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1. Introduction and Preliminaries

Let (Σ1, Ω1, µ1) and (Σ2, Ω2, µ2) be measure spaces with positive σ-finite measures.
For a measurable function f : Ω2 → R, let Ak denote the linear operator

Ak f (x) :=
1

K(x)

∫
Ω2

k(x, t) f (t)dµ2(t), (1)

where k : Ω1 ×Ω2 → R is measurable and non-negative kernel with

0 < K(x) :=
∫

Ω2

k(x, t)dµ2(t), x ∈ Ω1. (2)

The following result was given in [1] (see also [2]), where u is a positive function
on Ω1.

Theorem 1. Let u be a weight function, k(x, y) ≥ 0. Assume that k(x,y)
K(x) u(x) is locally integrable

on Ω1 for each fixed y ∈ Ω2. Define v by

v(y) :=
∫

Ω1

k(x, y)
K(x)

u(x)dµ1(x) < ∞. (3)

If φ is a convex function on the interval I ⊆ R, then the inequality∫
Ω1

φ(Ak f (x))u(x)dµ1(x) ≤
∫

Ω2

φ( f (y))v(y)dµ2(y) (4)

holds for all measurable functions f : Ω2 → R, such that Im f ⊆ I, where Ak is defined by
(1) and (2).
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Inequality (4) is generalization of Hardy’s inequality. G. H. Hardy [3] stated and
proved that the inequality

∞∫
0

 1
x

x∫
0

f (t) dt

p

dx ≤
(

p
p− 1

)p ∞∫
0

f p(x) dx, p > 1, (5)

holds for all f non-negative functions such that f ∈ Lp(R+) and R+ = (0, ∞). The constant(
p

p−1

)p
is sharp. More details about Hardy’s inequality can be found in [4,5].

Inequality (5) can be interpreted as the Hardy operator H : H f (x) := 1
x

x∫
0

f (t) dt,

maps Lp into Lp with the operator norm p′ = p
p−1 .

In this paper, we consider the difference of both sides of the generalized Hardy’s
inequality ∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

and obtain new inequalities that hold for n-convex functions.
Now, we recall n−convex functions. There are two parallel notations. First, is given

by E. Hopf in 1926 and second by T. Popoviciu in 1934. E. Hopf defined that the function
f is n−convex if difference [x0, ..., xn+1, f ] is nonnegative. The ordinary convex function
is 1-convex. For more details see [6]. In the second definition f : [α, β] → R is n-convex
n ≥ 0, if its n-th order divided differences [x0, ..., xn; f ] are nonnegative for all choices of
(n + 1) distinct points xi ∈ [α, β]. By second definition 0-convex function is nonnegative,
1-convex function is non-decreasing and 2-convex function is convex in the usual sense. If
an n-convex function is n times differentiable, then φ(n) ≥ 0. (see [7]).

An important role in the paper will be played by Abel–Gontscharoff interpolation,
which was first studied by Whittaker [8], and later by Gontscharoff [9] and Davis [10]. The
Abel–Gontscharoff interpolation for two points and the remainder in the integral form is
given in the following theorem (for more details see [11]).

Theorem 2. Let n, m ∈ N, n ≥ 2, 0 ≤ m ≤ n− 1 and φ ∈ Cn([α, β]). Then

φ(u) = Qn−1(α, β, φ, u) + R(φ, u),

where Qn−1 is the Abel–Gontscharoff interpolating polynomial for two-points of degree n− 1, i.e.,

Qn−1(α, β, φ, u) =
m

∑
s=0

(u− α)s

s!
φ(s)(α)

+
n−m−2

∑
r=0

[
r

∑
s=0

(u− α)m+1+s(α− β)r−s

(m + 1 + s)!(r− s)!

]
φ(m+1+r)(β)

and the remainder is given by

R(φ, u) =
∫ β

α
Gmn(u, t)φ(n)(t)dt,

where Gmn(u, t) is Green’s function defined by

Gmn(u, t) =
1

(n− 1)!


m

∑
s=0

(
n− 1

s

)
(u− α)s(α− t)n−s−1 , α ≤ t ≤ u;

−
n−1

∑
s=m+1

(
n− 1

s

)
(u− α)s(α− t)n−s−1, u ≤ t ≤ β.

(6)
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Remark 1. For α ≤ t, u ≤ β the following inequalities hold

(−1)n−m−1 ∂sGmn(u, t)
∂us ≥ 0, 0 ≤ s ≤ m,

(−1)n−s ∂sGmn(u, t)
∂us ≥ 0, m + 1 ≤ s ≤ n− 1.

2. Generalizations of Hardy’s Inequality

Our first result is an identity related to generalized Hardy’s inequality. We apply
interpolation by the Abel–Gontscharoff polynomial and get the following result.

