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Abstract: Based on a tripartite game model among suppliers of public goods, consumers, and the
government, a tripartite repeated game model is constructed to analyze the evolution mechanism of
which suppliers supply at low prices, consumers purchase, and the government provides incentives,
and to establish the dynamics system of a repeated game. The equilibrium points of the evolutionary
game are solved, and among them, the equilibrium points are found to satisfy the parameter
conditions of ESS. The numerical simulation is employed to verify the impact of penalty coefficients
and discount factors on the stability of strategies, which are adopted by the three players in a
tripartite repeated game on public goods, and scenario analyses are conducted. The research results
of this paper could provide a reference for the government, suppliers, and consumers to make
rapid decisions, who are in the supply chain of public goods, especially quasi-public goods, such as
coal, water, electricity, and gas, and help them to obtain stable incomes and then ensure the stable
operation of the market.

Keywords: public goods; evolutionary game; repeated game; dynamics; ESS

1. Introduction

Evolutionary game theory, combining game theory with the basic theories of a dy-
namics system, is usually used to examine complex dynamic population issues. It has
emerged as the most rapidly developing interdisciplinary subject in recent years. Inspired
by biological evolution, Maynard Smith and Price (1973) introduced the idea of evolution
in biological theory into game theory. In 1973, they published the seminal paper, The Logic
of Animal Conflict [1], where they put forward the idea of evolutionary game and the
concept of an evolutionary stability strategy [2] which marked the formal formation of
evolutionary game theory. In 1978, ecologists Taylor and Jonker [3] carried out a series
of studies using the replicative dynamic equations. In 1992, Cornell University held a
conference on the development of game theory, which marked the establishment of the
academic status of evolutionary game theory.

In 1954, American economist Samuelson pointed out in The Pure Theory of Public
Expenditure that a public good is a kind of product. It refers to a product and labor
service that can be shared by many at the same time. Public good is non-competitive
in consumption or use and non-exclusive in benefit. It can be divided into pure public
good and quasi-public good according to the nature. The scope of pure public goods is
relatively narrow, such as the property and services of national defense, public security
and justice, and so forth. However, the scope of quasi-public goods is relatively wide, such
as education, culture, radio, television, hospitals, and so on, provided by public institutions
to the society. In addition, the construction of infrastructure, such as water supply, power
supply, post office, railway, port, wharf, and public transportation, which are subject to
enterprise accounting, also falls within the scope of quasi-public goods.
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The supply mechanism of public goods is a supply mode abstracted from the perspec-
tive of the supply body and the operating mechanism. Public goods can be provided by the
public sector, private sector, or a combination of the two. Both Samuelson and Musgrave
believed that public goods should be provided by the government because there must be a
loss of efficiency or welfare in private supply. However, literature research [4] since then
has shown the potential power of private sectors to provide lighthouses, education, law
and order, infrastructure, and so on.

In the postdoctoral report, Fan Liming made a detailed analysis of the mechanism of
government supply, market supply, and voluntary supply of public goods. He believed
that the market supply mechanism of public goods is a mechanism for profit-making orga-
nizations to compensate expenses by charging fees according to the market demand and
for profit purposes. Public goods enter the market for consumers to purchase. Enterprises
provide public goods in the expectation of making social and economic benefits. The
government, to preserve the public attributes of these goods, needs to resort to market
intervention, which is to establish positive or negative incentives. Meanwhile, ordinary
consumers need to consider the social attributes of public goods and choose whether to
purchase them.

Repeated game, also called stage game, is a special type of dynamic games which
is the repetition of the basic game. However, due to the constraints of future profits and
long-term total incomes, the decision-making behavior and game results are often different
from one-off games. In the late 1950s, game theorists began to study repeated games and
obtained the Folk Theorem, which is related to repeated games. In 1976, Aumann and
Shapley proposed to replace Nash equilibrium with subgame perfect equilibrium. Over the
past few years, scholars have mainly studied the perfect equilibrium of infinitely repeated
games without considering the discount factors. In 1971, Friedman proved that any Nash
equilibrium outcomes in which Pareto dominates the original game can be established in a
perfect equilibrium of repeated game [5]. In 1985, Abreu established a highly restricted
set of strategies which can support any perfect equilibrium results. He proposes that
whenever any participant deviates from the desired equilibrium path, no matter what the
circumstances the game is in, other participants will turn to the worst possible equilibrium
as punishment for deviants [6]. In 1986, in order to obtain the Folk Theorem in the extreme
cases where the discount factor tends to be 1, Fudenberg and Maskin proposed: If the
participants deviate from the equilibrium path, the other participants are encouraged to
enact the minimum and maximum strategy on the deviators by means of incentives, rather
than threatening them with a penalty [7].

So far, research on games of public goods have mainly focused on: theoretical analyses
of market competitions based on Evolutionary Game between two or three, or even four
groups [8,9], the innovation of synergetic mechanism based on three-group Evolutionary
Game, and the mechanism coexistence or supply chain mechanism [10–14]. Yang, Yu,
Yang, and Song et al. did a large amount of research on the equilibrium of population
game [15–22]. Taking a multi-player repeated game in eBay online bidding as an example,
Jin and Yu studied information asymmetry, reputation effect, and cooperation balance [23];
Laclaua and Tomala considered repeated games with public deterministic monitoring,
compact action sets, and pure strategies [24]. Khakzad studied repeated games for eco-
friendly flushing in reservoir study interactions between multiple self-interested parties
(individuals or population) [25]. Escobara and Llanes studied cooperation dynamics in
repeated games of adverse selection study cooperation dynamics in repeated games with
Markovian private information [26]. However, there is a small number of papers which
consider the long-term incomes of game players, especially in infinitely repeated games.

