

Variable Mean Correspondence Std. Deviation N

0 5.03 2.16 38

1 8.39 51 to 60 2.33 38

2 3.92 3 to 4.5 kg 2.74 38

3 4.47 16 to 20% 3.73 38

4 2.16 19 to 36 cm 0.86 38

5 4.39 7 or 8 3.21 38

6 4.66 4 4.28 38

7 3.37 11 to 15 min 2.44 38

8 4.95 6 to 10 cm 3.96 38

9 4.66 7 or 8 3.98 38

Table 3 shows the eigenvalues and total variance of the principal components and
only the principal components with eigenvalues above 1 should be extracted [33]. In this
case, there are three components to be extracted. Together, they explain almost 75% of the
total variance of the data collected.

Finally, the principal components are seen below, in Table 4. Component 1, which
explains 41% of the total variance, contains the number of column piles, number of box
types, time spent packing, and percentage of fragile boxes. This component can be called
Box Quantities. The second component explains 22% of the total variance and is affected
by the number of heavy boxes packed, the average weight of the packed boxes and the
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average maximum width. This component can be named Box Dimensions. The final
principal component only covers 12% of the total variance and possesses the remaining
two variables, the height difference between worker and pile and the number of boxes.
This component can be called Complexity.

Table 3. Eigenvalues and total variance.

Component
Initial Eigenvalues

Total % of Variance Cumulative %

1 3.641 40.453 40.453

2 2.003 22.250 62.704

3 1.070 11.892 74.596

4 0.731 8.127 82.723

5 0.567 6.296 89.019

6 0.431 4.786 93.805

7 0.276 3.066 96.872

8 0.171 1.902 98.774

9 0.110 1.226 100.000

Table 4. Rotated component matrix.

Variable
Component

1 2 3

6 0.891 −0.023 −0.031

5 0.890 −0.213 0.256

7 0.666 0.008 0.496

3 0.497 −0.397 0.053

9 0.088 0.880 0.048

2 −0.247 0.850 −0.255

4 −0.214 0.713 0.290

8 0.072 0.184 0.932

1 0.387 −0.443 0.628

To see if the percentage of total variance explained by the principal components
increases, a new test was performed with a variation of the PCA, the categorical PCA,
which is a test suited for categorical variables. After running the test to force the extraction
of three components, the percentage increased to 79%. The three components possess
the set of variables seen in Table 3. Considering that the third component explains a low
percentage of the total variance, and its eigenvalue is very close to the rejection border, it is
possible to force SPSS to redo the test while creating only two components. The results of
that second test are shown in Tables 5 and 6.

Table 5. Rotated data extraction for categorical PCA with 2 dimensions.

Dimension Cronbach’s Alpha
Variance Accounted For

Total (Eigenvalue) % of Variance

1 0.836 3.725 41.387

2 0.718 2.521 28.007

Total 0.945 6.245 69.394
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Table 6. Rotated component loadings for 2 dimensions.

Variable
Component

1 2

5 0.930 −0.091

7 0.867 0.144

6 0.791 −0.042

1 0.773 −0.286

3 0.624 −0.330

4 −0.132 0.827

9 −0.133 0.826

2 −0.535 0.750

8 0.416 0.608

Rotated Cronbach’s Alpha 0.836 0.718

% of variance 41.387 28.007

Table 5 shows that the two dimensions have acceptable Cronbach’s Alpha values, and
together they explain around 69% of the total variance of the original variables. Table 6
displays the two principal components, with the respective variables in bold (only variables
with a non-negative component loading of at least 0.5 are determinants for that component).
The first one possesses five variables (Number of Box Types, Time Spent Packing, Number
of Column Piles, Number of Boxes, Percentage of Fragile Boxes) and can be called Box
Quantities. The second one possesses four variables (Average maximum width, Number
of Heavy Boxes Packed, Average Weight of Packed Boxes and Height Difference Between
Worker and Pile) and is known as Box Dimensions.