Theorem 3. Let (Σ1, Ω1, µ1) and (Σ2, Ω2, µ2) be measure spaces with positive σ-finite measures.
Let u : Ω1 → R, be a weight function and v is defined by (3). Let Ak f (x), K(x) be defined by
(1) and (2) respectively, for a measurable function f : Ω2 → [α, β] and let n, m ∈ N, n ≥ 2,
0 ≤ m ≤ n− 1, φ ∈ Cn([α, β]) and Gmn be defined by (6). Then∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x) (7)

=
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


+

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

+

β∫
α

(∫
Ω2

Gmn( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gmn(Ak f (x), t)u(x)dµ1(x)
)

φ(n)(t)dt.

Proof. Using Theorem 2 we can represent every function φ ∈ Cn([α, β]) in the form

φ(u) =
m

∑
s=0

(u− α)s

s!
φ(s)(α) (8)

+
n−m−2

∑
r=0

[
r

∑
s=0

(u− α)m+1+s(−1)r−s(β− α)r−s

(m + 1 + s)!(r− s)!

]
φ(m+1+r)(β)

+

β∫
α

Gmn(u, t)φ(n)(t)dt.

By an easy calculation, applying (8) in
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x),

we get

∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

=
m

∑
s=0

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


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+
n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

+

β∫
α

(∫
Ω2

Gmn( f (y), t)v(y)dµ2(y)−
∫

Ω1

Gmn(Ak f (x), t)u(x)dµ1(x)
)

φ(n)(t)dt.

Since ∫
Ω2

v(y)dµ2(y)−
∫

Ω1

u(x)dµ1(x)

=
∫

Ω2

∫
Ω1

k(x, y)
K(x)

u(x)dµ1(x)

dµ2(y)−
∫

Ω1

u(x)dµ1(x)

=
∫

Ω1

u(x)
K(x)

∫
Ω2

k(x, y)dµ2(y)

dµ1(x)−
∫

Ω1

u(x)dµ1(x)

=
∫

Ω1

u(x)dµ1(x)−
∫

Ω1

u(x)dµ1(x) = 0

the summand for s = 0 in the first sum on the right hand side is equal to zero, so (7)
follows.

We continue with the following result.

Theorem 4. Let all the assumptions of Theorem 3 hold, let φ be n-convex on [α, β] and∫
Ω1

Gmn(Ak f (x), t)u(x)dµ1(x) ≤
∫

Ω2

Gmn( f (y), t)v(y)dµ2(y), t ∈ [α, β]. (9)

Then

∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x) (10)

≥
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


+

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

.

If the reverse inequality in (9) holds, then the reverse inequality in (10) holds.

Proof. We assumed that φ ∈ Cn([α, β]) is n-convex, so φ(n) ≥ 0 on [α, β]. We apply
Theorem 3 and (10).
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Remark 2. Notice that for n = 2 and 0 ≤ m ≤ 1 the function Gmn(·, t), t ∈ [α, β] is convex on
[α, β]. Therefore the assumption (9) is satisfied and then the inequality (10) holds. For an arbitrary
n ≥ 3 and 0 ≤ m ≤ 1, we use Remark 1, i.e., we consider the following inequality:

(−1)n−2 ∂2Gmn(u, t)
∂u2 ≥ 0.

Ww conclude that the convexity of Gmn(·, t) depends of a parity of n. If n is even, then ∂2Gmn(u,t)
∂u2 ≥ 0,

i.e., Gmn(·, t) is convex and assumption (9) is satisfied. Also, the inequality (10) holds. For odd n
we get the reverse inequality. For all other choices, the following generalization holds.

Theorem 5. Suppose that all assumptions of Theorem 1 hold. Additionally, let n, m ∈ N, n ≥ 3,
2 ≤ m ≤ n− 1 and φ ∈ Cn([α, β]) be n-convex.

(i) If n−m is odd, then the inequality (10) holds.
(ii) If n−m is even, then the reverse inequality in (10) holds.

Proof.

(i) By Remark 1, the following inequality holds

(−1)n−m−1 ∂2Gmn(u, t)
∂u2 ≥ 0, α ≤ u, t ≤ β.

In case n−m is odd (n−m− 1 is even), we have

∂2Gmn(u, t)
∂u2 ≥ 0,

i.e., Gmn(·, t), t ∈ [α, β], is convex on [α, β]. Then by Theorem 1 we have∫
Ω1

u(x)Gmn(Ak f (x), t)dµ1(x) ≤
∫

Ω2

v(y)Gmn( f (y), t)dµ2(y),

i.e., the assumption (9) is satisfied. By applying Theorem 4 we get (10).
(ii) Similarly, if n−m is even, then Gmn(·, t), t ∈ [α, β] is concave on [α, β], so the reversed

inequality in (9) holds and, hence, in (10) as well.