In this paper, a tripartite repeated game model and its evolutionary game model are
constructed on the basis of existing literatures and related research. These new models
are used to analyze the stability of equilibrium points of tripartite repeated evolutionary
games in different situations, innovatively introducing the penalty coefficient and discount
factors to the profit of suppliers and the government in the game. A numerical simulation
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is employed to verify the impact of penalty coefficients and discount factors on the stability
of strategies adopted by the three players in the tripartite repeated game, and finally, a
relatively comprehensive scenario analysis is carried out.

2. The Construction of Repeated Game Model
2.1. Tripartite Game Profit Model

In 2019, Premier Li Keqiang pointed out in the government report: “We will accelerate
state capital and SOE (which is the abbreviation of State Owned Enterprises) reforms”.
“Reforms will be deepened in sectors including power, oil and natural gas, and railways.
In natural monopoly industries, network ownership and operation will be separated in
light of the specific conditions of these industries to make the competitive aspects of their
operations fully market-based.” “We will work for big improvements in the development
environment for the private sector. We will uphold the ‘two no irresolutions’ principle,
and encourage, support, and guide the development of the non-public sector. We will
follow the principle of competitive neutrality, so that when it comes to access to factors
of production, market access and licenses, business operations, government procurement,
public biddings, and so on, enterprises under all forms of ownership will be treated on an
equal footing.”

All of these mean that with the continuous deepening of China’s economic system
reform and the reform of state-owned enterprises, the supply market for public goods is
also facing severe competition. Therefore, it is of great significance to study the economic
behavior of enterprises (suppliers), governments, and consumers in the supply of public
goods in an environment of fierce market competition. A tripartite game model for the
supply of public goods among suppliers (enterprises), the government, and consumers is
constructed here based on the following assumptions.

Assumption 1. When the supplier chooses low- or high-price supply strategies, the consumer
adopts a purchasing strategy or non-purchase strategy, and the government takes an incentives
or no incentives strategy, where the payoffs under the eight strategy combinations formed by the
supplier, the consumer, and the government are as follows: a, i, q, b, j, r, c, k, s, d, l, t, e, m, u, g, n, v.
f , o, w, h, p, Φ. Naturally, all payoffs are non-negative.

Assumption 2. The probabilities of suppliers choosing low-price strategies, consumers adopting
purchasing strategies, and the government adopting incentive strategies are x, y, and z, respectively.

According to the assumption, the game income model of the three populations of
suppliers, consumers, and the government is as shown in Table 1.

Table 1. Tripartite game model.

Supplier Consumer Government
Purchasing (y) Non-Purchasing(1 − y)

Low prices(x) a, i, q b, j, r Incentive(z)
High price(1− x) c, k, s d, l, t

Low price(x) e, m, u g, n, v Non-incentive(1− z)
High price(1− x) f , o, w h, p, Φ

2.2. Strategy Choice of Repeated Players

When consumers choose purchasing strategies in the first game, the government and
suppliers choose the following strategies:

After the first game, the government and the supplier have two options: the coopera-
tion strategy of a betrayal strategy, which lead to discrepant choices later; the government
and the supplier adopt cooperation strategies, either the government or the supplier adopts
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betrayal strategies, and both sides adopt betrayal strategies. These choices ultimately result
in different profits. According to the analysis, there are the following four situations:

After the first game, both the government and the supplier choose to cooperate in the
first round, and then continue to cooperate as long as the other side does not betray. In this
case, the final cooperation profits of both sides are:

Supplier: a(1 + ω + ω2 + ω3 + · · · ) = a
1−ω

Government: q(1 + ω + ω2 + ω3 + · · · ) = q
1−ω

.

After the first game, the government chooses to cooperate, and the supplier chooses
to betray in the first round. Then, the government will always adopt betrayal strategies.
Therefore, starting from the second round, the government chooses to betray and the
supplier chooses to cooperate. In this case, the profits of the supplier who adopts betrayal
strategies and the government who adopts a cooperation strategy are:

Supplier: c− δ + (−δ)(ω + ω2 + ω3 + · · · ) = (c− δ)(1−ω)− δω

1−ω

Government: s + (−δ)(ω + ω2 + ω3 + · · · ) = s(1−ω)− δ(ω)

(1−ω
.

After the first game, the government chooses to betray and the supplier chooses
to cooperate in the first round. Then the supplier will always adopt betrayal strategies.
Therefore, starting from the second round, the government chooses to cooperate and the
supplier chooses to betray. In this case, the profits of the supplier who adopts cooperation
strategies and the government who adopts a betrayal strategy are:

Supplier: e + (−δ)(ω + ω2 + ω3 + · · · ) = e(1−ω)− δ(ω)

1−ω

Government: u− δ + (−δ)(ω + ω2 + ω3 + · · · ) = (u− δ)(1−ω)− δω

1−ω
.

After the first game, both the government and the supplier choose to betray in the
first round. Then the government and the supplier will always adopt betrayal strategies.
Therefore, starting from the second round, the government and the supplier choose to
betray. In this case, the profits of the supplier and the government who adopt a betrayal
strategy are:

Supplier: f + (−δ)(1 + ω + ω2 + ω3 + · · · ) = f +
−δ

1−ω

Government: w + (−δ)(1 + ω + ω2 + ω3 + · · · ) = w +
−δ

1−ω
.

When consumers choose no purchase strategy and a purchase strategy in the first
game, the strategy choices of the government and suppliers are similar. The revenues of
the government and supplier are, respectively:

Supplier:
b

1−ω
, Government:

r
1−ω

.

Supplier:
(d− δ)(1−ω)− δω

1−ω
, Government:

t(1−ω)− δ(ω)

1−ω
.

Supplier:
g(1−ω)− δ(ω)

1−ω
, Government:

(v− δ)(1−ω)− δω

1−ω
.

Supplier: h +
−δ

1−ω
, Government: Φ +

−δ

1−ω
.

2.3. Tripartite Repeated Game Model

The assumptions of the model are:

1. δ(1 > δ > 0)represents the penalty coefficient. Player of the game will be punished if
he/she adopts a betrayal strategy (this article does not consider a δ execution cost).

