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Abstract: A generalized multivariate problem due to V. M. Zolotarev is considered. Some related
results on geometric random sums and (multivariate) geometric stable distributions are extended
to a more general case of “anisotropic” random summation where sums of independent random
vectors with multivariate random index having a special multivariate geometric distribution are
considered. Anisotropic-geometric stable distributions are introduced. It is demonstrated that these
distributions are coordinate-wise scale mixtures of elliptically contoured stable distributions with
the Marshall–Olkin mixing distributions. The corresponding “anisotropic” analogs of multivariate
Laplace, Linnik and Mittag–Leffler distributions are introduced. Some relations between these
distributions are presented.
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1. Introduction
1.1. Notation and Preliminaries

Assume that all the random variables and random vectors are defined on one and
the same probability space (Ω,A, P). Let d ∈ N. The distribution of a random variable
Y or a d-variate random vector Y with respect to the measure P will be denoted L(Y)
and L(Y), respectively. The weak convergence, the coincidence of distributions and the
convergence in probability with respect to a specified probability measure will be denoted

by the symbols =⇒, d
= and P−→, respectively. The product of independent random elements

will be denoted by the symbol ◦. The symbol � denotes the operation of coordinate-wise
multiplication of independent random vectors. The vector with all zero coordinates will be
denoted 0: 0 = (0, . . . , 0). The vector whose all coordinates are equal to 1 will be denoted 1:
1 = (1, . . . , 1).

A univariate random variable with the standard normal distribution function Φ(x)
will be denoted X,

P(X < x) = Φ(x) =
1√
2π

∫ x

−∞
e−z2/2dz, x ∈ R.

Let Σ be a positive definite (d× d)-matrix. The normal distribution in Rd with zero
vector of expectations and covariance matrix Σ will be denoted NΣ. This distribution is
defined by its density

φ(x) =
exp{− 1

2 x>Σ−1x}
(2π)r/2|Σ|1/2 , x ∈ Rd.
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The characteristic function f (X)(t) of a random vector X such that L(X) = NΣ has
the form

f (X)(t) ≡ E exp{it>X} = exp
{
− 1

2 t>Σt
}

, t ∈ Rd.

Let E be a random variable with the standard exponential distribution: P(E < x) =[
1− e−x]1(x ≥ 0). The characteristic function of the r.v. E has the form

f (E)(t) = EeitE =
1

1− it
, t ∈ R. (1)

Let γ > 0. The distribution of the random variable Wγ:

P
(
Wγ < x

)
=
[
1− e−xγ]

1(x ≥ 0),

is called the Weibull distribution with shape parameter γ. It is obvious that W1
d
= E. It is

easy to see that E1/γ d
= Wγ.

Recall that the distribution of a d-variate random vector S is called stable, if for any

a, b ∈ R there exist c ∈ R and d ∈ Rr such that aS1 + bS2
d
= cS + d, where S1 and S2 are

independent and S1
d
= S2

d
= S. In what follows, we will concentrate our attention on a

special sub-class of stable distributions called strictly stable. This sub-class is characterized
by that in the definition given above d = 0.

In the univariate case, the characteristic function g(t) of a strictly stable random
variable can be represented in several equivalent forms (see, e.g., [1,2]). For our further
constructions the most convenient form is

g(t) = exp{−|t|α + iθw(t, α)}, t ∈ R, (2)

where

w(t, α) =

tan πα
2 · |t|αsign t, α 6= 1,

− 2
π · t log |t|, α = 1.

(3)

Here, α ∈ (0, 2] is the characteristic exponent, θ ∈ [−1, 1] is the skewness parameter.
Representation (2) leads to a more general representation by introducing a scale parameter
additionally. Any random variable with characteristic function (2) will be denoted S(α, θ)
and the characteristic function (2) itself will be written as gα,θ(t). The distribution function
corresponding to the characteristic function gα,θ(t) will be denoted Gα,θ(x). For definiteness,
S(1, 1) = 1.

From (2) it follows that the characteristic function of a symmetric (θ = 0) strictly stable
distribution has the form

gα,0(t) = e−|t|
α
, t ∈ R. (4)

From (4) it is easy to see that S(2, 0) d
=
√

2X.
Univariate stable distributions are popular examples of heavy-tailed distributions.

Their moments of orders δ ≥ α do not exist (the only exception is the normal law corre-
sponding to α = 2). Stable laws and only they can be limit distributions for sums of a
non-random number of independent identically distributed random variables with infinite
variance under linear normalization.

Let 0 < α ≤ 1. By S(α, 1) we will denote a positive random variable with the
one-sided stable distribution corresponding to the characteristic function gα,1(t), t ∈ R.

The Laplace–Stieltjes transform ψ
(S)
α,1 (s) of the random variable S(α, 1) has the form

ψ
(S)
α,1 (s) ≡ E exp{−sS(α, 1)} = e−sα

, s > 0.

The moments of orders δ ≥ α of the random variable S(α, 1) are infinite. For more
details see [2,3].
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Now turn to the multivariate case. By Qd we denote the unit sphere:
Qr = {u : ‖u ‖ = 1}. Let µ be a finite (‘spectral’) measure on Qd. It is known that the
characteristic function of a strictly stable random vector S has the form

E exp{it>S} = exp
{
−
∫
Qr

(
|t>s|α + iw(t>s, α)

)
µ(ds)

}
, t ∈ Rd, (5)

with w( · , α) defined in (3), see [4–7]. A d-variate random vector with the characteristic
function (5) will be denoted S(α, µ).

As is known, a random vector S has a strictly stable distribution with some character-
istic exponent α if and only if for any u ∈ Rd the random variable u>S (the projection of S)
has the univariate strictly stable distribution with the same characteristic exponent α and
some skewness parameter θ(u) up to a scale coefficient γ(u):

u>S(α, µ)
d
= γ(u)S

(
α, θ(u)

)
, (6)

see [8]. Moreover, the projection parameter functions are related with the spectral measure
µ as (

γ(u)
)α

=
∫
Qr
|u>s|αµ(ds), u ∈ Rd, (7)

θ(u)
(
γ(u)

)α
=
∫
Qr
|u>s|α sign(u>s)µ(ds), (8)

see [6–8]. Conversely, the spectral measure µ is uniquely determined by the projection
parameter functions γ(u) and θ(u). However, there is no simple formula for this [7].

A d-variate analog of a one-sided univariate strictly stable random variable S(α, 1) is
the random vector S(α, µ+) where 0 < α ≤ 1 and µ+ is a finite measure concentrated on
the set Qd

+ = {u = (u1, . . . , ur)> ∈ Qd : ui ≥ 0, i = 1, . . . , d}.
Let Σ be a symmetric positive definite (d× d)-matrix, α ∈ (0, 2]. If the characteristic

function of a strictly stable random vector S(α, µ) has the form

E exp{it>Sα,µ} = exp{−(t>Σt)α/2}, t ∈ Rd, (9)

then the random vector S(α, µ) is said to have the (centered) elliptically contoured stable
distribution with characteristic exponent α. In this case for better vividness we will use the
special notation S(α, µ) ≡ S(α, Σ).