After using the PCA with the nine collected independent variables, a multiple linear
regression was carried out with the principal components extracted in the previous section.
The multiple linear regression is a mathematical analysis method using a given a set of data
with independent variables (known as predictors) and one dependent variable (known
as a criterion). The independent variables are used to predict the value of the dependent
variable [34]. This method results in an equation. The values obtained are adjusted to the
set of variables that was used; therefore, after applying the equation, values close to the
dependent variable are expected. This relation between both types of variables can be seen
in Equation (1):

yi = β0 + β1 x1i + β2 x2i + . . . + βp xpi + εi, (1)

where βi‘s are the slope between y and the appropriate xi. To refine the model, there is
also the β0, the y-intercept, and ε, the error term that captures errors in measurement of y
and the effect on y of any variables missing from the equation that would contribute to
explaining variations in y [35].

First, a regression was conducted using the two principal components previously
extracted and the dependant variable—the Packed Pallet Evaluation variable. To perform
this multiple linear regression, the method chosen is called Stepwise. There are multiple
iterations, starting with a model possessing only one variable and then progressively
adding a new variable and removing others if they are not significant enough to the
model [36].

The adjusted R square obtained has a value of 0.202, meaning that this linear regression
explains 20.2% of the variance in the data, which is a small value but adequate for the
data. It is expected to see the R values increase with the increase in the number of variables
inserted into the model, the F-test, which tests the null hypothesis that the model explains
zero variance in the dependent variable. The p-value is below the usual significance level
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of 0.05, which means the null hypothesis is rejected, meaning that this model explains a
significant amount of the variance of the dependent variable.

The β values indicate the predictability for each variable. The Stepwise method only
selected one of the two components obtained, considering the Box Quantities component
the only relevant component for the model. The constant has a β of 5.026 while the Box
Quantities component has a value of 1.009. The t values show that the Box Quantities com-
ponent has decent predictability power over the dependent value, although its coefficient
is small when compared to the constant (16.042 to 3.219).

To validate a multiple linear regression, some assumptions must be checked to see if
the test is reliable. These assumptions are the normality, homogeneity, error independency,
and multicollinearity [36]. First, there is a graphical overview of the normality of the
residuals, with a Predicted Probability plot. The dots in Figure 1, although they have some
slight deviations from the line, follow the line’s tendency overall, which corroborates the
normality of the regression. Figure 2 is used to check homogeneity. The dots representing
the residuals seem widely dispersed and not concentrated in a specific zone, which means
the homogeneity exists here. Finally, to confirm error independency, there is the Durbin–
Watson value. The value obtained should be higher than 1.5 and below 2.5. The ones
obtained in the two regressions executed with the principal components are approximately
2.1, which means there is error independency. Finally, the multicollinearity should have
a value below 10. The ones obtained are equal to 1, meaning there is no multicollinearity
between variables.

Figure 1. Predicted probability plot (for 2 principal components).
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Figure 2. Scatterplot to test residuals homogeneity (for 2 principal components).

Equation (2), as seen below,

y = 5.026 + 1.009x1, (2)

represents the predictability of the model, where x1 represents the Box Quantities compo-
nent. In the end, this regression allowed us to conclude that the component Box Quantities,
which contains the variables Number of Column Piles, Number of Box Types, Number of
Boxes, Time Spent Packing and Percentage of Fragile Boxes, is the component that explains
the variance of the Evaluation variable better, while the Box Dimensions component is not
very relevant towards explaining the dependant variable.

Next, another multiple linear regression was performed, but this time with the original
nine variables and not with the principal components. This was undertaken to see if the
variables contained by the Box Quantities component are considered relevant by the
multiple linear regression.