2. Discount factor ω(1 > ω > 0) is the probability that the two sides will play in the
next round of the game (the second stage of the game) after the first round is over.
1−ω is the probability of ending the game.

3. In this repeated game, the cooperation or betrayal strategies of consumer are not
taken into consideration.
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According to Section 2.2 and the assumption, a tripartite repeated game model among
suppliers, consumers, and the government is established, as shown in Table 2.

Table 2. Tripartite repeated game model.

Supplier Consumer Government
Purchasing (y) Non-Purchasing(1 − y)

Low prices(x) a
1−ω , i, q

1−ω
b

1−ω , j, r
1−ω Incentive(z)

High price(1− x) (c−δ)(1−ω)−δω
1−ω , k, s(1−ω)−δω

1−ω
(d−δ)(1−ω)−δω

1−ω , l, t(1−ω)−δω
1−ω

Low price(x) e(1−ω)−δω
1−ω , m, (u−δ)(1−ω)−δω

1−ω
g(1−ω)−δω

1−ω , n, (v−δ)(1−ω)−δω
1−ω Non-incentive(1− z)

High price(1− x) f + −δ
1−ω , o, w + −δ

1−ω h + −δ
1−ω , p, Φ + −δ

1−ω

3. Evolutionary Dynamics under Infinite Population

In a tripartite game among suppliers, consumers, and the government, assuming that
their probability of adopting cooperation strategies are x, y, and z respectively, and thereby,
the probabilities of adopting betrayal strategies are 1− x, 1− y, 1− z. Hence, the profits of
the supplier and the government who adopt different strategies can be obtained.

3.1. The Expected Profits of Suppliers, Consumers, and the Government
3.1.1. The Expected Profits of Suppliers

For suppliers, assuming that low-price supply is a cooperation strategy while high-
price supply is a betrayal strategy, the expected profits UC

1 , UD
1 are:

UC
1 =

a
1−ω

yz +
b

1−ω
(1− y)z +

e(1−ω)− δ(ω)

1−ω
y(1− z) +

g(1−ω)− δ(ω)

1−ω
(1− y)(1− z)

UD
1 =

(c− δ)(1−ω)− δω

1−ω
yz +

(d− δ)(1−ω)− δω

1−ω
(1− y)z + f +

−δ

1−ω
y(1− z) + h +

−δ

1−ω
(1− y)(1− z).

3.1.2. The Expected Profits of Consumers

For consumers, assuming that purchasing behavior is a cooperation strategy while
non-purchasing behavior is a betrayal strategy, the expected profits UC

2 , UD
2 are:

UC
2 = ixz + k(1− x)z + mx(1− z) + o(1− x)(1− z)

UD
2 = jxz + l(1− x)z + nx(1− z) + p(1− x)(1− z).

3.1.3. The Expected Profits of the Government

For the government, assuming that adopting incentives is a cooperation strategy while
adopting non-incentives is a betrayal strategy, the expected benefits of UC

3 , UD
3 are:

UC
3 =

q
1−ω

xy +
r

1−ω
x(1− y) +

s(1−ω)− δ(ω)

1−ω
y(1− x) +

t(1−ω)− δ(ω)

1−ω
(1− x)(1− y)

UD
3 = (u−δ)(1−ω)−δω

1−ω xy + (v−δ)(1−ω)−δω
1−ω x(1− y) + (w + −δ

1−ω )(1− x)y
+(Φ + −δ

1−ω )(1− x)(1− y).

3.2. The Replicator Dynamic Equation of Repeated Game among Suppliers, Consumers, and
the Government

According to the expected profits of suppliers, consumers, and the government, the
replicator dynamic equation of a tripartite repeated game is obtained:

U1(x) = dx
dt = x(1− x)((e− g + f − h)y + [ a−b+2δω

1−ω + (g− e− c− d− f + h + 2δ)]yz
+[ b−δ

1−ω + (d− g− δ + h)]z + g + δ + h)
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U2(y) =
dy
dt = y(1− y)[(m− o + n− p)x + (i− k−m + o− j− l − n + p)xz

+(k + l − o− p)z + o + p]

U3(z) = dz
dt = z(1− z)([ r+δ

1−ω + (v− δ− t−Φ)]x + [ q−r+2δω
1−ω +

(t− s− u− v− w + Φ + 2δ)]xy + (s− t + w−Φ)y + t + δ−Φ]
.

3.3. The Equilibrium Point of Evolutionary Process

According to the replicator dynamic equation of the tripartite repeated game, the
following system can be set as:

dx
dt = x(1− x)(UC

1 −UD
1 )

dy
dt = y(1− y)(UC

2 −UD
2 )

dz
dt = z(1− z)(UC

3 −UD
3 )

Let
α1 = e− g + f − h, β1 = a−b+2δω

1−ω + (g− e− c− d− f + h + 2δ), θ1 = b−δ
1−ω + (d− g−

δ + h), η1 = g + δ + h
α2 = m− o + n− p, β2 = i− k−m + o− j− l − n + p, θ2 = k + l − o− p, η2 = o + p
α3 = r+δ

1−ω + (v − δ − t − Φ), β3 = [ q−r+2δω
1−ω + (t − s − u − v − w + Φ + 2δ), θ3 =

(s− t + w−Φ), η3 = t + δ−Φ.
The system is converted into:

dx
dt = x(1− x)(α1y + β1yz + θ1z + η1)
dy
dt = y(1− y)(α2x + β2xz + θ2z + η2)
dz
dt = z(1− z)(α3x + β3xy + θ3y + η3)

(1)

For the three-dimensional dynamic system (1), let dx
dt = 0, dy

dt = 0, dz
dt = 0, and the

following theorems can be drawn:

Theorem 1. The three-dimensional dynamic system (1) contains eight tripartite groups which all
adopt equilibrium points featured by pure strategies, and at these equilibrium points, there are some
ESS which satisfy the given conditions.