The paper is organized as follows. In Section 1.2, a detailed description of the univari-
ate Zolotarev problem is given as well as of some related results. Examples of distributions
related with the univariate Zolotarev problem are presented. In Section 2, a multivariate
analog of the Zolotarev problem is considered. In Section 2.1, the notion of a general
multivariate geometric sum is introduced. For this purpose we first give the definitions of a
multivariate Bernoulli scheme and related multivariate geometric distribution. It should be
noted that the multivariate geometric distribution can be defined in several different ways,
however, the asymptotic behavior of the corresponding distributions in limit theorems is
the same. The properties of the multivariate geometric distribution are discussed as well as
its relation with the Marshall–Olkin distribution within a special model. In Section 2.2 a
multivariate version of the Zolotarev problem and the implied problems for general multi-
variate geometric sums are considered. Contrary to expectations, the limit distributions
appearing within the model under consideration are not necessarily multivariate geometric
stable. In particular, it is shown here that the Marshall–Olkin distribution is limiting in the
general scheme of multivariate geometric summation, but, in general, is not multivariate
geometric stable. In Section 2.3, the notion of an anisotropic multivariate geometric stable
distribution is introduced. These distributions can be regarded as limit analogs of multivari-
ate geometric stable distributions. It is shown that a rather wide class of limit distributions
for multivariate geometric sums possesses the property of anisotropic geometric stabil-
ity. The structure of anisotropic multivariate geometric stable distributions is described.
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In Section 2.4, some examples of these limit distributions are considered. In particular,
anisotropic multivariate Linnik and Mittag–Leffler distributions are introduced and some
of their properties are discussed.

1.2. Univariate Zolotarev Problem and Related Distributions

In the 1960s and 1980s, the topics related to the so-called characterization problems
became very popular in probability theory and mathematical statistics. Many excellent
results were obtained yielding, in particular, new statistical techniques. The importance of
these problems was acknowledged by the publication of the book [9].

In the beginning of the 1980s V. M. Zolotarev put forward the problem of description
of all the r.v.s Y such that for any p ∈ (0, 1) there exists a r.v. Xp providing the validity
of equality

Y d
= εp ·Y + Xp, (10)

with the r.v.’s Y, εp, Xp being independent and the r.v. εp having the Bernoulli distribution
with parameter 1− p.

Initially it seemed that this is just one more special characterization problem. This
problem was solved in 1984 in the paper [10]. It turned out that it is closely tied with
generalizations of classical limit theorems to the case of geometric summation. In particular,
in the paper [10] it was demonstrated that the Zolotarev problem is equivalent to the
problem of description of all r.v.s Y such that for any p ∈ (0, 1) the representation

Y =
Np

∑
j=1

X(j)
p , (11)

holds with the r.v.s Np, X(j)
p , j ≥ 1, being independent, X(j)

p , j ≥ 1 are identically distributed
and the r.v. Np has the geometric distribution with parameter p. These r.v.s Y were called
geometrically infinitely divisible. Thus, the Zolotarev problem was reduced to the description
of the class of geometrically infinitely divisible distributions.

The problems of this type themselves are interesting. However, they find numerous
applications in many applied problems, for example, in financial and insurance mathemat-
ics, reliability and queueing theory, etc. (see, e.g., [11]). Below we will discuss one of these
problems considered by Kovalenko [12].

The solution of the Zolotarev problem is given by the following theorem following
theorem proved in [10].

Theorem 1. A function f (t) is the characteristic function of a geometrically infinitely divisible
distribution if and only if it can be represented as

f (t) =
1

1− ln g(t)
, (12)

where g(t) is an infinitely divisible characteristic function.

By analogy with problems of “conventional” summation, in [10] the following
important notion was introduced as well. Later this notion was successfully used in
many problems.

Definition 1. A r.v. Y is said to have a geometrically strictly stable distribution, if for any
p ∈ (0, 1) there exists a constant c(p) > 0 such that

Y d
= c(p) ·

Np

∑
j=1

Yj, (13)
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where the r.v.s Y, Y1, Y2, . . . are independent and identically distributed and the r.v. Np is indepen-
dent of Y, Y1, Y2, . . . and has the geometric distribution with parameter p.

The following theorem was proved in [10].

Theorem 2. A function f (t) is the characteristic function of a geometrically strictly stable distri-
bution if and only if it can be represented as

f (t) =
1

1− ln gα,θ(t)
, (14)

where gα,θ(t) is a strictly stable characteristic function with some characteristic exponent α ∈ (0, 2].

By the Fubini theorem (or the formula of total expectation) and (1) it is easy to see that
the characteristic function (14) corresponds to the r.v.

Z d
= E1/α ◦ S(α, θ)

d
= Wα ◦ S(α, θ), (15)

that is, any geometrically strictly stable distribution is a scale mixture of a strictly stable
law, the mixing distribution being Weibull.

To trace the relation of geometrically strictly stable distributions with random summa-
tion, we will use the following auxiliary result proved in [13,14]. Consider a sequence of
r.v.s S1, S2, . . . Let N1, N2, . . . be natural-valued r.v.s such that for every n ∈ N the r.v. Nn
is independent of the sequence S1, S2, . . . In the following statement the convergence is
meant as n→ ∞.

Lemma 1. Assume that there exist an infinitely increasing (convergent to zero) sequence of positive
numbers {bn}n≥1 and a r.v. S such that

b−1
n Sn =⇒ S. (16)

If there exist an infinitely increasing (convergent to zero) sequence of positive numbers
{dn}n≥1 and a r.v. N such that

d−1
n bNn =⇒ N, (17)

then
d−1

n SNn =⇒ N ◦ S, (18)

where the r.v.s on the right-hand side of (18) are independent. If, in addition, Nn −→ ∞ in
probability and the family of scale mixtures of the distribution function of the r.v. S is identifiable,
then condition (17) is not only sufficient for (18), but is necessary as well.

This lemma is actually a generalization and sharpening of the famous Gnedenko–
Fahim transfer theorem proved in [15] for random sums and the Dobrushin lemma proved
in [16] for power-type normalizing functions to arbitrary general random sequences with
independent random indices.

Univariate geometric distributions possess the following well-known property.

Lemma 2. Let λ > 0, p ∈ (0, 1) so that λp < 1. If the r.v. N∗p has the geometric distribution
with parameter λp, then p · N∗p =⇒ E(λ) as p → 0, where the r.v. E(λ) has the exponential
distribution with parameter λ.

