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Abstract: The paper discusses the problem of performance and timing parameters with respect to the
validation of digital instrumentation and control systems (I&C). Statistical methods often implicitly
assume that the probability distribution law of the estimated parameters is close to normal. Thus, the
confidence intervals for the parameter are determined on the grounds of this assumption. However,
we encountered cases when the delay distribution law in I&C is not normal. In these cases, we used
the non-statistical network calculus method for time parameters estimation. The network calculus
method is well elaborated for lossless digital system models with seamless processing algorithm
depending only on data volume. We consider the extension of the method to the case of I&C systems
with considerable changes in the data flow and content-dependent processing disciplines. The model
is restricted to systems with cyclic processing algorithms and fast network connections. Network
calculus describes the data flow and system parameters in terms of flow envelopes and service curves
that are generally unknown in advance. In this paper, we define equations that allow the calculation
of these characteristics from experimental data. The correspondence of the Network Calculus and
classical statistical estimation methods is discussed. Additionally, we give an example of model
application to a real I&C system.

Keywords: network calculus; analytical modeling of distributed systems and networks; control
system; system validation; performance evaluation; computer and network control and management

1. Introduction

Modern instrumental and control systems (I&C) for industrial facilities are imple-
mented in most cases as a distributed digital environment. A number of approaches
for the validation of the system’s timing and performance characteristics have been de-
veloped, and they vary depending on the available input data and experts’ theoretical
backgrounds. Common techniques combine methods of statistical analysis and discrete
mathematics [1–5]. The statistical methods usually assume that the distribution law of the
measured parameters is close to normal [1]. In most cases, this assumption is valid for
signals having a physical nature, but, as we will show, it can be false for signals describing
the digital I&C itself, for example, data communication and information processing delays.

The network calculus method is one of the alternatives for evaluating computer
network performance characteristics [6]. It is the non-statistical method of analyzing
deterministic queuing systems based on mini-plus algebra and is attractive since it does
not use assumptions about the probability distribution law of the values. The distinctive
feature of the network calculus method is the use of specific functions to calculate delay
and buffering parameters (service curves and envelopes of input and output data flow).
Initially, network calculus was developed for the analysis of lossless digital streaming
systems. The term lossless means that there are no data sources and sinks inside the system.
Generally speaking, I&C systems do not belong to those systems since the following
features characterize them:
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• parallel processing of multiple tasks on same computing resource;
• significant change in the amount of information at the input and output of a component

(for example, when a component compresses information);
• heterogeneity of data in a digital control system, in contrast to the information in

streaming systems; it means that each element of data (bit) has its own value and can
be processed according to a proper algorithm.

It is not to say that these features are not considered in the context of network cal-
culus. The work [7] extends the method to systems with cyclic dependencies between
input and output flows. Several works [8,9] give approaches for using network calculus
in systems with significant differences between the input and output flow. Several pa-
pers [10,11] deal with various disciplines of joint processing of multiple tasks on a shared
computing resource.

These approaches have common drawbacks. First, their application requires precise
knowledge of the system’s internal features and, being tied to it, they are sensitive to
any change in the system’s operating modes. Second, for complex systems, they lost the
“transparency” of the results. Thus, a simple correlation with other characteristics (input
data rate, burstiness, computational power of the component) becomes awkward.

In this paper, having analyzed these drawbacks, we develop a mathematical model of
the digital I&C system. The model retains the generality and computational transparency
with a possibility to take into account the uneven long-term relation between the input and
output flows and heterogeneity of data. In the framework of the model, we investigated
two subproblems that are of separate interest:

• comparing the network calculus computed delays with delays obtained by the statisti-
cal methods;

• calculation of the flow envelope and service curves from experimental data.

Both problems have not been adequately presented in the literature yet.
The model has been checked on simulated data and data obtained in a real I&C

system [12].

2. The Structure of a Typical Industrial Automation Control System

The work considers a typical I&C system for an industrial facility (from now on,
referred to as Control System—CS). The architecture of the CS has three levels (Figure 1):
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Figure 1. Block diagram of the control system under study.

• Equipment embedded controllers and low-level data gateways—level G (1);
• Data storage and data processing servers—level S (2);
• Human-machine interface components—level Z (3).