Theorem 2. The three-dimensional dynamic system (1) contains 12 bipartite groups which all
adopt equilibrium points featured by pure strategies, and the dynamics system does not have ESS at
these equilibrium points.

Theorem 3. The three-dimensional dynamic system (1) contains six single groups which all adopt
equilibrium points featured by pure strategies, and the dynamics system does not have ESS at these
equilibrium points.

Theorem 4. The three-dimensional dynamic system (1) contains one tripartite group which adopts
equilibrium points featured by blended strategies, and the dynamics system does not have ESS at
the equilibrium point.

4. The Stability of Equilibrium Points

The necessary and sufficient condition for the stability of a linear system is that the
roots of the characteristic equation of the system are all negative real numbers or conjugate
complex numbers with negative real parts. In other words, the roots of the characteristic
equation should all be located in the left half of the complex plane.

4.1. Theorem 1 Verification

Assumption 3. The three-dimensional dynamic system (1) contains eight tripartite groups which all
adopt equilibrium points featured by pure strategies. They are: E1(0, 0, 0), E2(1, 0, 0), E3(1, 1, 1),
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E4(0, 1, 0), E5(0, 0, 1), E6(1, 1, 0), E7(1, 0, 1), E8(0, 1, 1). The calculation system (1) Jacobian matrix
is set as:

J = ((1− 2x)(α1y + β1yz + θ1z + η1) x(1− x)(α1 + β1z) x(1− x)(β1y + θ1)
y(1− y)(α2 + β2z) (1− 2y)(α2x + β2xz + θ2z + η2) y(1− y)(β2x + θ2)
z(1− z)(α3 + β3y) z(1− z)(β3x + θ3) (1− 2z)(α3x + β3xy + θ3y + η3))

.
(2)

According to (2), then the Jacobian matrix of each equilibrium point can be simpli-
fied as:

E1(0, 0, 0), J =

 η1 0 0
0 η2 0
0 0 η3

 E2(1, 0, 0), J =

 −η1 0 0
0 α2 + η2 0
0 0 α3 + η3


E3(1, 1, 1), J =

 −(α1 + β1 + θ1 + η1) 0 0
0 −(α2 + β2 + θ2 + η2) 0
0 0 −(α3 + β3 + θ3 + η3)


E4(0, 1, 0), J =

 α1 + η1 0 0

0 −η2 0

0 0 θ3 + η3

 E5(0, 0, 1), J =

 θ1 + η1 0 0

0 θ2 + η2 0

0 0 −η3


E6(1, 1, 0), J =

 −(α1 + η1) 0 0
0 −(α2 + η2) 0
0 0 α3 + β3 + θ3 + η3


E7(1, 0, 1), J =

 −(θ1 + η1) 0 0
0 α2 + β2 + θ2 + η2 0
0 0 −(α3 + η3)


E8(0, 1, 1), J =

 α1 + β1 + θ1 + η1 0 0
0 −(θ2 + η2) 0
0 0 −(θ3 + η3)

.

Therefore, the pure strategy equilibrium points and eigenvalues of the system (1) are
shown in Table 3.

The asymptotic stability of the equilibrium point of the system is established through
the corresponding eigenvalues of its Jacobian. The eigenvalues in Table 3 are obtained.
Therefore, the stability conditions of the equilibrium point are obtained based on the
necessary and sufficient conditions of linear system stability (see the last column in Table 4).

Table 3. The pure strategy equilibrium points and eigenvalues.

Equilibrium Eigenvalues

Points λ1 λ2 λ3

E1(0, 0, 0) η1 η2 η3

E2(1, 0, 0) −η1 α2 + η2 α3 + η3

E3(1, 1, 1) −(α1 + β1 + θ1 + η1) −(α2 + β2 + θ2 + η2) −(α3 + β3 + θ3 + η3)

E4(0, 1, 0) α1 + η1 −η2 θ3 + η3

E5(0, 0, 1) θ1 + η1 θ2 + η2 −η3

E6(1, 1, 0) −(α1 + η1) −(α2 + η2) α3 + β3 + θ3 + η3

E7(1, 0, 1) −(θ1 + η1) α2 + β2 + θ2 + η2 −(α3 + η3)

E8(0, 1, 1) α1 + β1 + θ1 + η1 −(θ2 + η2) −(θ3 + η3)

We can know from the Equation (10) that the main diagonal elements of matrix J are
all zero, so λ1 + λ2 + λ3 = 0, and furthermore, the real part of at least one eigenvalue in
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λ1, λ2, andλ3 is not less than zero, so the dynamics system does not have the asymptotic
stability at the equilibrium point (x3, y3, z3).

Based on the above discussion, it can be seen that for the tripartite dynamics system of
suppliers, consumers, and the government in the public goods supply chain, only eight states
of E1(0, 0, 0), E2(1, 0, 0), E3(1, 1, 1), E4(0, 1, 0), E5(0, 0, 1), E6(1, 1, 0), E7(1, 0, 1), E8(0, 1, 1) can
make the dynamics system asymptotically stable.

It can be seen from Table 4 that only E3(1, 1, 1), E6(1, 1, 0), E7(1, 0, 1) are asymptotically
stable, and the stability is affected by δ(0 < δ < 1), ω(0 < ω < 1). That is, the parameters
δ,ω affect the final evolution state of the dynamic system (1). The following discussion is
about the stability conditions of E3(1, 1, 1), E6(1, 1, 0), E7(1, 0, 1):

(1) E3(1, 1, 1) is the precondition of ESS.

When −i + j < 0, and δ >
(1−ω)(u + 2Φ)− q

3
, E3(1, 1, 1)is ESS.

To prove: because δ >
(1−ω)(u + 2Φ)− q

3
⇒ q+ 3δ > (1−ω)(u+ 2Φ)⇒ q + 3δ

1−ω
>

u + 2Φ ⇒ q + 3δ

1−ω
− u− 2Φ > 0, and −i + j < 0, so Re(λk) < 0, that is E3(1, 1, 1) is

ESS.
(2) E6(1, 1, 0) is the precondition of ESS.