The new test shows that the Adjusted R Square is higher than the ones in previous
tests, having the model explain 33.1% of the variance of the Evaluation variable, and the
Durbin–Watson value is also good (2.376). The F value is high (19.285) while the sigma
value of Bartlett’s test of sphericity is below 0.05, which means that the model obtained
is relevant, although only 1 out of 9 variables were kept in the model using the stepwise
method. That variable is the Number of Column Piles, which is contained by the Box
Quantities component. In Figure 3 it can be seen that the residuals follow the line with no
odd deviations, meaning that there is data normality. In Figure 4 the dots are spread in the
graphic area, meaning there is data homogeneity. Equation (3)

y = 3.637 + 0.298x1, (3)

sums up the model, where the x1 represents the variable “Number of Column Piles” and the
β is 3.637. The variable that affects the complexity of the pallet loading problem, according
to this model, is the Number of Column Piles. This multiple linear regression matches
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what was seen in the principal components analysis: the Box Quantities component was
the most significant. This test showed that, statistically, only one variable is responsible
for explaining the Evaluation variable. However, the latter variable is subjective, which
means that other parameters can affect this variable, depending on the perceptions of the
different workers.

Figure 3. Predicted probability plot (for 9 variables).
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Figure 4. Scatterplot to test residuals homogeneity (for 9 variables).

5. Discussion

This paper studied the complexity of the pallet loading problem through principal
component analysis based on the literature review and the outcome of the audit of the
loading workers/picking personnel of a third-party logistics company.

We defined the factors relevant to that complexity (Table 1) and a set of metrics along
with the range of the scale of values to be considered. Our approach was based on a review
of the literature and the outcome of the audit of the loading workers/picking personnel of
a third-party logistics company.

After testing the principal components analysis and the multiple linear regression with
both the two principal components and the nine original variables, it is possible to conclude
that the Box Quantities component is what explains the complexity of the pallet loading
process. The Box Dimensions component was not deemed impactful on the complexity
of the pallet loading problem. In the regression with the nine original variables, only the
variable Number of Column Piles was retained in the model when using the Stepwise
method, meaning that the significances of the other variances were too low. It is worth
noting that the variable Number of Column Piles belongs to the Box Quantities component,
matching the results from the regression with the components. To consider a variable that
measures something that is subjective can generate discrepancies of opinions that will
reflect on the results. For a box picker, a variable responsible for much of the complexity
may not be as significant for a different category of worker. Though perspectives may clash,
in this situation, the results showed that one of the parameters that most workers deem
as complex was indeed proven to be complex. This does not mean other parameters do
not affect the complexity, but only that regarding this specific parameter there is statistical
evidence that it increased the complexity. As it belongs to the Box Quantities component,
the Number of Boxes proved not to be significant in the regression, although it was more
relevant than most other parameters.

6. Conclusions

We conclude that only a few variables, which are included in a single main component,
are significant enough to explain the complexity of the pallet loading problem—mainly
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the Number of Column Piles variable. From a practical standpoint, having multiple piles
in a pallet, paired with other constraints, such as forcing homogeneous piles, can greatly
disturb the workers who oversee that load. Failing to organize the boxes in a way that
minimizes trim-loss and maximizes the space occupied in the pallet, while keeping the
whole stack uniform and stable can cause the picker to reorganize everything. Even if the
worker has years of experience loading pallets, it can be very hard to complete the whole
process smoothly in one try.

When undertaking this analysis on a principal component level, the Box Quantities
component contains the Number of Column Piles variable and also contains other variables
that are directly related to how impactful the Number of Column Piles is. Assuming they
cannot be mixed in the same pile, if there are multiple types of boxes to load, they must
be properly distributed on the surface of the pallet. This situation is more impactful the
higher the number of boxes is. If there are fragile boxes to be loaded, they must be as close
to the top of the stack as possible to avoid damage, constraining the loading process even
more. All these factors affect or are affected by the Number of Column Piles variable. This
raises some questions. Could the limited number and diversity of samples collected be a
factor in these results? Would they be different if a larger number of samples from different
companies was collected?