The a(t) and a∗(t) with numeric index are the input and output in a particular channel.
A similar CS structure is used in various applications for real objects [12,13].
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In accordance with the practical operating conditions of the CS at the facility, elements
(G,S,Z) of the system implement a cyclic data processing algorithm.

Definition 1. A cyclic data processing algorithm is an algorithm with the following properties. At
the start, the system element is in a state of waiting for the data to arrive. Sequentially incoming
data packets are processed in a determined uniform way, and the system returns to its original state
after the last packets in the sequence are processed.

For the cyclic algorithm, the total processing time of the data packet DC can be
represented as the sum of two values:

DC = TE + TS,

where TE is network delay and TS is data processing time within system elements.

3. Application of Network Calculus to Evaluate Control System Time Characteristics

Let us consider the aspects of applying the network calculus method for computing
time characteristics of a CS.

The network calculus [6] method was invented by Cruz [14,15] and is based on min-
plus algebra (see [16]). The basic terms and notations of the method can be found in [6]
or [17]. In this section, we present only the most important definitions.

Definition 2. A function β is the (minimum) service curve of a network element (or system) with
the input flow A if β is a causal flow function and the element (system) output flow A∗ satisfies:

A∗ ≥ A⊗ β, (1)

where ⊗ is mini plus convolution operator.

Definition 3. A function γ is the (maximum) service curve of a network element (or system) with
the input flow A if γ is a causal flow function and the element (system) output flow A∗ satisfies:

A∗ ≤ A⊗ γ. (2)

Definition 4. A function a is the envelope of flow A if A ≤ A⊗ a or, that is the same

a ≥ A�A , (3)

where � is mini plus deconvolution operator.

The input and output flows are determined by the total amount of data registered at
the input and output over a certain period. Therefore, the time of data passage through the
system will accordingly be defined as the horizontal deviation d(t) between these functions.

Definition 5. (The maximal delay in the system): For linear systems with input flow A, the output
flow A∗, A(t) ≥ A∗(t), the maximal delay Dmax expressed as the maximal horizontal distance
between input and output flow curves is:

Dmax = h(A, A∗) = sup
t≥0
{inf{d ≥ 0 : A(t) ≤ A∗(t + d)}}, (4)

One of the crucial points of network calculus is that the maximum value of delay Dmax
can be obtained using bounds rather than real cumulative functions, see the proof in [6]:

Dmax = h(a,β), (5)
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where h is the maximal horizontal distance between two curves.

4. Network Calculus Main Curves Estimation Approaches

Let us consider the problem of determining the flow envelope, the minimum and
maximum service curves of the system, and their linear approximations based on the flow
data measured during the experiment.

4.1. Calculation of the Flow Envelope Based on Experimental Data

Equation (3) defines a direct method for calculating the envelope of the cumulative
flow A. It is convenient to deal with a piecewise linear approximation of the envelope,
which is reduced to the affine function y = kx + b in some cases. The piecewise linear
approximation allows using effective computational algorithms of data processing [18,19].
The affine function approximation allows to quickly perform system analysis and make
numerical estimations of the system behavior [10]. The flow envelope approximation in
the form of an affine function in the Network Calculus method was considered in [20]. The
work [21] considers methods for calculating a one-component linear flow envelope based
on support vector machine algorithms.

4.2. Maximum and Minimum Service Curves Calculation Approaches Based on the Experimental Data

Determining the parameters of the service curve is not as easy as for envelope. Theo-
retically, we could get service curves as a strict bound using specially designed test flow
and taking into account the convolution property when zero element for ∧ is absorbing for
mini plus convolution operator ⊗ [6]. However, the experiment is unrealistic because it
would require a flow described by δ(t), that would overload any real system.

The second approach is using a relation between mini deconvolution and convolution
operators [6]:

C ≥ B� A⇔ B ≤ A⊗ C, (6)

Using (6) and the definition of min plus deconvolution [6], we obtain a lower bound
for the maximum service curve:

γ′ = A∗ � A, (7)

where A and A∗ are input and output flow, respectively.
Meanwhile, the estimation of only the maximum service curve is often not sufficient

for system analysis. For example, the calculation of maximal system delay and buffer size
requires the minimum service curve (1). We are not aware of any satisfactory methods of
experimental minimum service curve calculation.