(i) When δ <
(u + 2Φ)(1−ω)

3
, thenE6(1, 1, 0) is ESS.

To prove: because δ <
(u + 2Φ)(1−ω)

3
⇒ q + 3δ < (u + 2Φ)(1 − ω) ⇒

q + 3δ

1−ω
< u + 2Φ⇒ q + 3δ

1−ω
− u− 2Φ < 0,

then we have Re(λk) < 0, therefore, E6(1, 1, 0) is ESS.

(ii) When ω > 1− q + 3δ

u + 2Φ
, E6(1, 1, 0)is ESS. To prove: because

q + 3δ

1−ω
− u− 2Φ <

0⇒ 1−ω <
q + 3δ

u + 2Φ
⇒ ω > 1− q + 3δ

u + 2Φ
, then Re(λk) < 0, and E6(1, 1, 0)is ESS.

(3) E7(1, 0, 1) is the precondition of ESS.
Because i− j > 0, E7(1, 0, 1)is not ESS, the stability conditions are discussed when
i− j < 0.

(i) When v− 2Φ > 0, and δ < b + (1− ω)(d + 2h), E7(1, 0, 1)is ESS. To prove: if

v− 2Φ > 0, so
r + δ

1−ω
+ v− 2Φ > 0, and if 0 < δ < b + (1− ω)(d + 2h) ⇒ b−

δ + (1−ω)(d + 2h) > 0⇒ b− δ

1−ω
+ d + 2h > 0. Therefore, we have Re(λk) < 0,

that is E7(1, 0, 1) is ESS.
(ii) When v− 2Φ < 0, and δ > −[r + (1− ω)(v− 2Φ)], E7(1, 0, 1)is ESS. To prove:

when δ < b,
b− δ

1−ω
+ d + 2h > 0, if v− 2Φ < 0, δ > −[r + (1− ω)(v− 2Φ)] ⇒

r + δ > −(1 − ω)(v − 2Φ) ⇒ r + δ

1−ω
+ v − 2Φ > 0, so Re(λk) < 0, that is,

E7(1, 0, 1) is ESS.

Based on the above analysis, the stability conditions of equilibrium points E3(1, 1, 1),
E6(1, 1, 0), E7(1, 0, 1) can be obtained, which are shown in Table 5.

It can be found that the penalty coefficient δ affects the stability of equilibrium points.
A continuous increase in penalty eventually leads to adoption of cooperation strategies
among suppliers, consumers, and the government. Therefore, both penalty coefficient δ and
discount factor ω can promote cooperation among the three players in a repeated game.
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Table 4. Stability of equilibrium points.

Equilibrium Eigenvalues Asymptotic

Points λ1 λ2 λ3 Stability

E1(0, 0, 0)

η1 η2 η3
source point org + δ + h o + p t + δ−Φ saddle point

+ + uncertain

E2(1, 0, 0)

−η1 α2 + η2 α3 + η3
source point or−(g + δ + h) m + n r+δ

1−ω + v− 2Φ saddle point
− + uncertain

E3(1, 1, 1)

−(α1 + β1 + θ1 + η1) −(α2 + β2 + θ2 + η2) −(α3 + β3 + θ3 + η3)
meeting point or−( a+δ

1−ω ) + 2h) −i + j −( q+3δ
1−ω − u− 2Φ) saddle point

− uncertain uncertain

E4(0, 1, 0)

α1 + η1 −η2 θ3 + η3
source point ore + f + δ −(o + p) s + w + δ− 2Φ saddle point

+ − uncertain

E5(0, 0, 1)

θ1 + η1 θ2 + η2 −η3 source point orb−δ
1−ω + d + 2h k + l −(t + δ−Φ) saddle point

uncertain + uncertain

E6(1, 1, 0)

−(α1 + η1) −(α2 + η2) α3 + β3 + θ3 + η3 meeting point or
−(e + f + δ) −(m + n) q+3δ

1−ω − u− 2Φ saddle point
− − uncertain

E7(1, 0, 1)

−(θ1 + η1) α2 + β2 + θ2 + η2 −(α3 + η3)
meeting point or−( b−δ

1−ω + d + 2h) i− j −( r+δ
1−ω + v− 2Φ) saddle point

uncertain uncertain uncertain

E8(0, 1, 1)

α1 + β1 + θ1 + η1 −(θ2 + η2) −(θ3 + η3)
source point ora+δ

1−ω + 2h −(k + l) −(s + w + δ− 2Φ) saddle point
+ − uncertain

Table 5. Equilibrium points and stability conditions.

Equilibrium Eigenvalues Asymptotic

Points λ1 λ2 λ3 Stability

E3(1, 1, 1)

−(α1 + β1 + θ1 + η1) −(α2 + β2 + θ2 + η2) −(α3 + β3 + θ3 + η3) −i + j < 0, and when

−( a+δ
1−ω ) + 2h) −i + j −( q+3δ

1−ω − u− 2Φ) δ > (u+2Φ)(1−ω)−q
3 .

− uncertain uncertain is ESS.

E6(1, 1, 0)

−(α1 + η1) −(α2 + η2) α3 + β3 + θ3 + η3 (i) When δ < (u+2Φ)(1−ω)
3

−(e + f + δ) −(m + n) q+3δ
1−ω − u− 2Φ is ESS.

− − uncertain (ii)When ω > 1− q+3δ
u+2Φ is ESS.

