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Abstract: This paper proposes a novel brushless excitation topology for a three-phase synchronous
machine based on a customary current-controlled voltage source inverter (VSI). The inverter employs
a simple hysteresis-controller-based current control scheme that enables it to inject a three-phase
armature current to the stator winding which contains a dc offset. This dc offset generates an
additional air gap magneto-motive force (MMF). On the rotor side, an additional harmonic winding
is mounted to harness the harmonic power from the air gap flux. Since a third harmonic flux is
generated in this type of topology, the machine structure is also modified to accommodate the
third harmonic rotor winding to have a voltage induced as the rotor rotates at synchronous speed.
Specifically, four-pole armature and field winding patterns are used, whereas the harmonic winding
is configured for a twelve-pole pattern. A diode rectifier is also mounted on the rotor between the
harmonic and field windings. Therefore, the generated voltage on the harmonic winding feeds the
current to the field winding for excitation. A 2D-finite element analysis (FEA) in JMAG-Designer was
carried out for performance evaluation and verification of the topology. The simulation results are
consistent with the proposed theory. The topology could reduce the cost and stator winding volume
compared to a conventional brushless machine, with good potential for various applications.

Keywords: brushless topology; third harmonic flux; dc offset; wound field synchronous machines

1. Introduction

High cost of rare earth magnets and flux control method complexity in permanent
magnet synchronous machines (PMSMs) are serious problems in making the PMSM suit-
able for many applications [1]. However, alternatives such as wound field synchronous
machines (WFSMs) can be used in a variety of applications ranging from small capacity
motors to large capacity power generation applications [1–3]. In [2], it was specifically
investigated for use in automotive driving compared to permanent magnet excited ma-
chines. Given the potential in WFSM, due to its low-price benefit, an inherent problem of
its assembly of brushes and slip rings must be solved for comparison. In small capacity
applications, operating it without brushes and slip rings will be convenient [3–7].

In [8], utilizing space harmonics power, a brushless WFSM was designed with an
additional winding on the rotor. The additional rotor winding in that case will retrieve the
space harmonics power and feed a current to the field winding of the machine as a voltage
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source, removing the need for any external dc power source for excitation. A similar
approach has been explored in [9] to design a brushless WFSM using space harmonics
for excitation.

In [10], a self-excited brushless synchronous generator was designed and investigated
to utilize the fifth space harmonic of armature MMF to excite main field winding in a
cylindrical rotor design.

In [11,12], brushless excitation was achieved by injecting a third harmonic in the same
armature windings to create a harmonic air gap flux for rotor excitation. In a similar
attempt, an additional winding on the stator was used for more controllability of the
harmonics in [13].

In [14], to reduce the components, a thyristor-generated harmonic current was used
to feed and control the current, employing an additional harmonic winding on the stator
with a similar machine structure as in [13]. However, these brushless machines have some
disadvantages, such as high stator/rotor winding or core volume compared to a benchmark
machine. Otherwise, the machine performance is not comparable to a conventional PMSM
or WFSM.

However, recently new topologies have been designed and investigated to solve the
remaining problems in the brushless excitation of WFSMs [15–18].

In [15], stator armature winding was connected in such a way that the three phase
armature winding terminals were connected to an exciter winding mounted on the stator
through diode rectifier. This topology will generate two types of fluxes in the air gap
creating both the fundamental and harmonic flux through single power supply. However,
it is limited to small scales due to load insensitivity and unwanted harmonics.

In [16,17], stator armature winding was connected in such a way that the ampere-turns
resulting from supplying current were unequal in two portions of the machine structure.
This attempt results in sub-harmonic air gap flux in addition to the fundamental flux.

In all these types of machines, the additional flux is generally created to be induced
in a rotor harmonic winding which acts as power source for the field winding excitation.
However, changing the conventional winding connection patterns generally results in
unwanted harmonics along with the desired harmonic frequencies.

Recently, a brushless WFSM based on a single rectifier is proposed in [18]. This
topology is presented in Figure 1. The proposed WFSM is based on two power sources.
One is directly connected to the main armature winding, whereas the second power source
is connected to the three-phase rectifier whose output is connected to the neutral point of
the armature winding which is Y-connected. This results in a dc offset for the armature
currents which generates a third harmonic air gap flux. The rotor harmonic winding
harnesses the third harmonic power from the air gap flux for brushless operation.