One of most important results concerning geometrically strictly stable distributions is
the following theorem.
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Theorem 3. A univariate probability distribution is geometrically strictly stable if and only if it is
limiting for a geometric random sum of independent identically distributed r.v.s as the parameter p
of the random index tends to zero.

We supply this result by a sketch of the proof. The ‘if’ part directly follows from
Lemmas 1 and 2, Theorem 2 and (15). To prove the ‘only if’ part consider a geometrically
strictly stable distribution corresponding to the characteristic function (14) with some
α ∈ (0, 2] and θ ∈ [−1, 1]. Choose a distribution function F from the domain of attraction of
the strictly stable distribution Gα,θ(x) and consider independent identically distributed r.v.s
X1, X2, . . . with the common distribution function F. For n ≥ 1 denote Sn = X1 + . . . + Xn.
Since F belongs to the domain of attraction of the strictly stable distribution Gα,θ(x), there

exists a sequence {bn}n≥1 of positive numbers such that (16) holds with S d
= S(α, θ).

Moreover, in [17] it was shown that bn can be chosen as bn = n1/αL(n), n ≥ 1, where L(x)
is a slowly varying function: for any y > 0

lim
x→∞

L(xy)
L(x)

= 1 (19)

(also see [18]). Let p ∈ (0, 1) and N∗p be a r.v. having the geometric distribution with
parameter p. For simplicity, without loss of generality, let p = pn = 1

n and Nn = N∗1/n,
n ≥ 1. Assume that for each n ≥ 1 the r.v.s Nn, X1, X2, . . . are independent. Consider the
limit behavior of the r.v.s b−1

n bNn . We have

bNn

bn
=
(Nn

n

)1/α
+
(Nn

n

)1/α( L(Nn)

L(n)
− 1
)

. (20)

Consider the second term on the right-hand side of (20). Let ε be an arbitrary small
positive number 0 < ε < 1

2 , M1 = M1(ε) = ln 1
1−ε , M2 = M2(ε) = ln 1

ε . By virtue of
Lemma 2 there exists an n0 = n0(ε) such that

P
(Nn

n
/∈ [M1, M2]

)
≤ 4ε (21)

for all n ≥ n0. Let σ > 0. From (21) it follows that for n ≥ n0 we have

P
(∣∣∣(Nn

n

)1/α( L(Nn)

L(n)
− 1
)∣∣∣ > σ

)
=

= P

((Nn

n

)1/α∣∣∣ L(Nn)

L(n)
− 1
∣∣∣ > σ;

Nn

n
∈ [M1, M2]

)
+

+P

((Nn

n

)1/α∣∣∣ L(Nn)

L(n)
− 1
∣∣∣ > σ;

Nn

n
/∈ [M1, M2]

)
≤

≤ P

((Nn

n

)1/α∣∣∣ L(Nn)

L(n)
− 1
∣∣∣ > σ;

Nn

n
∈ [M1, M2]

)
+ 4ε ≤

≤ P

(∣∣∣ L(Nn)

L(n)
− 1
∣∣∣ > σ

M1/α
2

)
+ 4ε ≤

≤ P

(
sup

M1≤x≤M2

∣∣∣ L(nx)
L(n)

− 1
∣∣∣ > σ

M1/α
2

)
+ 4ε. (22)

According to Theorem 1.1 in [19], convergence (19) is uniform in every closed segment
of values of y. Therefore, an n1 = n1(ε, σ) can be found such that for all n ≥ n1 we have

sup
M1≤x≤M2

∣∣∣ L(nx)
L(n)

− 1
∣∣∣ < σ

M1/α
2

,
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so that for these n the first term on the right-hand side of (22) equals zero. Thus,(Nn

n

)1/α( L(Nn)

L(n)
− 1
)

P−→ 0

as n→ ∞. By virtue of (22) and the Slutsky lemma (see [20]) this means that the asymptotic
behavior of b−1

n bNn as n → ∞ coincides with that of (Nn/n)1/α, that is, b−1
n bNn =⇒ Wα.

Now the reference to lemma 1 with dn = bn, N d
= Wα and (15) completes the proof.

An alternative proof of this result can be found in [21].
Based on the ‘if and only if’ character of the result presented in Theorem 3, it became

conventional to define geometric strictly distribution as weak limits for the distributions of
geometric sums of independent identically distributed r.v.s.

Well-known examples of geometrically strictly stable distributions are exponential
distribution with parameter λ > 0 corresponding to the case α = 1, θ = 1, whose Laplace–
Stieltjes transform has the form

ψ
(E)
λ (s) = Ee−sZ =

λ

λ + s
, s ≥ 0;

the Linnik distribution with parameters λ > 0 and 0 < α ≤ 2 defined by the characteris-
tic function

f (L)
α (t) =

1
1 + λ|t|α , t ∈ R1,

with the Laplace distribution defined by the Lebesgue density

`(x) = 1
2 e−|x|, x ∈ R, (23)

being a particular case corresponding to α = 2 (see, e.g., [22]), and the Mittag–Leffler
distribution defined by its Laplace–Stieltjes transform

ψ
(M)
δ (s) =

λ

λ + sδ
, s ≥ 0. (24)

The numbers λ > 0 δ ∈ (0, 1] are the parameters of this distribution. If δ = 1,
we arrive at the exponential distribution. The r.v.s with Laplace–Stieltjes transform (24)
will be denoted Mδ. As far ago as in 1965, it was shown that the distributions with the
Laplace–Stieltjes transform (24) and only they can be limiting for the distributions of
geometric sums of independent identically distributed nonnegative r.v.s (see [12]). As this
is so, from Theorem 3 it follows that these distributions are geometrically strictly stable.
Moreover, from (15) it follows that

Mδ
d
= E1/δ ◦ S(δ, 1). (25)

For more details and the history of the Mittag–Leffler distribution see [22]. In what
follows, r.v.s with the Linnik distribution and Laplace distribution will be denoted Lα and
L2, respectively.

As it has been already mentioned, geometric strictly stable distributions appear in
limit theorems for random sums of independent identically distributed r.v.s in which the
number of summands has the geometric distribution and is independent of the summands.
We recall some theorems of this type.

Consider a sequence {Xj}j≥1 of identically distributed r.v.s and the integer-valued r.v.
Np having the geometric distribution with parameter p ∈ (0, 1). Assume that all these r.v.s
are jointly independent.
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Theorem 4. Assume that the r.v.s Xj have finite expectation EXj = a ∈ (0, ∞). Then

p
a
·

Np

∑
j=1

Xj =⇒ E

as p→ 0.

This theorem is a ‘geometric’ analog of the law of large numbers and is often called
the Rényi theorem, see [23].