E7(1, 0, 1)

−(θ1 + η1) α2 + β2 + θ2 + η2 −(α3 + η3) (i) when v− 2Φ > 0, and δ < b + (1−ω)(d + 2h)

−( b−δ
1−ω + d + 2h) i− j −( r+δ

1−ω + v− 2Φ) is ESS.

uncertain uncertain uncertain (ii) When v− 2Φ < 0, and δ > −[r + (1−ω)(v− 2Φ)],is
ESS.
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4.2. Theorem 2 Verification

Assumption 4. The three-dimensional dynamic system (1) contains 12 bipartite groups which all adopt
equilibrium points featured by pure strategies. They are: (0, 0,∗), (0, 1,∗), (1, 0,∗), (1, 1,∗), (∗, 0, 0),
(∗, 0, 1), (∗, 1, 0), (∗, 1, 1), (0,∗, 0), (0,∗, 1), (1,∗, 0), (1,∗, 1).

According to the characteristics of (1), if


α1y + β1yz + θ1z + η1 = 0

y(1− y) = 0
z(1− z) = 0

, and assuming

that the equation set has solutions(x1, y1, z1), and x1, y1, z1 ∈ [0, 1], then
α1y1 + β1y1z1 + θ1z1 + η1 = 0

y1(1− y1) = 0
z1(1− z1) = 0

(3)

Substituting Equation (3) into Equation (2), the Jacobian matrix at the equilibrium
point (x1, y1, z1) in the dynamics system is obtained.

J =

 0 x1(1− x1)(α1 + β1z1) x1(1− x1)(β1y1 + θ1)

0 (1− 2y1)(α2x1 + β2x1z1 + θ2z1 + η2) 0
0 0 (1− 2z1)(α3x1y1 − β3x1 + θ3y1 − η3)

 (4)

From Equation (4), and with Det(λI − J) = 0, obviously, the eigenvalue λ = 0, where
it can be seen that the dynamics system does not have the asymptotic stability at the
equilibrium point (x1, y1, z1).

In fact, the equations set


α1y + β1yz + θ1z + η1 = 0

y(1− y) = 0
z(1− z) = 0

has no solution.

To prove: since the set


α1y + β1yz + θ1z + η1 = 0

y(1− y) = 0
z(1− z) = 0

contains three independent equa-

tions and two variables.

We can make the set
{

y(1− y) = 0
z(1− z) = 0

true, and then we have four sets of solutions:{
y = 0
z = 0

,
{

y = 0
z = 1

,
{

y = 1
z = 0

,
{

y = 1
z = 1

.

From equation


x(1− x)(α1y + β1yz + θ1z + η1) = 0
y(1− y)(α2x + β2xz + θ2z + η2) = 0
z(1− z)(α3x + β3xy + θ3y + η3) = 0

,

Let α1y + β1yz + θ1z + η1 = Π(y, z), α2x + β2xz + θ2z + η2 = Π(x, z), α3x + β3xy +
θ3y + η3 = Π(x, y), that is,

Π(y, z) = α1y + β1yz + θ1z + η1
Π(x, z) = α2x + β2xz + θ2z + η2
Π(x, y) = α3x + β3xy + θ3y + η3

(5)

and substitute the solution sets of
{

y = 0
z = 0

,
{

y = 0
z = 1

,
{

y = 1
z = 0

,
{

y = 1
z = 1

.into Π(y, z)in

the Equation (4), we haveΠ(0, 0) = η1, Π(0, 1) = θ1 + η1, Π(1, 0) = α1 + η1, Π(1, 1) =
α1 + β1 + θ1 + η1 contradicting Π(y, z) = α1yz− β1y + θ1z− η1 = 0 in the

sets


α1y + β1yz + θ1z + η1 = 0

y(1− y) = 0
z(1− z) = 0

,
{

y = 0
z = 0

,
{

y = 0
z = 1

,
{

y = 1
z = 0

,
{

y = 1
z = 1
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Thus, the set


α1y + β1yz + θ1z + η1 = 0

y(1− y) = 0
z(1− z) = 0

has no solution, meaning that the dynam-

ics system does not have ESS at these equilibrium points.

In the same way, when


x(1− x) = 0

(α2x + β2xz + θ2z + η2 = 0

z(1− z) = 0

or


x(1− x) = 0
y(1− y) = 0

α3x + β3xy + θ3y + η3 = 0
the set has no solution either, meaning that the dynamics system has no state of stability.

4.3. Theorem 3 Verification

The three-dimensional dynamic system (1) contains six single groups which all adopt
equilibrium points featured by pure strategies. They are: (0, ∗, ∗), (1, ∗, ∗), (∗, 0, ∗), (∗, 1, ∗),
(∗, ∗, 0), (∗, ∗, 1).

From the characteristics of Equation (1), if
α1y + β1yz + θ1z + η1 = 0
α2x + β2xz + θ2z + η2 = 0

z(1− z) = 0
, (6)

assuming the set has solution (x2, y2, z2), and x2, y2, z2 ∈ [0, 1] , then z2 = 0 or z2 = 1.
Hence, we have solution: (x2, y2, 0), (x2, y2, 1).

From Equation (1) and Equation (6), then 0 x(1− x)(α1 + β1z) x(1− x)(β1y + θ1)
y(1− y)(α2 + β2z) 0 y(1− y)(β2x + θ2)
z(1− z)(α3 + β3y) z(1− z)(β3x + θ3) (1− 2z)(α3x + β3xy + θ3y + η3)

.

 (7)

Assuming that there exist solutions (x2, y2, z2), then (7) can be simplified as: 0 x2(1− x2)(α1 + β1z2) x2(1− x2)(β1y2 + θ1)
y2(1− y2)(α2 + β2z2) 0 y2(1− y2)(β2x2 + θ2)

0 0 (1− 2z2)(α3x2 + β3x2y2 + θ3y2 + η3)


with Det(λI − J) = 0, we have λ1 = (1− 2z2)(α3x2 + β3x2y2 + θ3y2 + η3).