Below, we will introduce an approach to the calculation of the minimum service curve.
It is similar to the approach of maximum service curve calculation, but uses a “weak”
property that we are going to prove.

Proposition 1. Let A, B, C ∈ F and if C ≤ B�A, then

B ≥ A⊗ C, (8)

Proof. Let C(s) ≤ (B�A)(s) for s ∈ R. Let us write explicitly for some s, v ≥ 0:

B(s + v)− A(v) ≥ inf
u≥0

(B(s + u)− A(u)) ≥ C(s),

or
B(s + v) ≥ C(s) + A(v), (9)

t = s + v

Rewrite (9) as
B(t) ≥ A(t− s) + C(s), (10)
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The inequality (10) is valid for any s, t ≥ s ≥ 0; it is also valid for some s where the
expression gains the low boundary, that is

B ≥ A⊗ C, ∀t ≥ 0. �

The proved proposition allows us to estimate the minimum service curve. Let A
be cumulative input flow, A∗ be cumulative output flow. Then, by virtue of the proved
proposition for the curve:

β′ = A∗�A, (11)

The inequality A∗ ≥ A ⊗ β′ is satisfied; it means, in turn, that β′ is the estimated
minimum service curve β′ ≤ β.

Since property (8) is only a necessary condition, the estimation of the minimum service
curve obtained by Equation (11) can lie both above and below the real minimum system
service curve. Comparing Equations (6) and (8), we also note that β′ ≤ γ′, i.e., the minimum
service curve is bounded from above with the maximum service curve. Note, partially the
result of the Equation (16) might be negative. Then we consider for a physically realizable
system only the positive part: max(0, β′).

In a particular case, when a system does not have a maximum service curve (i.e.,
when there is a mode of “instant” processing of the input data), it is possible to obtain an
exact value for the minimum service curve by using the envelopes instead of the input and
output cumulative flow. To do this, let us assume that α, α∗ are envelopes of the input
and output flows, respectively. It is known that α∗ = (α⊗ γ)� β (see [6] p. 34). Then the
equation γ(t) = δ(t) can be rewritten as:

α∗ = α� β, (12)

and by the property of the operator � (see [6] p. 123) and the minimum service curve β:

α = β⊗ α∗,

Using the commutativity of the operator ⊗ and applying the same property in the
reverse direction, we obtain the estimation of the minimum service curve:

β′ = α∗ � α, (13)

If the service curves can be described by affine functions, then there are fast convolu-
tion and deconvolution algorithms for them, which are necessary for calculating system
parameters [11]. As shown in [22], the service curves can be approximated by the affine
functions similar to the flow envelope and with the same algorithms based on the support
vector machines algorithm.

5. I&C System Model and CS Time Characteristics Validation

Let us consider a problem of modeling a typical CS presented in Figure 1 using the
network calculus framework. Additionally, let us suppose the CS has excessive computing
resources. This allows us to decompose the system and consider each logical channel of
the system separately. If this condition is not met, it is necessary to take into account the
discipline of resource sharing (see, for example, one of the of the task scheduler models [11]).
Figure 2 shows a separate channel of a CS. Each component in the channel has its own
maximum and minimum service curves.

All main conclusions and equations in the section will be given for the minimum
service curve. As follows from the definitions of the maximum and minimum (1, 2) service
curves, the conclusions and equations for the maximum service curve will be similar and
can be written by simply renaming the variables and replacing the inequality signs in
the relations.
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To designate a specific component, we will add a lower alphanumeric index to β
following the notation in Figure 2. Cumulative input and output flows at each component
will be denoted as A, A∗.