The following result (a ‘light’ version of the result of [12]) can be regarded as a
generalization of the Rényi theorem.

Theorem 5. Let the common distribution of nonnegative r.v.s Xj belong to the domain of normal
attraction of a one-sided strictly stable distribution with characteristic exponent 0 < δ ≤ 1. Then

p1/δ ·
Np

∑
j=1

Xj =⇒ Mδ

as p→ 0.

Theorem 6. Let the common distribution of r.v.s Xj belong to the domain of normal attraction of a
symmetric strictly stable distribution with characteristic exponent 0 < α ≤ 2. Then

p1/α ·
Np

∑
j=1

Xj =⇒ Lα

as p→ 0.

As a corollary of this result we obtain the following ‘geometric’ version of the central
limit theorem.

Theorem 7. Assume that EXj = 0 and DXj = σ2 ∈ (0, ∞), j ≥ 1. Then

p1/2 ·
Np

∑
j=1

Xj =⇒ L2

as p→ 0.

In the present paper we consider a multivariate version of the Zolotarev problem
generalizing some results of [10]. An ‘isotropic’ multivariate generalization of these results
to the case of geometric random sums of random vectors was considered in [21,24]. In that
case all the coordinates of the vectors are summed up to one and the same geometrically
distributed r.v. resulting in random scalar scaling of the multivariate stable distribution
in the limit geometrically stable law. Here, we extend these results to a more general
case of “anisotropic” random summation where sums of independent random vectors
with multivariate random index having a special multivariate geometric distribution are
considered resulting in that in each coordinate of the random vectors the summation is
performed up to a separate random index. Anisotropic-geometric stable distributions are
introduced. It is demonstrated that these distributions are coordinate-wise scale mixtures
of elliptically contoured stable distributions with the Marshall–Olkin mixing distributions.
The corresponding “anisotropic” analogs of multivariate Laplace, Linnik and Mittag–Leffler
distributions are introduced. Some relations between these distributions are presented.
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2. A multivariate Analog of the Zolotarev Problem
2.1. Multivariate Geometric Distribution

Several versions of a multivariate geometric distribution are known, see, e.g., [25].
Here, we will keep to the definition used in [26]. First, recall the definition of the multi-
variate Bernoulli distribution and the multivariate Bernoulli scheme. Let I be the set of
d-variate indices i = (i1, . . . , id), where each ik takes one of two values 0 or 1, k = 1, . . . , d.

By ī we will mean the d-variate index obtained by replacing the coordinates of i by
their binary counterparts: ī = (ī1, . . . , īd), īk = 1− ik, k = 1, . . . , d. Let Ik = {i ∈ I : ik = 1},
k = 1, . . . , d.

Definition 2. A random vector~ε = (ε1, . . . , εd) is said to have the multivariate Bernoulli distri-
bution, if it takes values in the set I and

P(~ε = i) = pi.

The set of numbers Q = {pi, i ∈ I} is called the parameter(s) of this distribution.

To emphasize the dependence of the multivariate Bernoulli distribution on the param-
eters Q we will sometimes use the notation~ε =~ε(Q).

Definition 3. A multivariate Bernoulli scheme is a sequence of independent random vectors
{~εj = (εj,1, . . . , εj,d)}j≥1, each of which has the same multivariate Bernoulli distribution.

Now define the multivariate geometric distribution. Let {~ε j}j≥1 be a multivariate
Bernoulli scheme with parameters Q and infinite number of trials. For each k = 1, . . . , d
define the r.v.

Nk = inf{j ≥ 1 : ε j,k = 1}. (26)

Definition 4. The randon vector ~NQ = (N1, . . . , Nd) whose components are defined in accordance
with (26) is said to have the multivariate geometric distribution with parameters Q.

To provide that the r.v. Nk is finite and positive, the random vector~ε1 must satisfy
the condition 0 < P(ε1,k = 1) < 1. If this condition is satisfied, then the corresponding
multivariate geometric distribution will be called admissible. Everywhere in what follows
we will consider only admissible multivariate geometric distributions.

If a random vector~ε has the multivariate Bernoulli distribution, then, to avoid double
superscripts, by ~δ we will denote its binary counterpart: ~δ = ~̄ε = 1−~ε.

In what follows we will use the following result.

Lemma 3. A random vector ~NQ = (N1, . . . , Nd) has the multivariate geometric distribution with
parameters Q if and only if it can be represented as

~N = 1 +
∞

∑
j=1

~δ1 � . . .�~δj , (27)

where {~δj}j≥1 is the binary counterpart of the Bernoulli scheme {~ε j}j≥1 with parameters Q.

Proof. Let a multivariate Bernoulli scheme {~ε j}j≥1, the corresponding random vector
~NQ = (N1, . . . , Nd) with the multivariate geometric distribution and the binary counterpart
{~δj}j≥1 of the Bernoulli scheme {~ε j}j≥1 be defined on the same probability space. To prove
the lemma it suffices to show that each component of the random vector on the left-hand
side of (27) coincides with the corresponding component of the random vector on the
right-hand side. It is easy to see that Nk = n if and only if for the kth component of the
multivariate Bernoulli scheme the success (i.e., one) for the first time occurs in the nth trial.
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As this is so, in the binary counterpart of the Bernoulli scheme the failure (i.e., zero) for the
first time occurs in the nth trial. However, this means that all the terms beginning from the
number n vanish. Therefore, the sum will again be equal to n.

The explicit expression for the multivariate geometric distribution is rather cum-
bersome, but it is rather easy to obtain the following recurrent formula for its
Laplace transform.

Theorem 8. Let the random vector ~N = (N1, . . . , Nd) have the multivariate geometric distribution
with parameters Q = {pi, i ∈ I}. Then for any vector t = (t1, . . . , td) with nonnegative
coordinates we have

ϕ~N(t) := E
(

e−t1 N1 · . . . · e−td Nd
)
=

e−(t1+...+td)

1− e−(t1+...+td) · p0
· ∑

i 6=0
pi · ϕ~N(ī� t). (28)

The proof can be found, e.g., in [26]. Note that under the sum sign there are the Laplace
transforms of random vectors with (multivariate) geometric distributions of dimensionality
less than d. It is well known that for d = 1 we have

ϕN(t) =
p · e−t

1− (1− p)e−t ,

so that it is possible to recursively calculate the Laplace transform for the multivariate
geometric distribution of an arbitrary dimensionality.

There is another version of the definition of the multivariate geometric distribution
yielding the same result. Let for any i ∈ I, i 6= 0, Vi be the r.v. with the univariate
geometric distribution with parameter pi. Let, moreover, the r.v.s {Vi}i∈I be independent
and ∑i 6=0 pi < 1. Let p0 = 1−∑i 6=0 pi. For each k = 1, . . . , d define the r.v.