Regarding the metrics created, in theory they seemed to be impactful in the complexity
constraint, but most did not show any statistical evidence that they affected the complexity
of the pallet loading process. Perhaps for someone who does this process daily for years,
certain parameters do not affect his/her performance. However, from the perspective of a
researcher, someone who does not have practical experience in that job, all these parameters
seem important. It is worth noting that not all workers have the same experience. The more
experienced the picker is, the more likely it is that less parameters will affect the complexity
of a loading process, in his/her perspective. Would the results be different if certain metrics
were removed? Although the parameters measure different aspects between themselves,
they may have certain characteristics in common that can affect the result measured. This
was seen above when breaking down the behaviour of certain variables inherent to the Box
Quantities component.

For future research it would be interesting to increase the dimension and diversity of
the samples collected to verify results and acquire additional data for the further testing
of other parameters. Being aware of the difficulties that each pattern can cause during
the loading is important, so that the person in charge of the process can create a more
suitable loading strategy. Having solid data about which variables have a higher impact
in the complexity of a pattern greatly helps in that purpose, especially because most
companies have specific requirements about how the loaded pallet should look in the
end. When loading pallets with complex patterns, one should analyse the most restraining
aspects of it and start the process with those in mind to minimize the impact and maximize
the efficiency.

Author Contributions: Conceptualization, H.B. and T.P.; methodology, H.B. and A.G.R.; validation
T.P. and F.A.F.; formal analysis, F.A.F.; writing—original draft preparation, H.B. and T.P. All authors
revised the paper. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Portuguese national funds through FCT—Fundação para a
Ciência e Tecnologia, I.P., under the project UIDB/04752/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 1742 17 of 20

Appendix A

Table A1. Application of the created metrics in the collected set of samples.