Then, in accordance with the definition of minimum service curve (2), for every system
element, we can write an expression in the following form:

A∗ ≥ A⊗ β

However, in practice, all CS elements’ characteristics, except the communication
conduits, are not linear; the scale of the flow changes between the input and output. For
example, a single alarm signal at the component input can cause an avalanche of related
signals, which will lead to an increase in information at the output of the component. To
describe the change in the flow scale, the scaling function M and its inverse function M−1

are introduced into the model (Figure 2). The scaling function provides the transformation
M : A∗ → A and M−1 : A→ A∗ [8]. So, the service curve of the βSi system for the i-th
channel with regard to the scaling functions is expressed as:

βSi = βGk ⊗M1
−1(βCn1 ⊗ βSl ⊗M2

−1(βCn2 ⊗ βZm)) (14)

where i, k, l, m,∈ N are indexes of connected in sequence components in a data processing
logical channel at each CS level; n1, n1 ∈ N are the indexes of communication channels
used in data transmission between the components in the channel i1; and M1, M2 are the
scaling functions of the corresponding components. The service curves βCn1, βCn2 reflect
the network data transmission delay TE, and the rest refers to the data processing delay TS
in the component.

Provided that service curves calculation and scaling functions for each of the compo-
nents is possible, Equation (14) allows to obtain the bounds for data processing delay in the
entire system, depending on the characteristics of the input flows ai(t), i ∈ N. However,
in practice, calculating the scaling functions M of a real system is a complicated and not
always solvable problem.

To avoid difficulties with the definition of scaling functions, we will redefine the input
and output flows and move from real flow to virtual one for systems with a cyclical data
processing algorithm.

Let us suppose all data received by the system at the beginning of each cycle will
be processed and transmitted to the output by the end of the cycle, and consider the
following function: {

q(j) = τj, j ∈ N
q(0) = 0,
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where j is the number of the cycle, τj the cycle, and j duration. Next, let introduce on an
interval [0,+∞) a step function Q(x):

Q(x) =
j

∑
l=0

q(l), j ≤ x < j + 1

The step function Q(x) is by definition a flow function.
The output flow Q∗ for a component can be obtained from the input flow by shifting

it to one cycle:

Q∗(x) =
{

Q(x− 1), x ∈ [1,+∞)
0, x ∈ [0, 1)

(15)

Note: the definition of the maximal delay for virtual flows must be redefined as:

Dmax = v(Q, Q∗) = sup
t≥0
{Q(t)−Q∗(t + d)}.

The structural diagram (Figure 2), redefined for virtual flows in components of the G,
S, Z type, is shown in Figure 3.
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For a channel with “virtual” flows for components G, S, Z, we redefine the meaning
of service curves β and γ as:

Q∗ ≥ Q⊗ β

Q∗ ≤ Q⊗ γ

and introduce mapping operators: M0
′, M1

′, M2
′ providing the transformation M′ : Q∗ → A ,

and the inverse mapping operators providing the transformation M−1′ : A∗ → Q. Then
the service curve for the system shown in Figure 3 will look like this:

βSi = βGk ⊗M1
′ ⊗ βCn1 ⊗M1

−1′ ⊗ βSl ⊗M2
′βCn2 ⊗M2

−1′ ⊗ βZm, (16)

In turn, Equation (16) can be reduced (see [8] Section 5.1) to a more convenient form
by transferring the scaling functions M′ from the input to the output of the component and
omitting the pair M′, M−1′ by component output:

βSi = βGk ⊗M1
−1′(βCn1)⊗ βSl ⊗M2

−1′(βCn2)⊗ βZm, (17)

The partial transition from A to Q in Equations (16) and (17) does not generally
simplify the work with the scaling functions. However, if:

βCi � β{G,S,Z}i (18)

one can replace βCi by a function that is neutral with respect to the mini-convolution
operator δ(t):

δ(t) =
{

0, t = 0
+∞, t > 0

,
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with the following property: f = δ ⊗ f (see, for example, [6]).
For a monotonic scaling function:

M−1′(δ(t))→ δ(n), n ∈ N

it becomes possible to omit βCi from Equation (17) and, accordingly, to get rid of the
scaling functions. Physically, the Assumption (18) means that the processing cycle time
in the network stack and the time of information transmission over the system network
are negligible compared to the time of information processing on a computing resource.
This assumption is mainly fulfilled in modern CS, where the transmitted information has a
relatively small volume compared to the bandwidth of communication channels.

In this case, the overall system service curve in Equation (17) for the i-th chain for the
“secondary” virtual flow is simplified:

βSi = βGk ⊗ βSl ⊗ βZm, (19)

where k, l, m ∈ N—are the indexes of sequentially connected components.