Mk := min
i∈Ik

Vi . (29)

In [27], the vector ~M,= (M1, . . . , Md) was said to have the multivariate geometric
distribution with parameters Q = {pi, i ∈ I}.

Generally speaking, these two definitions are different. However, within the frame-
work of the model considered in this paper, as p→ 0, they are equivalent with the accuracy
up to p2.

Recall the definition of the Marshall–Olkin distribution which is a version of the
definition of a multivariate exponential distribution [28]. Let for each i ∈ I,i 6= 0, Ei be an
exponentially distributed r.v. with the parameter λi ≥ 0. Assume that the r.v.s {Ei}i∈I are
independent. For each k = 1, . . . , d define the r.v.

Zk := min
i: ik=1

Ei. (30)

Definition 5. The distribution of the random vector Z = (Z1, . . . , Zd), whose components are
determined in accordance with (30), is called the Marshall–Olkin distribution with parameters
Λ = {λi : i ∈ I, i 6= 0}.

This definition is a complete ‘continuous’ analog of the definition of the multivariate
geometric distribution given by Equation (29). This relation is supported by the following
multivariate analog of Lemma 2 (see, e.g., [27]).

Theorem 9. Let the random vector ~N = (N1, . . . , Nd) have the multivariate geometric distribution
with parameters Q. Moreover, let P(~ε = 0) = 1− p, P(~ε = i) = p · λi, i 6= 0. Then, as p → 0,
the random vector p · ~N has an asymptotically multivariate Marshall–Olkin distribution with
parameters Λ = {λi, i ∈ I, i 6= 0}.



Mathematics 2021, 9, 1728 11 of 20

By unifying the results of Theorems 8 and 9 we can obtain the following useful result
that makes it possible to calculate the Laplace transform of the Marshall–Olkin distribution
of an arbitrary dimensionality.

Theorem 10. Let the random vector Z = (Z1, . . . , Zd) have the Marshall–Olkin distribution with
parameters Λ = {λi, i 6= 0} such that ∑i 6=0 λi = 1. Then

ϕZ(t) := E
(

e−t1 N1 · . . . · e−td Nd
)
=

1
1 + (t1 + . . . + td)

· ∑
i 6=0

λi · ϕ~N(ī� t). (31)

The condition ∑i 6=0 λi = 1 is not restrictive and is used only to simplify
the formulations.

2.2. A Multivariate Analog of the Zolotarev Problem

By analogy with the univariate case, consider the following problem. Let the random
vector ~δ(Q) be the binary counterpart to a random vector~ε(Q) that has the multivariate
Bernoulli distribution with parameters Q. Consider the problem of description of the set of
random vectors Y that satisfy the condition: for any admissible set of parameters Q there
exists a random vector ~X(Q) such that

Y d
= ~δ(Q)� Y + ~X(Q), (32)

where the random vectors Y, ~δ(Q) and ~X(Q) are independent.
Having compared (32) with (10) we can conclude that this problem can be regarded

as a multivariate analog of the Zolotarev problem.
Recursively applying relation (32) we arrive at the following representation of the

random vector Y:

Y d
= ~X1(Q) +

∞

∑
j=1

~δ1(Q)� . . .�~δj(Q)� ~Xj+1(Q), (33)

where {~δj(Q)}j≥1 is a multivariate Bernoulli scheme that is the binary counterpart of the
Bernoulli scheme with parameters Q and ~X1(Q), ~X2(Q), . . . are independent identically
distributed random vectors independent of the Bernoulli scheme {~δj(Q)}j≥1. It should be
noted that in the case under consideration the number of summands in the sum on the
right-hand side of (33) is a. s. finite.

The following technical result is important for further considerations.

Lemma 4. Let {~ε j}j≥1 be a multivariate Bernoulli scheme with parameters Q, ~NQ = (N1, . . . , Nd)
be the random vector with the corresponding multivariate geometric distribution,
{~Xj = (Xj,1, . . . , Xj,d)}j≥1} be a sequence of independent identically distributed random
vectors independent of the Bernoulli scheme under consideration. Then

~X1 +
∞

∑
j=1

~δ1 � . . .�~δj � ~Xj+1
d
=

( N1

∑
j=1

Xj,1, . . . ,
Nd

∑
j=1

Xj,d

)
, (34)

where {~δj}j≥1 is the binary counterpart of the Bernoulli scheme {~ε j}j≥1.

Proof. Let a multivariate Bernoulli scheme {~ε j}j≥1, the corresponding random vector
~NQ = (N1, . . . , Nd) with the multivariate geometric distribution, the binary counterpart
{~δj}j≥1 of the Bernoulli scheme {~ε j}j≥1 and a sequence of independent identically dis-
tributed random vectors {~Xj = (Xj,1, . . . , Xj,d)}j≥1 independent of {~ε j}j≥1, {~δj}j≥1 and ~NQ
be defined on the same probability space.
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To prove the lemma it suffices to show that each component of the random vector on
the left-hand side of (34) coincides with the corresponding component of the random vector
on the right-hand side. It is easy to see that Nk = n if and only if for the kth component of
the multivariate Bernoulli scheme the success (i.e., one) for the first time occurs in the nth
trial. As this is so, in the binary counterpart of the Bernoulli scheme the failure (i.e., zero)
for the first time occurs in the nth trial. This means that all the terms beginning from the
number n vanish. The rest of the summands on the left-hand side have coefficients equal
to one. However, in this case both on the right-hand and left-hand sides we obtain the
quantity X1,k + . . . + Xn,k.

From this lemma it follows that the solution of the multivariate Zolotarev problem is
a multivariate random sum of independent identically distributed random vectors with
multivariate random index that is independent of summands and has the multivariate
geometric distribution. It is natural to say that this random sum has a multivariate geomet-
ric infinitely divisible distribution. Moreover, since each kth coordinate is summed up to
its own geometrically distributed r.v. Nk, it is natural to call this distribution anisotropic.
This circumstance distinguishes the case under consideration from the case considered in
preceding works (see, e.g., [21,29]) where the geometrically distributed index was one and
the same for all coordinates and was actually univariate (p0 + p1 = 1).

Let us introduce the notion of an anisotropic geometrically stable distribution. Every-
where in what follows it is assumed that the set Q of parameters belongs to some family Q
of admissible parameters.

Definition 6. The distribution of a random vector Y = (Y1, . . . , Yd) is called anisotropic multi-
variate geometric strictly stable, if

Y = (Y1, . . . , Yd)
d
= c(Q) ·

( N1

∑
j=1

Yj,1, . . . ,
Nd

∑
j=1

Yj,d

)
, (35)

the random vectors Y, {Y j = (Yj,1, . . . , , Yj,d)}j≥1 are independent and identically distributed,
the random vector ~N = (N1, . . . , Nd) has an arbitrary multivariate geometric distribution with
parameters Q ∈ P and is independent of Y, Y1, Y2, . . ., and c(Q) is a positive number.