In this paper, a dc offset for the armature winding currents, previously realized
using two power sources in [18], is produced using a single customary current-controlled
voltage source inverter (CCVSI). The inverter operation is based on a simple and easy to
implement current control scheme. This control scheme involves a hysteresis controller
that enables it to generate three-phase currents for the stator winding which contains a
dc offset for each phase. The magnitude of the dc offset can be varied by varying the
reference currents of the controller. This dc offset generates an additional air gap MMF
which produces a third harmonic air gap flux. The generated flux is intercepted by the
rotor harmonic winding wound along with the field winding for brushless excitation. In
the proposed WFSM topology, the conventional armature winding is exploited to reduce
any additional unwanted harmonics which can reduce the machine performance. In
addition, the proposed topology requires a single customary CCVSI employing a simple
control scheme, which makes it cost-effective compared to the brushless WFSM topology
presented in [18]. The proposed inverter topology and its operating principle are discussed
in subsequent sections. Finite element analysis (FEA) in JMAG-Designer 19.1 is employed
to validate the proposed topology and achieve its electromagnetic performance.
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Figure 1. Conventional three-phase rectifier-based brushless WFSM topology.

2. Proposed Inverter Topology

A simplified representation of the proposed brushless WFSM topology, in which
the inverter generates an armature current with a dc offset for the stator winding of the
machine, is presented in Figure 2. The armature winding in the proposed brushless WFSM
is connected to the customary three-phase, two-level, current-controlled voltage source
inverter. The rotor of the machine has harmonic and field windings connected through a
rotating diode rectifier. The comprehensive illustration of the proposed topology is shown
in Figure 3a, in which the inverter uses a control scheme for the required commutation
of the inverter which switches based on a typical hysteresis controller. The employed
hysteresis controller controls the phase currents of the armature winding with a specific
hysteresis band over the given reference current signals. The controlled output currents
with the required dc offset, which essentially contain the fundamental and the bias/dc
current components, are given to the armature winding of the machine. Consequently,
the proposed inverter topology involves two dc sources connected in series as shown in
Figures 2 and 3a. The coupling point of the dc source is connected to the neutral point
of the Y-connected armature winding of the machine. The switching potentials of the
inverter switches are used to decide the bandwidth of the current controllers. The reference
current signals i*a, i*b, and i*c used for the employed hysteresis current control scheme are
generated through the following equation:

i∗a = I sin(ωt) + Ibias
i∗b = I sin(ωt− 2π

3 ) + Ibias
i∗c = I sin(ωt + 2π

3 ) + Ibias

(1)

Figure 3b shows the reference and controlled inverter output currents for phase A of
the proposed inverter topology. In the given figure, the black color waveform represents
the reference signal, whereas the red color waveform denotes the inverter output current.
Figure 3c illustrates the three-phase input armature currents, which produces the following
neutral current:

IN = ia + ib + ic = 3Ibias (2)

The generalized voltage equation for the armature winding is as follows:

vx = Rix + L
dix

dt
(3)

where x ε{a, b, c}, vx, and ix represent the proposed CCVSI output voltage and current, respec-
tively. R and L represent the armature winding resistance and inductance of the machine.
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Figure 3. (a) Proposed inverter topology, (b) reference and controlled output current for phase A, and (c) controlled
three-phase output currents of the inverter.

3. Machine Topology and Working Principle

The input armature currents (iabc) generated through the method discussed in Section 2
are given to the machine’s armature winding. A 4-pole, 42-slot (4p42s) machine with a
concentrated, double-layered armature winding, which has a winding factor of 0.932, is
employed to validate the proposed brushless WFSM topology. The employed machine
along with its stator and rotor winding configurations are shown in Figure 4a,b, respectively.
As seen from Figure 4b, the rotor of the machine has four main teeth to accommodate
the four-pole rotor field winding, whereas each main tooth is further altered to have two
sub-teeth to house the rotor harmonic winding. The rotor harmonic winding is based on a
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twelve-pole winding configuration to harness the harmonic power generated in the air gap
flux. The detailed winding specifications are presented in Table 1.
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Table 1. Winding parameters for the employed machine.

Parameter Value

Number of poles/slots/layers 4/42/2
Coil span 9 slots
Pole pitch 10.5 slots

Periodicities 2
Winding factor 0.932

The operation of the proposed brushless WFSM topology is investigated considering
four different cases, each is based on the supply of input armature currents (iabc) with a
different magnitude of dc offset/bias. In case 1 and 2, the armature winding is supplied
with currents having a dc offset of 0.6 A and 1.2 A for each phase, respectively. However, a
dc offset of 1.8 A and 2.4 A is achieved for the stator armature currents of the employed
machine in case 3 and 4, respectively. The input armature currents during all operating
conditions, i.e., case 1 to 4, are presented in Figure 5a–d.