Additionally:

λI − J = λ x2(1− x2)(α1 + β1z2) x2(1− x2)(β1y2 + θ1)

y2(1− y2)(α2 + β2z2) λ y2(1− y2)(β2x2 + θ2)

0 0 λ− (1− 2z2)(α3x2 + β3x2y2 + θ3y2 + η3)

,
(8)

so λ2[λ− (1− 2z2)(α3x2 + β3x2y2 + θ3y2 + η3)]− [x2(1− x2)(α1 + β1z2)y2(1− y2)(α2 +
β2z2)[λ − (1 − 2z2)(α3x2 + β3x2y2 + θ3y2 + η3)] = [λ2 − x2(1 − x2)(α1 + β1z2)y2(1 −
y2)(α2 + β2z2)][λ − (1 − 2z2)(α3x2 + β3x2y2 + θ3y2 + η3)], then we have{

λ2 − x2(1− x2)(α1 + β1z2)y2(1− y2)(α2 + β2z2) = 0
λ− (1− 2z2)(α3x2 + β3x2y2 + θ3y2 + η3) = 0

. Thus, we have the eigenvalue of

matrix J as λ1 = (1 − 2z2)(α3x2 + β3x2y2 + θ3y2 + η3), λ2, λ3 =
±
√

x2(1− x2)(α1 + β1z2)y2(1− y2)(α2 + β2z2). Therefore, the dynamics system (6) does
not have the asymptotic stability at the equilibrium point (x2, y2, z2).

In the same way, when


α1y + β1yz + θ1z + η1 = 0

y(1− y) = 0
α3x + β3xy + θ3y + η3 = 0

or


x(1− x) = 0

α2x + β2xz + θ2z + η2 = 0
α3x + β3xy + θ3y + η3 = 0

,

the dynamics system does not have ESS at these equilibrium points.
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4.4. Theorem 4 Verification

Assumption 5. The three-dimensional dynamic system (1) contains one tripartite group which
adopts equilibrium points featured by blended strategies. It is (∗, ∗, ∗).

From the characteristics of Equation (1), if


α1y + β1yz + θ1z + η1 = 0
α2x + β2xz + θ2z + η2 = 0

α3x + β3xy + θ3y + η3 = 0)
, assuming

the set has solution (x3, y3, z3), and x3, y3, z3 ∈ [0, 1], then
α1y3 + β1y3z3 + θ1z3 + η1 = 0
α2x3 + β2x3z3 + θ2z3 + η2 = 0
α3x3 + β3x3y3 + θ3y3 + η3 = 0

(9)

Substituting Equation (9) into (2), the Jacobian matrix of the dynamics system at the
equilibrium point (x3, y3, z3)is obtained:

J =

 0 x3(1− x3)(α1z3 − β1) x3(1− x3)(α1y3 + θ1)
y3(1− y3)(α2z3 + θ2) 0 y3(1− y3)(α2x3 − β2)
z3(1− z3)(α3y3 − β3) z3(1− z3)(α3x3 + θ3) 0.

 (10)

We can know from Equation (10) that the main diagonal elements of matrix J are all
zero, so λ1 + λ2 + λ3 = 0, and furthermore, the real part of at least one eigenvalue in
λ1, λ2, λ3 is not less than zero, so the dynamics system does not have ESS at the equilibrium
point (x3, y3, z3).

5. Numerical Simulation

In order to verify the evolutionary path of the tripartite repeated game of public
goods and the final stable state, that is, the evolutionary stability strategy, the values of the
parameters in the stability conditions of three equilibrium points are made specific. The
Matlab software is used to substitute the specific values into equations to testify whether
the three equilibrium points E3, E6, E7 will evolve into stable strategies.

5.1. The Stability Simulation of Equilibrium Point E3

The equilibrium point E3 needs to meet the stability condition: −i + j < 0, and
δ > (u+2Φ)(1−ω)−q

3 , let i = 2, j = 1, δ = 0.5, ω = 0.5, u = 2, Φ = 2, q = 2, and make the
value of other parameters of the income matrix equal 1, and input the dynamic system (11)
into Matlab. The output result is shown in the corresponding points in Figures 1 and 2.
It can be seen from the Figure that the final evolution of the system is stable at E3(1, 1, 1),
meaning that this point is the evolutionary stable strategy (Ess).

Figure 1. Path of numerical simulation.
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Figure 2. Path of numerical simulation.

5.2. The Stability Simulation of Equilibrium Point E6

(i) When δ < (u+2Φ)(1−ω)
3 , let u = 2, Φ = 1, ω = 0.7, δ = 0.3 < 0.4, and make the value

of other parameters of the income matrix equal 1, and input the dynamic system (12)
into Matlab. The output result is shown in the corresponding points in Figure 2. It can
be seen from the Figure that the final evolution of the system is stable at E6(1, 1, 0),
meaning that this point is the evolutionary stable strategy (Ess).

(ii) When ω > 1− q+3δ
u+2Φ , let u = 2, Φ = 1, q = 1.5, δ = 0.5, ω = 0.5 > 0.25, and make the

value of other parameters of the income matrix be 1, and input the dynamic system
(13) into Matlab. The output result is shown in the corresponding points in Figure 2. It
can be seen from the Figure that the final evolution of the system is stable at E6(1, 1, 0),
meaning that this point is the evolutionary stable strategy (Ess).

5.3. The Stability Simulation of Equilibrium Point E7

(i) When v− 2Φ > 0,
{

δ < b + (1−ω)(d + 2h)
δ < r− (1−ω)(v− 2Φ)

, let ω = 0.6, b = 0.5, d = 0.4, h = 0.3,

r = 0.9, v = 0.7, Φ = 0.2, δ = 0.5 < 0.78 < 0.9, and make the value of other parameters
of the income matrix be 1, and input the dynamic system (14) into Matlab. The output
result is shown in the corresponding points in Figure 2. It can be seen from the Figure
that the final evolution of the system is stable at E7(1, 0, 1), meaning that this point is
the evolutionary stable strategy (Ess).