By virtue of Lemma 4, an equivalent definition of an anisotropic multivariate geometric
strictly stable distribution can be given. Let Y, Y1, Y2, . . . be a sequence of independent
identically distributed random vectors, {~ε j}j≥ be a multivariate Bernoulli scheme with
parmeters Q independent of Y, Y1, Y2, . . ., and {δj}j≥1 be the binary counterpart to {~ε j}j≥.

Lemma 5. The distribution of a random vector Y is anisotropic multivariate geometric strictly
stable if and only if

Y d
= c(Q) ·

(
Y1 +

∞

∑
j=1

~δ1 � . . .�~δj � Y j+1

)
. (36)

From Lemma 5 we obtain the following result.

Theorem 11. The distribution of a random vector Y is anisotropic multivariate geometric strictly
stable if and only if

Y d
= c(Q) · Y1 +~δ(Q)� Y2, (37)

where the random vectors Y, Y1, Y2 are independent and identically distributed, ~δ(Q) = 1−~ε(Q)
and the random vector~ε(Q) is independent of Y, Y1, Y2 and has the multivariate Bernoulli distribu-
tion with parameters Q, whereas c(Q) is a positive number.

Our nearest aim is to describe the set of all anisotropic strictly stable distributions.
If, in order to do so, we use all admissible multivariate geometric distributions, then
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the only possible solution will be trivial, namely, the solution will be reduced to the
only distribution degenerate in 0. Therefore, the set of admissible multivariate geometric
distributions should be narrowed to some sub-family P .

As it has already been mentioned, in many papers the case was considered where
p1 = p ∈ (0, 1), p0 = 1− p. This corresponds to the case where random sums of random
vectors are considered with the univariate random index having the univariate geometric
distribution. Actually, this is a complete analog of the univariate case. In this setting the
main result is the following theorem.

Theorem 12. A function f (t), t ∈ Rd, is the characteristic function of the (isotropic) multivariate
strictly stable distribution if and only if

f (t) =
1

1− ln g(t)
, (38)

where g(t) is the characteristic function of a ‘conventional’ multivariate strictly stable distribution
(see the Section 1).

It can be easily seen that this result can be extended to the case where pi = p ∈ (0, 1),
p0 = 1− p. Here, i ∈ I and i 6= 0, i 6= 1. The result has exactly the same form but holds in
some subspace of Rd corresponding to the structure of the index i.

2.3. Anisotropic Multivariate Geometric Stable Distributions

Consider another possible case. Let for all i ∈ I, i 6= 0, the numbers λi ≥ 0 be
given such that ∑i 6=0 λi = 1. Define the parameter set Q in the following way: p0 = 1− p,
and pi = p ·λi, 0 < p < 1 for i 6= 0. In this case the random vector~ε(Q) has the multivariate
Bernoulli distribution with Q ∈ P . Everywhere below we will consider only this case and
will write that we deal with the parameter set Q = Q(p). The task is to describe the class
of anisotropic multivariate geometric stable distributions within this setting.

If we consider a projection of this random vector onto a coordinate for which the
univariate distribution is not degenerate in zero, we obtain the classical univariate setting
where, as is known, for the geometric stable distribution

c
(
Q(p)

)
= p1/α, (39)

with α being the characteristic exponent of the corresponding univariate strictly
stable distribution.

It is easy to see that any anisotropic multivariate geometric strictly stable distribution
can be limiting as p→ 0 within the setting described above. The natural question asizes,
whether anisotropic multivariate geometric strictly stable distributions exhaust the class
of possible limit laws for multivariate geometric random sums of independent identically
distributed random vectors. The answer is ‘no’, that is, the class of these limit laws is wider
than the class of distributions satisfying Definition 6. We will show this by the example
of the Marshall–Olkin distribution. Namely, we will demonstrate that this distribution is
anisotropic multivariate geometric stable only in one particular case, whereas it can be
limiting for multivariate geometric random sums of independent identically distributed
random vectors (see Theorem 9).

So, let the Marshall–Olkin distribution be anisotropic multivariate geometric strictly
stable within the setting described above. The univariate marginals of this distributions
are exponential distributions that are geometrically strictly stable with c

(
(Q(p)

)
= p. It is

required to verify the validity of relation (37) which, in the case under consideration, has
the form

Z d
= p · Z1 +~δ(p)� Z2, (40)

where the random vectors Z, Z1 and Z2 are independent and have one and the same
Marshall–Olkin distribution with parameters Λ = {λi, i 6= 0} with ∑i 6=0 λi = 1,
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~δ(p) = 1−~ε(p) and the random vector~ε(p) has the multivariate Bernoulli distribution
with parameters Q = Q(p). The condition that the sum of parameters equals 1 is not a
restriction and is used only to simplify formulations.

Write (40) in terms of the Laplace transform:

ϕZ(t) = ϕZ(pt) ·
[
∑

i
pi ϕZ(ī� t)

]
. (41)

Using relation (31) for the Laplace transform of the Marshall–Olkin distribution, we
can rewrite the right-hand side of (41) as

ϕZ(pt) ·
[

p0 · ϕZ(t) + ∑
i 6=0

pi · ϕZ(ī� t)
]
=

= ϕZ(pt) ·
[
(1− p)ϕZ(t) +

(
1 + ∑

k
tk

)
ϕZ(t)

]
= ϕZ(pt) ·

[
(1− p) +

(
1 + ∑

k
tk

)]
· ϕZ(t).

Hence, if (41) holds, then

ϕZ(pt) =
1

1− p + (1 + ∑k tk)

or
ϕZ(t) =

1
1 + ∑k tk

.

However, this is valid only for the random vector Z of the form

Z = E · 1,

where the r.v. E has the standard exponential distribution.
As we have already mentioned, the Marshall–Olkin distribution can be limiting for

anisotropic multivariate geometric random sums with Q = Q(p). However, it will far not
always be anisotropic geometric strictly stable within the same setting. So, the conventional
definition of stability appears to be very strong in the problem under consideration and
brings us back to the isotropic setting of geometric summation with a univariate index.

For the sake of proving limit theorems, we will loosen condition (37) and require it to
hold only for p small enough. Moreover, we will assume that it holds asymptotically as
p→ 0.

Definition 7. A probability distribution F in Rd is called anisotropic asymptotically geometric
strictly stable, if

c(Q) · Y1 + δ(Q) · Y2 =⇒ Y1 (42)

as p → 0 for independent random vectors Y1 and Y2 with distribution F, where
c(Q) = c

(
Q(p)

)
> 0 is a constant and the random vector δ(Q) = δ

(
Q(p)

)
is a binary coun-

terpart to the random vector with the multivariate Bernoulli distribution with parameters Q(p)
independent of Y1 and Y2.