6. Network Calculus Method Application Verification for System’s Time
Characteristics Estimation
6.1. Reference Data and Verification Procedure

The delay is calculated using an input flow envelope and service curve, which are
not measured directly but are the result of calculations. It is clear that the methods used
to compute them will also affect the trustworthiness of the final result. Therefore, let us
focus on the practical aspects of the delay computation and compare the results of network
calculus and statistical analysis.

The network calculus method was verified using test data with known statistical pa-
rameters. The test program simulates the CS component with a cyclic operation algorithm.
The network delay TE and cycle time TS were random variables distributed according to a
certain law. For data analysis, we use the free network calculus library [10].

6.2. Comparing the Network Calculus and Statistical Results

For each sample, we compute:

• delay (D) calculated by the network calculus (5) using experimental maximum and
minimum service curves;

• maximum measured delay in the sample (Dx);
• ratio of D/Dx;
• dependence of the maximum calculated delay on the sample size (L) and distribution.

The data in the samples have different distributions, including distributions that were
close to normal and those with heavy tails. In the experiments we assume that the data
was completely processed: ∃te ≥ 0, A(te) = A∗(te). All data presented have been rounded
to ~1%. When using the distribution law with possible negative values, the negative data
were discarded.

Figure 4 shows the dependence of the ratio D/Dx on the sample size for different
probability distribution functions, where D is the maximum delay in the network calculus
method with the service curve calculated by Equation (13).

Figure 5 shows the dependence of the ratio D/Dx, where D is the calculated maximum
delay in the network calculus method with the service curve calculated with the use of
Equation (7) for different probability distribution functions and sample sizes.
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on the sample size and outlier amplitude using the minimum
service curve is shown in Figure 6.
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Figure 6. The ratio of the measured and calculated delay for the Rayleigh distribution with parameters
µ = 0, σ = 300 B depending on the magnitude of a single outlier in σ for several fixed sets of
sample lengths.

The experiments allow us to make the following observations and conclusions about
the relation of the statistical and network calculus results.

The maximum delay estimation with the use of a minimum service curve (13) is more
accurate for short samples (Figure 6) and heavy-tailed distributions (Figure 4). The D

Dx
ratio

increases with increasing sample size, although the rate of delay changes decreases with
the increasing sample. The D

Dx
ratio can be as high as 102.

Meanwhile, the simulation shows that the maximum delay calculated with the use
of service curve (7) characterizes the delay in the normal operating mode (Figure 5). The
delay is close to the maximum delay in the sample and depends weakly on the sample size
for sufficiently large samples.

The maximum delay estimation with the use of service curve (7) is close to the
experimental maximum delay Dx but D is commonly somewhat less than Dx. The resulting
estimate better correlates with the real maximum delay during an increase in the sample
size and for distributions close to normal (Figure 5).

Figure 7 shows a typical shape of the network calculus curves obtained from the
experimental network data. The sample data follow quasi-normal distribution with
µ = 500,σ = 100. For clarity, the data of a short size are given. The lower horizontal
line corresponds to the maximum delay calculated for the maximum service curve (7).
This delay is close to the maximum sample delay. The upper horizontal line corresponds
to the estimation of the maximum delay for the maximum service curve (11). The figure
clearly shows that the input flow envelope limits all curves on the figure from above, and
an estimation of the minimum service curve limits them from below.
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Figure 7. Experimental Network Calculus curves for a quasi-normal distributed sample with
µ = 500,σ = 100; size of L = 10. Arrow 1 points to the maximum delay for the service curve
(7), arrow 2 points to the maximum delay estimation for the service curve (11).

6.3. Comparison of Network Calculus and Statistical Calculation Results

Our simulations have shown that the D
Dx

ratio values and the maximum delay depend
on the probability distribution law of processing time and on the sample length and the
number and amplitude of individual outliers in the data.

The dependence is complex due to the non-linear nature of the formulas describing
the basic operations. According to them, the flow envelope and service curve will have
sections composed of data close in value, sorted in descending order for the flow envelope
and the maximum service curve and ascending for the minimum service curve (см. [6]
p. 113).

Thus, with the sample length increase, the flow will contain a larger number of sections
with a significant steepness. Therefore, both the flow envelope (8) and the service curves
are calculated by Equations (7) and (11) will change.