Sample\Parameter 1 2 3 4 5 6 7 8 9 Evaluation

Units Kg % m mins m

1 55 2.38 20.0 0.170 5 0 4 −1.087 0 4

2 121 3.09 54.5 0.310 11 0 9 1.340 0 4

3 99 2.05 77.8 0.210 9 0 6 −0.652 0 4

4 174 2.36 2.3 0.170 4 0 15 −0.617 0 2

5 5 2.61 0 0.153 1 0 1 −1.294 0 1

6 87 3.61 36.8 0.361 25 >9 42 1.310 11 9

7 199 3.79 38.7 0.290 18 0 8 1.340 11 4

8 450 2.48 13.3 0.150 8 0 31 1.340 0 3

9 16 23.40 0 0.570 2 0 16 −0.756 16 2

10 50 5.86 0 0.530 1 0 2 1.340 0 4

11 176 2.57 24.4 0.220 54 >9 48 1.220 11 9

12 32 12.25 0 0.290 9 9 9 −0.566 22 6

13 97 9.14 1.0 0.310 10 >9 22 1.220 32 7

14 78 2.41 3.8 0.390 13 >9 24 0.323 0 5

15 153 2.61 0 0.150 1 0 8 −0.774 0 8

16 375 2.91 0 0.410 3 0 13 1.340 0 3

17 31 23.40 0 0.560 2 0 6 0.106 31 7

18 86 7.96 0 0.270 3 0 8 0.140 6 5

19 33 5.31 0 0.330 2 0 4 −1.126 18 2

20 25 10.60 100 0.280 1 0 3 −0.888 25 2

21 52 2.43 61.5 0.270 14 >9 19 −0.839 0 6

22 143 1.90 21 0.160 10 >9 13 −0.885 0 7

23 108 2.28 27.8 0.170 24 >9 21 −0.930 0 7

24 91 1.83 49.5 0.220 15 >9 15 −0.924 0 8

25 106 1.60 12.3 0.190 13 >9 17 −0.865 0 6

26 24 5.86 0 0.530 1 0 3 −0.096 0 5

27 32 17.72 0 0.340 1 0 7 −0.258 32 6

28 24 14.07 0 0.390 1 0 9 −0.726 24 3

29 90 1.63 52.2 0.200 16 >9 16 −0.770 0 5

30 162 2.23 100 0.270 1 0 12 0.051 0 6

31 130 1.89 53.8 0.160 22 >9 25 −0.832 0 3

32 99 10 0 0.600 1 0 5 1.220 99 3

33 95 3.88 10.5 0.240 16 > 9 27 1.220 17 6

34 115 2.31 87.8 0.320 7 7 20 1.340 16 8

35 34 4.37 17.6 0.390 4 4 10 −0.672 14 3

36 1550 2.62 41.9 0.200 14 0 90 1.340 120 4

37 49 4.95 14.3 0.260 6 6 5 −0.713 12 8

38 77 5.92 15.6 0.390 18 >9 19 1.220 38 6
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Table A2. Scaling of the parameters measured according to the collected set of samples.

Sample\Parameter 1 2 3 4 5 6 7 8 9 Evaluation

1 8 2 4 1 3 1 1 1 1 4

2 10 3 10 2 6 1 2 10 1 4

3 10 2 10 2 5 1 2 2 1 4

4 10 2 1 1 2 1 3 2 1 2

5 1 2 1 1 1 1 1 1 1 1

6 10 3 8 3 10 10 9 10 6 9

7 10 3 8 2 8 1 1 10 6 4

8 10 2 3 1 4 1 7 10 1 3

9 4 10 1 4 1 1 4 2 8 2

10 7 4 1 3 1 1 1 10 1 4

11 10 2 5 2 10 10 10 10 6 9

12 6 9 1 2 5 9 2 2 10 6

13 10 7 1 2 5 10 5 10 10 7

14 10 2 1 3 7 10 5 9 1 5

15 10 2 1 1 1 1 2 2 1 8

16 10 2 1 3 2 1 3 10 1 3

17 6 10 1 4 1 1 2 5 10 7

18 10 6 1 2 2 1 2 5 3 5

19 6 4 1 2 1 1 1 1 9 2

20 5 8 10 2 1 1 1 1 10 2

21 8 2 10 2 7 10 4 2 1 6

22 10 2 5 1 5 10 3 1 1 7

23 10 2 6 1 10 10 5 1 1 7

24 10 2 9 2 7 10 3 1 1 8

25 10 2 3 2 7 10 4 2 1 6

26 5 4 1 3 1 1 1 2 1 5

27 6 10 1 2 1 1 2 2 10 6

28 5 9 1 3 1 1 2 2 10 3

29 10 2 10 2 8 10 4 2 1 5

30 10 2 10 2 1 1 3 4 1 6

31 10 2 10 1 10 10 5 2 1 3

32 10 7 1 4 1 1 1 10 10 3

33 10 3 3 2 8 10 6 10 9 6

34 10 2 10 2 4 7 4 10 8 8

35 6 3 4 3 2 4 2 2 7 3

36 10 2 9 2 7 1 10 10 10 4

37 7 4 3 2 3 6 1 2 6 8

38 9 4 4 3 8 10 4 10 10 6



Mathematics 2021, 9, 1742 19 of 20

Table A3. Correlations matrix (values in bold represent high correlation between variables).

Variable Code 1 2 3 4 5 6 7 8 9 0

1 1.000

2 −0.525 1.000

3 0.379 −0.428 1.000

4 0.571 −0.458 0.516 1.000

5 −0.235 0.526 −0.261 −0.240 1.000

6 0.371 −0.270 0.251 0.771 −0.140 1.000

7 0.458 −0.299 0.262 0.663 −0.080 0.480 1.000

8 0.456 −0.108 0.015 0.280 0.314 0.055 0.460 1.000

9 −0.282 0.692 −0.192 −0.133 0.453 −0.044 0.072 0.230 1.000

0 0.416 −0.118 0.166 −0.046 0.431 0.591 0.356 0.155 0.029 1.000
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