Let us make sure that within the model Q = Q(p) the Marshall–Olkin distribution
with parameters Λ is anisotropic asymptotically geometric strictly stable.

Theorem 13. Let the random vectors Z1 and Z2 be independent and have one and the same
Marshall–Olkin distribution with parameters Λ. Then, as p→ 0,

p · Z1 +~δ
(
Q(p)

)
· Z2 =⇒ Z2, (43)

that is, this distribution is anisotropic asymptotically geometric strictly stable within the model
Q = Q(p).
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Proof. Rewriting the left-hand side of (43) in terms of Laplace transforms and repeatedly
applying formula (31), we obtain

ϕZ1(pt) · E(ϕZ2(
~δ� t)) = ϕZ1(pt) · [(1− p) · ϕZ2(t) + p · ∑

i 6=0
λi · ϕZ2(ī� t)] =

= ϕZ1(pt) · [(1− p) · ϕZ2(t) + p ·
(

1 + ∑
k

tk

)
· ϕZ2(t)] =

= ϕZ2(t) · ϕZ1(pt)
[
1 + p ∑

k
tk

]
= ϕZ2(t) ·

[
∑
i 6=0

λi · ϕZ2(ī� t)]→

→ ϕZ2(t) · ∑
i 6=0

λi = ϕZ2(t)

as p→ 0 yielding the dersired result.

This makes it possible to obtain the following useful result. Let Z = (Z1, . . . , Zd)
be a random vector with the Marshall–Olkin distribution with parameters
Λ = {λi, i ∈ I, i 6= 0}. Let a ∈ R, Y = (Y1, . . . , Yd). Denote Ya = (Ya

1 , . . . , Ya
d ).

Theorem 14. Within the model Q = Q(p) described above, any random vector Y that admits
the representation

Y d
= Z1/α � S(α, µ), (44)

with the random vector S(α, µ) having the multivariate strictly stable distribution with characteris-
tic exponent α and spectral measure µ and being independent of Z, has the anisotropic asymptotically
geometric strictly stable distribution.

Proof. It suffices to verify relation (42). Let the random vectors Z1 and Z2 be independent
and have one and the same Marshall–Olkin distribution with parameters Λ = {λi, i 6= 0}
such that ∑i 6=0 λi = 1, ~δ(p) be a binary counterpart to the random vector with the multi-
variate Bernoulli distribution with parameters Q = Q(p), the random vectors S1(α, µ) and
S2(α, µ) have one and the same multivariate strictly stable distribution with characteristic
exponent α. Assume that all the random vectors are independent. Let

Y1 = Z1/α
1 � S1(α, µ), Y2 = Z1/α

2 � S2(α, µ).

Then

c(p) · Y1 +~δ(p)� Y2 = c(p) · Z1/α
1 � S1(α, µ) +~δ(p)� Z1/α

2 � S2(α, µ)

d
= (p · Z1 +~δ(p)� Z2)

1/α � S1(α, µ) =⇒ Z1/α
1 � S1(α, µ) = Y1.

The last relation holds by virtue of Theorem 13.

Based on this theorem, it is useful to introduce an anisotropic analog of the
Weibull distribution.

Definition 8. Let α > 0, the random vector Z have the Marshall–Olkin distribution with parame-
ters Λ = {λi, i ∈ I, i 6= 0}. The random vector Wα,Λ is said to have the anisotropic multivariate
Weibull distribution with parameters α, Λ, if it can be represented as

Wα,Λ = (Z)1/α. (45)

In these terms, Theorem 14 can be re-formulated in the following way.
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Theorem 15. Within the model Q = Q(p) any random vector Y that admits the representation

Y d
= Wα,Λ � S(α, µ), (46)

where the random vector S(α, µ) has a multivariate strictly stable distribution with characteristic
exponent α and is independent of Wα,Λ, has the anisotropic asymptotically geometric strictly
stable distribution.

2.4. Anisotropic Multivariate Analogs of the Mittag–Leffler and Linnik Distributions

Theorems 14 and 15 provide the possibility to suggest several anisotropic general-
izations of the multivariate Mittag–Leffler and Linnik distributions. For the definitions
of ‘conventional’ multivariate Mittag–Leffler and Linnik distributions, their history and
properties see, e.g., [30].

First consider the generalizations of the Mittag–Leffler distribution. As the base for
these we consider relation (25). In that relation both multipliers can be replaced by their
(anisotropic) multivariate analogs.

Let α ∈ (0, 1). If in (25) the exponentially distributed r.v. E is replaced by the random
vector Z with the Marshall–Olkin distribution with parameters Λ, then we obtain the
random vector

Mα,Λ = S(α, 1) ◦ Z1/α, (47)

whose distribution is the scale mixture of the Marshall–Olkin distribution with the mixing
distribution being univariate one-sided strictly stable.

Definition 9. The distribution of the random vector Mα,Λ defined by (47) is called anisotropic
multivariate Mittag–Leffler distribution of the first kind with parameters α and Λ.

It is easily seen that the univariate marginal distributions of the so defined anisotropic
Mittag–Leffler distribution of the first kind are univariate Mittag–Leffler distributions differ-
ing, possibly, by their scale parameters. Consider the following analog of the multiplication
theorem for stable distributions.

Theorem 16. Let 0 < α′ < 1, 0 < α ≤ 1, Yα′α,Λ be a random vector having anisotropic
multivariate asymptotically geometric strictly stable distribution with parameters α′α and Λ that
admits representation (43). Then

Yα′α,Λ
d
=
(
Mα′ ,Λ

)1/α′ � S(α, µ).

This means that every anisotropic multivariate asymptotically geometric strictly stable
distribution is an ‘anisotropic’ scale mixture of the multivariate strictly stable distribution
with greater parameter.

To prove this theorem use Theorem 14 and multiplication theorem for multivariate
stable laws (see [30]) and obtain

Yα′α = Z1/α′α � S(α′α, µ)
d
= Z1/α′α �

(
S1/α(α′, 1) ◦ S(α, µ)

) d
=

d
=
(
S(α′, 1) ◦ Z1/α′)1/α � S(α′α, µ)

d
=
(
Mα,Λ

)1/α � S(α, µ).

Using the multiplication theorem for one-sided strictly stable distributions we can
obtain a similar recursive mixture representation for the anisotropic multivariate Mittag–
Leffler distributions of the first kind themselves.
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Theorem 17. Let 0 < α′ < 1, 0 < α ≤ 1, Mα,Λ be a random vector having anisotropic
multivariate Mittag–Leffler distribution of the first kind parameters α and Λ. Then

Mα′α,Λ
d
= S(α, 1) ◦

(
Mα′Λ

)1/α.