These currents produce a magnetomotive force (F) for each phase of the armature
currents, as given under:

Fa = iaNϕ1(sin θs +
1
3 sin 3θs)

Fb = ibNϕ1

{
sin(θs − 2π

3 ) + 1
3 sin 3θs

}
Fc = icNϕ1

{
sin(θs +

2π
3 ) + 1

3 sin 3θs

} (4)

In the above equation
Nϕ1 = 2

π (per phase number o f turns)
θs = electrical angle (spatial), and
ω = angular frequency (electrical).
The controlled armature winding currents can be expressed as:

ia = I1 sin(ωt) + Ibias
ib = I1 sin(ωt− 2π

3 ) + Ibias
ic = I1 sin(ωt + 2π

3 ) + Ibias

(5)
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where I1 is the fundamental and Ibias is the magnitude of the dc offset for the armature
winding currents for each phase.
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Figure 5. Armature winding currents with (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each phase.

Bring Equation (5) to Equation (4), and add the MMF of three-phase armature wind-
ings a, b, and c. The net MMF (Fabc) of the armature winding is expressed as:

Fabc(θs, i) = Fa + Fb + Fc (6)

Fabc(θs, i) =


Nϕ1

{
sin(θs) +

1
3 sin 3θs

}
{I1 sin(ωt) + Ibias}

+Nϕ1

{
sin(θs − 2π

3 ) + 1
3 sin 3θs

}{
I1 sin(ωt− 2π

3 ) + Ibias
}

+Nϕ1

{
sin(θs +

2π
3 ) + 1

3 sin 3θs

}{
I1 sin(ωt + 2π

3 ) + Ibias
}
 (7)

Fabc(θs, i) = Nϕ1

 I1

{
sin(ωt) sin(θs) + sin(ωt− 2π

3 ) sin(θs − 2π
3 )

+ sin(ωt + 2π
3 ) sin(θs +

2π
3 )

}
+3Ibias

 (8)

Fabc(θs, i) =
3
2

I1Nϕ1 cos(ωt− θs) + 3Ibias (9)

The above equation shows that Fabc consists of the normal fundamental MMF rotating
at synchronous speed and the spatial-location-fixed MMF generated by the dc offset
component of the armature currents. These two fields are not coupled due to the difference
of frequencies.

If the rotor rotates at synchronous speed, the fundamental component of MMF will
not produce any EMF in the harmonic winding of the rotor as the speed of the rotor and
the fundamental MMF is same; however, the stationary MMF component caused by the
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dc offset component of the armature currents will induce a rotating EMF and transformer
action-based EMF in the harmonic winding of the rotor.

Assuming that θ0 is the rotor excitation winding initial position angle, the spatial
position of the excitation winding can be calculated as:

θs = ωt + θ0 (10)

The generated flux of each winding pole will be:

ψh = nhPgNϕ1

{
3
2

I1 cos(ωt− θs) + 3Ibias

}
(11)

where nh is the rotor excitation winding number of turns, and Pg is the air gap permeance.
The magnitude of the induced EMF in the rotor harmonic winding can be calculated

as:
eh = 6 dψh

dt
eh = 18nhPgNϕ1 Ibiasω cos(3ωt + 3θ0)

(12)

From Equation (12), it can be seen that the induced EMF in the harmonic winding
of the rotor is three times as much as the synchronous angular frequency. The induced
EMF (eh) in the rotor harmonic winding is rectified by a rotating rectifier to supply dc to
the rotor field winding to archive brushless operation for WFSM [19,20].

4. Finite Element Analysis

To validate the proposed single inverter-controlled brushless WFSM topology, finite
element analysis (FEA) was carried out in JMAG-Designer. The electromagnetic perfor-
mance of the proposed topology was achieved by developing a 4-pole, 42-slot machine
as presented in Figure 4. The machine was investigated under four different operating
conditions i.e., case 1, case 2, case 3, and case 4. In case 1 and 2, the armature currents had
a dc offset of 0.6 A and 1.2 A for each phase, respectively. However, a dc offset of 1.8 A and
2.4 A was achieved for the armature currents in case 3 and 4. The input armature currents
under these cases are shown in Figure 5a–d and the machine specifications are presented
in Table 2.

Table 2. Machine specifications.

Parameter Value

Rated power 1 kW
Machine poles/Stator slots 4/42

Rated speed 1800 rpm
Frequency 60 Hz

Stator outer/inner diameter 88.5/50 mm
Air gap 0.5 mm

Rotor diameter 49.5 mm
Rotor main/sub-teeth 4/8

Harmonic/Field winding number of turns 9/150
Armature winding number of turns 20

Stack length 80 mm

The machine was operated at a speed of 1800 rpm. The simulations of the proposed
brushless WFSM were carried out for 0.6 s. The flux linkages of the machine under all four
cases are shown in Figure 6a–d. Fast Fourier transform (FFT) plots for phase A of these flux
linkages were carried out to show its harmonic contents. The FFT plots for the flux linkages
of the machine under the investigated operating cases are presented in Figure 7a–d. These
figures show that a considerable magnitude of third harmonic is present in the flux linkages
produced by rotating the shaft of the machine at synchronous speed and the armature
currents generated through the proposed CCVSI. Figure 8a–d show the magnetic field
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density plot of the machine under the investigated operating cases. These plots show that
the operation of the machine is under the saturation level of 1.6 T in case 1, 1.7 T in case 2
and 3, and 1.8 T in case 4.