(ii) When v− 2Φ < 0, and

{
b−δ

d+2h + 1 > ω
r+δ

v−2Φ + 1 > ω
, let v = 0.6, Φ = 0.7, b = 0.3, d = 0.4, h = 0.3,

r = 0.1, δ = 0.5, 0.25 < ω = 0.5 < 0.8, and make the value of other parameters of the
income matrix be 1, and input the dynamic system (15) into Matlab. The output result
is shown in the corresponding points in Figure 2. It can be seen from the Figure that
the final evolution of the system is stable at E7(1, 0, 1), meaning that this point is the
evolutionary stable strategy (Ess).

2.5x(1− x) = 0
y(1− y)(2− xz) = 0

z(1− z)(5.5− 0.5x + 2xy− y− 0.5) = 0
(11)


x(1− x)( 31

30 z + 2.3) = 0
y(1− y)(−2xz + 2) = 0

z(1− z)(91/30x− xy + 0.3) = 0
(12)
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x(1− x)(0.5z + 2.5) = 0
y(1− y)(−2xz + 2) = 0
z(1− z)(1.5x + 0.5) = 0

(13)


x(1− x)(0.7y + 1.05yz− 0.2z + 1.8) = 0

y(1− y)(−2xz + 2) = 0
z(1− z)(−x + 0.25xy + 0.8y + 1.3) = 0

(14)

r


x(1− x)(0.7y + 1.3yz− 0.4z + 1.8) = 0

y(1− y)(−2xz + 2) = 0
z(1− z)(−0.4x + 1.9xy + 0.3y + 0.8) = 0

(15)

6. Scenario Analysis of Evolutionary Results

Through the above analysis of the repeated game evolution model and the asymptotic
stability of the equilibrium points of the tripartite supply of public goods, the evolutionary
stability strategies are obtained, and the evolution path is simulated using Matlab to verify
the evolutionary stability. The result shows that the three parties of suppliers, governments,
and consumers will tend to adopt the final evolutionary stability strategies under different
stability conditions. The three scenarios are:

Scenario 1. The three parties in the game of public goods actively adopt cooperation
strategies, that is, suppliers increase low-price supply, the government increases incentives,
and consumers actively purchase. When the preconditions are met: −i + j < 0, and
δ > (u+2Φ)(1−ω)−q

3 , E3(1, 1, 1) is the evolutionary stable strategy (Ess).
According to the values of parameters in the numerical simulation Section 5.1, δ >

(u+2Φ)(1−ω)−q
3 = 2(1− ω)− 2

3 is made known, which means δ will increase along with
the increase of the probability 1− ω (the penalty is augmented to punish the betrayer).
At this time, the public goods suppliers and the government are more willing to choose
a cooperation strategy. The public goods market shows that good features, such as good
quality, large output, and low price, can greatly improve the quality of consumers’ lives,
which leads to the next round of the repeated game. Therefore, the evolution path of the
tripartite supply of public goods eventually evolves and stabilizes at E3(1, 1, 1).

Scenario 2. Suppliers and consumers in the game of public goods actively adopt coop-
eration strategies, while the government adopts betrayal strategies. When the preconditions
are met: δ < (u+2Φ)(1−ω)

3 or ω > 1− q+3δ
u+2Φ .

According to the values of parameters in numerical simulation Section 4.2, δ <
1−ω

3 or 1−ω < 1.5+3δ
4 is made known, which means δ will increase along with the increase

of the probability 1− ω (the penalty is augmented to punish the betrayer). At this time,
the public goods suppliers will actively adopt low-price strategies and increase supply.
However, the government will reduce incentives or adopt non-incentive betrayal strategies
because supply exceeds demand. In this case, prices fall, and then consumer purchase
costs decrease, which eventually result in an increase in profits. This situation then leads to
the next round of repeated games. Therefore, the evolution path of the tripartite supply of
public goods eventually evolves and stabilizes at E6(1, 1, 0).

Scenario 3. Suppliers and the government in the game of public goods actively adopt
cooperation strategies, while consumers adopt evolutionary strategies from purchasing to
non-purchasing strategies.

According to the values of parameters in numerical simulation Section 4.3, δ <
0.9− 0.3(1−ω) or (1−ω) > 0.125− 1.25δ is made known, which means δ will increase
along with the increase of the probability 1−ω (the penalty is augmented to punish the
betrayer). At this time, the public goods suppliers will actively increase supply in low
price and the government is willing to provide incentives. However, consumers adopt
non-purchase betrayal strategies. In this case, the public goods market presents good
features, such as good quality, large output, favorable price, and government incentives.
These types of goods are oversaturated and consumers are reluctant to buy them. This
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leads to the next round of repeated games. Therefore, the evolution path of the tripartite
supply of public goods eventually evolves and stabilizes at E7(1, 0, 1).

7. Conclusions

On the basis of replicate dynamics of evolutionary games and repeated games, as
well as pertinent content, a tripartite repeated game model is established based on the
existing tripartite game among suppliers, consumers, and the government to analyze the
evolutionary mechanism of which suppliers supply at low prices, consumers purchase, and
the government provides incentives. A dynamic system of repeated games was thereby
established to analyze the stability of the equilibrium point of the tripartite repeated
evolutionary game under different parameters. A numerical simulation and scenario
analysis were employed to verify the impact of penalty coefficients and discount factors
on the stability of strategies adopted by the three players in a tripartite repeated game on
public goods. The research results of this paper are of great significance for the infinitely
repeated behavior of population game players in the supply chain of public goods, such
as coal, water, electricity, and gas. This paper is also helpful to provide a reference for
decision-makers in the game on public goods in the market economy.

Due to the large amount of calculation, the game only considers the impact of penalty
coefficients and discount factors on the government and suppliers, but not their impact
on consumers. At the same time, the game does not consider the situation where the
government or the supplier needs to pay the penalty cost when the penalty is imposed.

As an extension of this study, in the next step, we will consider the case that the
player needs to pay the penalty cost in the study of the principal-agent repeated game
theory of public goods. In addition, the tripartite game behavior of the government,
power generation companies (hydropower or thermal power), and the power supply
department in the quasi-public goods-electricity supply market will be taken as an example
for application analysis and research.
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