The maximum service curve (7) estimation from the sample will have similar behavior
with the flow envelope. The minimum service curve has an opposite tendency (Figure 7).
Therefore, maximum delay estimation by Equation (7) is less dependent on changes in the
input data and the length of the sample.

A heavy-tailed probability distribution law is characterized by the presence of a certain
number of outliers, which are very different from the rest of the values. For distributions
close to normal, the appearance of such outliers in the sample is less likely, but they
are nonetheless characterized by the presence of a sufficient amount of data within the
confidence interval. So, the overall curvature trend for the envelope and service curves will
differ depending on data distribution. For samples with single large outliers, the curves
will have large curvature at the beginning and a subsequent sharp decrease. For samples
without large outliers, the curvature will decrease smoothly (Figure 8).
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Figure 8. An example of two cumulative flows (flow 1, flow 2) and envelopes (α1,α2) for them. Flow
1 has outliers in the data (point 4 on the X-axis), and flow 2 has no significant outliers.

This lets us understand the relationships between the delay estimation obtained from
the network calculus and classical methods of statistical estimation (see, for example, [23]).

It is known [24] that network calculus implicitly assumes the worst combination
of conditions for information processing in the system. Graphically, it means that the
beginning of the envelope curve consists of areas with the most significant changes in the
input flow (i.e., a worst-case scenario that can be predicted from the observed data). For the
delay based on the minimum service curve, the worst-case scenario is also the arrival of the
largest packet of data when the server is busy and has low performance. When calculating
the delay with the maximum service curve, the maximum data size corresponds to the
maximum service performance (i.e., when the maximum amount of data accompanies the
system’s maximum performance), which is typical for the system’s normal operation.

In both cases, the delay calculated using network calculus corresponds to the delay
calculated for the two described scenarios for statistical methods of calculation. The
probability that an actual delay will reach this value corresponds to the probability of this
scenario being realized in the experiment.

For verification, we calculated the probability that the real delay will be less than
the delay calculated by the network calculus method. For the delay calculated using the
minimum service curve, in most cases, as expected, this probability is close to the unity.

7. Practical Example of Calculating the Delay for a Real I&C System

This section presents the results of evaluating the time characteristics of the actual
control system described above (Figure 1). In order to substantiate the possibility of using
the simplified Formula (18) for calculating the service curve of the entire system, the
network delays of data transmission between the components were also measured. For the
measured values, empirical probability distributions are calculated, and for the network
delay, spectral characteristics are additionally analyzed.
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Measurements were carried out for elements of level Z (from Figure 2). The amount of
cyclic data being processed is relatively stable under normal operating conditions and has
some average speed. However, with some special (actuation of protections and equipment
interlocks) or transient processes (transition from mode to mode), the amount of data and
the algorithm (that is, speed) of processing can change significantly.

The empirical distribution of the cycle time TS (Figure 9) is different from the normal
or Poisson and is polymodal. In accordance with the functioning algorithm, each of the
modes corresponds to a typical processing cycle for a particular type of data.
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For this sample, the maximum delay was estimated using service curves 7 and 11. The
results for sample size L ∼ 103 are shown in Table 1.

Table 1. The experimental delay calculation results for I&C system component Z.

Parameter Value

Dx 0.37
p(Dx) ∼ 1

D 5.1
p(D) ∼ 1

D/Dx 4.9
D′ 0.32

p(D′) 0.87
D′/Dx 0.3

In the experiment, we measured the network delay TE using the tcpdump utility
from the Linux OS. The round-trip time (RTT) of a TCP packet was measured, i.e., the time
elapsed from the moment the S component sent packet until the confirmation (ACK, [25]) re-
ceipt from the Z component. The typical round trip time of a packet is tens of microseconds
and the maximum transit time of network packets is ∼ 103 times less than the processing
time of information in cycles. The characteristics of the process of transferring data between
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other components of the system are similar. The condition that TE � Ts allows using the
simplified Formula (18) to calculate the service curve.

In the course of measurements on a real I&C system, we verified that the empirical dis-
tributions obtained from measurements (Figure 9) have a heavy tail. The check was carried
out using the algorithm for recognizing distributions with heavy tails [26], which, on the
author’s tests, showed better results than tests based on the Kolmogorov–Smirnov criteria.