Proof. Using Definition 9 and multiplication theorem for univariate stable distributions
(see Theorem 3.3.1 in [2]) we obtain

Mα′α,Λ
d
= S(α′α, 1) ◦ Z1/α′α d

= S(α′, 1)1/α ◦ S(α, 1) ◦ Z1/α′α d
=

d
= S(α, 1) ◦

(
S(α′, 1) ◦ Z1/α′)1/α d

= S(α, 1) ◦
(
Mα′Λ

)1/α

yielding the desired result.

Consider the second version of the anisotropic generalization of the multivariate
Mittag–Leffler distribution.

Definition 10. Let α ∈ (0, 1), the random vector Z have the Marshall–Olkin distribution with pa-
rameters Λ, S(α, µ+) be a random vector with the one-sided multivariate strictly stable distribution.
The distribution of the random vector

M̃α,Λ
d
= Z1/α � S(α, µ+)

is called anisotropic multivariate Mittag–Leffler distribution of the second kind.

The anisotropic multivariate Mittag–Leffler distributions of the first and second kind
are related by the following theorem.

Theorem 18. Let 0 < α′ < 1, 0 < α ≤ 1. Then

M̃α′α,Λ
d
= M1/α

α′ ,Λ � S(α, µ+).

Proof. Using Definition 10 and the multiplication theorem for multivariate one-sided
strictly stable distributions (see [30]) we obtain

M̃α′α,Λ
d
= Z1/α′α � S(α′α, µ+)

d
= Z1/α′α �

(
S1/α(α′, 1) ◦ S(α, µ+)

) d
=

d
=
(
S(α′, 1) ◦ Z1/α′)1/α � S(α, µ+)

d
= M1/α

α′ ,Λ � S(α, µ+)

yielding the desired result.

Now turn to the Linnik distribution. Let α ∈ (0, 2]. In [31,32], it was demonstrated that

Lα
d
= E1/α ◦ S(α, 0). (48)

The multivariate Linnik distribution was introduced in [33] where it was proved that
the function

f
(L)
α,Σ(t) =

[
1 + (t>Σt)α/2]−1, t ∈ Rd, α ∈ (0, 2), (49)

is the characteristic function of a d-variate probability distribution, where Σ is a positive
definite (d× d)-matrix. It is not difficult to make sure that the characteristic function (49)
corresponds to the random vector

Lα
d
= E1/α ◦ S(α, Σ). (50)

Relations (48) and (50) can be the starting point for the anisotropic generalization of
the Linnik distribution.
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First, by analogy with Definition 9 replace the exponentially distributed r.v. E in (48)
by a random vector having the Marshall–Olkin distribution with parameters Λ.

Definition 11. Let α ∈ (0, 2], the random vector Z have the Marshall–Olkin distribution with
parameters Λ. The distribution of the random vector

Lα,Λ = S(α, 0) ◦ Z1/α

is called the anisotropic multivariate Linnik distribution of the first kind.

Using the univariate multiplication theorem we obtain

Theorem 19. Let α ∈ (0, 2], the random vector Z have the Marshall–Olkin distribution with
parameters Λ, X be a r.v. with the standard normal distribution. Then

Lα,Λ
d
= X ◦

(
2Mα/2,Λ

)1/2.

As is known, univariate Linnik distributions are normal scale mixtures with the
mixing univariate Mittag–Leffler distributions. Therefore, in other words, Theorem 11
means that any anisotropic multivariate Linnik distribution of the first kind is a multivariate
distribution whose all univariate marginals are normal scale mixtures, moreover, they are
univariate Linnik distributions differing, possibly, by their scale parameters.

To prove Theorem 11, use Definition 9 and the univariate multiplication theorem
and obtain

Lα,Λ
d
=
√

2S(α, 0) ◦ Z1/α d
=
√

2S( α
2 , 1) ◦ X ◦ Z1/α d

=

d
=
(
2S( α

2 , 1) ◦ Z2/α
)1/2 ◦ X d

= X ◦
(
2Mα/2,Λ

)1/2.

A more general version of Theorem 11 is the following statement.

Theorem 20. Let 0 < α′ < 1, 0 < α ≤ 1. Then

Lα′α,Λ
d
= S(α, 0) ◦M1/α

α′ ,Λ.

Definition 12. Let α ∈ (0, 2], the random vector Z have the Marshall–Olkin distribution with
parameters Λ. Σ be a positive definite (d× d)-matrix, S(α, Σ) be the elliptically contoured multi-
variate stable distribution with characteristic exponent α. The distribution of the random vector

L̃α,Λ = Z1/α � S(α, Σ)

is called the anisotropic multivariate Linnik distribution of the second kind.

Definition 9, 12 and multiplication theorem in [30] imply the following result.

Theorem 21. Let 0 < α′ < 1, 0 < α ≤ 1. Then

L̃α′α,Λ
d
= M1/α

α′ ,Λ � S(α, Σ).

Using the multivariate multiplication theorem in [30] we obtain the following impor-
tant corollary of Theorem 22.

Theorem 22. Let 0 < α ≤ 2. Then

L̃α,Λ
d
=
(
2Mα/2,Λ

)1/2 �XΣ.
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In other words, the anisotropic multivariate Linnik distribution of the second kind is
an anisotropically scale mixed multivariate normal distribution.

The two last theorems are proved by the reasoning similar to that used to prove
Theorems 19 and 20.

With α = 2 Definitions 11 and 12 describe the anisotropic multivariate Laplace distri-
butions of the first and second kinds, respectively.

It should be noted that all the distributions considered in this section are anisotropic
multivariate asymptotically geometric strictly stable distributions.

3. Conclusions

In this paper, the multivariate analog of the Zolotarev characterization problem is
considered as well as related limit theorems for general multivariate geometric random
sums. In the preceding studies, as a rule, this problem was considered either for the case
where the summation index is univariate [21], or for the case where a strong additional
restriction of the independence of coordinates was imposed [34,35]. The general case
of the multivariate summation index with the multivariate geometric distribution is for
the first time considered in this paper. A notion of a general multivariate geometric
stability is introduced and it is shown that, in general, the limit distributions appearing
in the model under consideration do not possess this property. Consequently, a limit
analog of this property, the anisotropic multivariate geometric stability, is introduced. It is
demonstrated that all the the anisotropic multivariate geometric stable distributions are
limiting in the problem under consideration. Their structure and relation with the Marshall–
Olkin distribution are discussed. Important special cases of anisotropic multivariate
geometric stable distributions, for example, anisotropic multivariate Linnik and Mittag–
Leffler distributions are considered and some of their properties are discussed.
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