The third harmonic flux induces the harmonic current in the twelve-pole rotor har-
monic winding, which is rectified through a diode rectifier to excite the rotor field winding.
The induced harmonic and rectified field currents of the employed machine under investi-
gated operating cases are shown in Figure 9a–d.

A four-pole rotor field can get locked with the four-pole main stator field and develop
torque. In case 1 and 2, the magnitude of the average torque generated through the
proposed brushless WFSM topology is 3.198 Nm and 5.252 Nm, respectively. However, in
case 3 and 4, the magnitude of the average torque is 6.4478 Nm and 7.2367 Nm. The output
torque of the machine under the investigated operating cases is shown in Figure 10a–d.
The magnitude of the generated output torque and its torque ripple during the investigated
operating conditions are presented in Table 3. From the table, it can be seen that as the
magnitude of the dc offset increases, the average torque of the machine increases. However,
the torque ripple also increases. It is because the increase in the magnitude of the dc offset
increases the additional harmonics in the machine air gap.

The torque ripple of the machine can be minimized by using parametric optimization
techniques and skewing.
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Figure 6. Flux linkages of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each phase of
armature currents.
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Figure 7. FFT of flux linkages of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each phase of
armature currents.

Mathematics 2021, 9, x FOR PEER REVIEW 10 of 15 
 

 

  
(c) (d) 

Figure 7. FFT of flux linkages of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each phase of 

armature currents. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Magnetic field density plots of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each 

phase of armature currents. 

  

0 100 200 300 400 500 600 700 800 900 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
m

p
lit

u
d
e

 (
W

b
)

Frequency (Hz)

Fundamental

Third-harmonic

0 100 200 300 400 500 600 700 800 900 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
m

p
lit

u
d
e
 (

W
b
)

Frequency (Hz)

Fundamental

Third-harmonic

Figure 8. Magnetic field density plots of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each
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Figure 9. Rotor currents of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each phase of
armature currents.
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Figure 10. Output torque of the machine having (a) 0.6 A, (b) 1.2 A, (c) 1.8 A, and (d) 2.4 A dc offset for each phase of
armature currents.
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Table 3. Comparative performance analysis.

Attribute Case 1 Case 2 Case 3 Case 4

Average output torque (in Nm) 3.1980 5.2520 6.4478 7.2367
Torque ripple (in %) 60.97 65.689 71.342 76

Maximum torque (in Nm) 4.36 7.25 8.85 10.15

No-Load Analysis

To examine the operation of the machine used to validate the proposed single inverter-
controlled brushless WFSM topology under no-load condition, no load analysis of the
machine was carried out in JMAG-Designer. The machine was provided with a field current
of 1 A dc and was operated at 1800 rpm. The flux linkage of the machine under such
conditions is presented in Figure 11a, whereas the magnetic flux density plot is presented in
Figure 11b. A back-EMF of 76.671 Vrms was generated in the stator winding of the machine
and is presented in Figure 12a. To show the harmonics present in the induced back-EMF, a
FFT plot of the back-EMF was generated and is shown in Figure 12b. The cogging torque
of the machine is 0.04 Nm (peak-to-peak). The generated cogging torque is presented in
Figure 13. The no-load analysis results are presented in Table 4.
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Figure 11. (a) Flux linkage and (b) magnetic flux density plot.
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Figure 12. (a) Back-EMF of the employed machine and (b) its FFT plot.
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Table 4. No-load analysis.

Attribute Case 4

Back-EMF (in Vrms) 76.671
Cogging torque (in peak-to-peak Nm) 0.04

5. Conclusions

This paper proposes and investigates a single inverter-controlled brushless WFSM
topology in which the inverter injects a three-phase armature current having a dc offset. In
this arrangement, the volume of the machine can be reduced compared to a conventional
brushless WFSM where an additional winding is used on the stator for excitation purpose.
In addition, the proposed topology uses a single inverter and a simple current control
strategy which makes it cost-effective compared to the brushless WFSM topologies of
same kind. In particular, a 4-pole, 42-slot machine was used to simulate in JMAG for
performance evaluation and verification of the working principle. The results show that
a significant amount of torque is produced with the proposed brushless WFSM topology.
This conclusion is, however, only based on the verification of the topology with reference
to its working principle. The performance can be enhanced with an improved machine
structure and optimized for various applications.

The limitation of the proposed single inverter controlled brushless WFSM topology
includes the selection of the magnitude of dc offset for armature currents within a limit
which may never cause any saturation for the stator and rotor cores.
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