The test showed that a real system of distribution of time delays, both in the
network components and in the components that process information, belong to a
heavy-tailed distribution.

8. Results and Discussion

The paper considers estimating the temporal characteristics of digital I&C control
systems (CS) during the system’s validation. CS technical requirements often include
constraints on data processing and communication delays. The constraints can be imposed
on both average and maximum (absolute) values. They can be expressed either as statistical
constraints with confidence intervals or as limiting absolute values [27].

Estimating a random variable from a sample is a classical problem of statistics. It is
well described in the literature (see, for example, [28]). However, the interpretation of the
measured characteristics of the digital I&C system with a presumption that the probability
law of the values is close to normal may lead to incorrect conclusions. Let us formulate the
main problems.

The procedure of technical requirements validation during tests is mainly based on
calculating the sample mean and sample variance (for example, [1]). If a random variable
has a finite expectation value and variance, the sample mean is an unbiased consistent esti-
mation of the theoretical mean and does not depend on the type of distribution. A known
disadvantage of this method is its low robustness in extraneous outliers in the sample [28].
However, sample variance, both biased and unbiased, is a consistent estimate of the
theoretical variance of a quantity.

In practice, when interpreting the obtained estimates of the mean and variance, it is
implicitly assumed that the time delays are distributed according to the normal law and
intuitively transfer the estimates of the confidence intervals for the normally distributed
quantity to the case of time delays in control systems. Indeed, if a random variable has a
normal distribution then, having a sample mean and variance, it is easy to estimate the
confidence interval for the parameter being confirmed. However, the probability function
of the delay in the CS is generally not normal.

The physical nature of the measured value (time) imposes restrictions on the probabil-
ity distribution function. At least, it is bounded on the left. If the technical requirements
specify the maximum absolute value (for example, “the signal transit time between the CS
components should not exceed a certain value”) this form of the requirement implies that
the random variable has a distribution function that is also bounded from the right. So, the
absolute restrictions mean that the distribution function is not initially, in the strict sense, a
distribution function of a normal random variable.

Our study of a real CS encountered that the distributions of the data processing and
communication delays significantly differ from the normal, often have polymodal nature,
and belong to heavy-tailed distributions. In a general sense, to estimate the probability of
a random variable exceeding a particular value, one can use Samuelson’s–Chebyshev’s
inequality. However, it gives a very rough estimate.

The paper considers a non-statistical approach for delay calculation in CS based on the
network calculus method. The network calculus method is not entirely new, but it is still
not well understood by testing specialists. When applying it to the analysis of computer
systems, it is necessary to take into account some of the peculiarities of the method. Thus,
the input data about the system, which are necessary for the calculation using the network
calculus method, in the general case, are not specified as “logbook parameters” of the
system. For example, such input data for the method are flow envelopes, service curves,
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scaling functions in the case of an uneven data flow, etc. are a priori unknown. There is
also the lack of transparency in corresponding the network calculus results with classical
(statistical) methods. The technical difficulties of the method are known, and various
approaches to partially resolve them have been developed, for example, [8–11,19,29].
However, these solutions also require initial data about the system, which are absent or
poorly formalized in practice.

Within the frames of network calculus, we proposed a mathematical model for the
description of computer systems with cyclic data processing algorithms that are common
in CSs. The model allows one to take into account data heterogeneity and significantly
simplifies delay calculations if the major delay is due to the data processing.

We got solutions for two subproblems. First, we proved a necessary condition of the
minimum service curve existence that allows estimating the curve from data flows. Second,
we performed simulations of the correspondence of network calculus and statistical results.

In particular, it is shown that the closest correspondence between the statistically
calculated maximum delay and the calculation of the maximum delay by the Network
Calculus method is obtained when the data distribution in the sample has single large
outliers, which is typical for heavy-tailed distributions. It is assumed that the maximum
delay is related to the probability of a rare event, a sequential arrival of a significant amount
of data with low server performance for a minimum service curve.

The developed methods are verified on simulating examples and successfully applied
to the real I&C system.

We have not managed to formulate a sufficient condition on the minimum service
curve. It is possible that a sufficient condition for a general case does not exist. However,
we hope to obtain a sufficient condition for the particular case of realizable service curves.
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