Theorem 6. Suppose that all assumptions of Theorem 1 hold and let n, m ∈ N, n ≥ 2,
0 ≤ m ≤ n− 1, φ ∈ Cn([α, β]) be n-convex and F : [α, β]→ R be defined by

F(t) =
m

∑
s=2

φ(s)(α)

s!
(t− α)s (11)

+
n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β− α)r−s

(m + 1 + s)!(r− s)!
φ(m+1+r)(β)(t− α)m+1+s.

(i) If (10) holds and F is convex, then the inequality (4) holds.
(ii) If the reverse of (10) holds and F is concave, then the reverse inequality (4) holds.

Proof.

(i) Let (10) holds. If F is convex, then by Theorem 1 we have∫
Ω2

v(y)F( f (y))dµ2(y)−
∫

Ω1

u(x)F(Ak f (x))dµ1(x) ≥ 0
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which, changing the order of summation, can be written in form

m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)

+

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

≥ 0.

We conclude that the right-hand side of (10) is nonnegative and the inequality
(4) follows.

(ii) Similar to (i) case.

Remark 3. Note that the function t 7→ (t− α)p is convex on [α, β] for each p = 2, ..., n− 1, i.e.,∫
Ω2

v(y)( f (y)− α)pdµ2(y)−
∫

Ω1

u(x)(Ak f (x)− α)pdµ1(x) ≥ 0,

for each p = 2, ..., n− 1.

(i) If (10) holds, φ(s)(α) ≥ 0 for s = 0, ..., m and (−1)r−sφ(m+1+r)(β) ≥ 0 for s = 0, ..., r and
r = 0, ..., n−m− 2 then the right hand side of (10) is non-negative, i.e., the inequality (4)
holds.

(ii) If the reverse of (10) holds, φ(s)(α) ≤ 0 for s = 0, ..., m and (−1)r−sφ(m+1+s)(β) ≤ 0 for
s = 0, ..., r and r = 0, ..., n− m− 2, then the right hand side of (10) is negative, i.e., the
reverse inequality in (4) holds.

3. Upper Bound for Generalized Hardy’s Inequality

The following estimations for Hardy’s difference is given in the previous section,
under special conditions in Theorem 6 and Remark 3.

∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

≥
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


+

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

≥ 0

In this section, we present upper bounds for obtained generalization. We recall
recent results related to the Chebyshev functional. For two Lebesgue integrable functions
g, h : [a, b]→ R we consider the Chebyshev functional.
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T(g, h) =
1

β− α

β∫
α

g(t)h(t)dt− 1
β− α

β∫
α

g(t)dt · 1
β− α

β∫
α

h(t)dt.

With ‖·‖p, 1 ≤ p ≤ ∞, we denote the usual Lebesgue norms on space Lp[a, b].
In [12] authors proved the following theorems.

Theorem 7. Let g : [α, β] → R be a Lebesque integrable function and h : [α, β] → R be an
absolutely continuous function with (· − a)(b− ·)[h′]2 ∈ L[α, β]. Then we have the inequality

T(g, h)| ≤ 1√
2
[T(g, g)]

1
2

1√
β− α

 β∫
α

(x− α)(β− x)[h′(x)]2dx


1
2

. (12)

The constant 1√
2

in (12) is the best possible.

Theorem 8. Assume that h : [α, β]→ R is monotonic nondecreasing on [α, β] and g : [α, β]→ R
is absolutely continuous with g′ ∈ L∞[α, β]. Then we have the inequality

|T(g, h)| ≤ 1
2(β− α)

||g′||∞
β∫

α

(x− α)(β− x)dh(x). (13)

The constant 1
2 in (13) is the best possible.

Under assumptions of Theorem 3 we define the function L : [α, β]→ R by

L(t) =
∫

Ω2

v(y)Gmn( f (y), t)dµ2(y)−
∫

Ω1

u(x)Gmn(Ak f (x), t)dµ1(x). (14)

The Chebyshev functional is defined by

T(L,L) = 1
β− α

∫ β

α
L2(t)dt−

(
1

β− α

∫ β

α
L(t)dt

)2

.

Theorem 9. Suppose that all the assumptions of Theorem 3 hold. Also, let (· − α)(β− ·)(φ(n+1))2

∈ L1[α, β] and L be defined as in (14). Then the following identity holds:∫
Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x) (15)

=
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


+

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

+
φ(n−1)(β)− φ(n−1)(α)

β− α

∫ β

α
L(t)dt + R(α, β; φ),



Mathematics 2021, 9, 1724 8 of 14

where the remainder R(α, β; φ) satisfies the estimation

|R(α, β; φ)| ≤
√

β− α

2
[T(L,L)]

1
2

∣∣∣∣∫ β

α
(t− α)(β− t)

[
φ(n+1)(t)

]2
dt
∣∣∣∣ 1

2

.

Proof. Applying Theorem 7 for g→ L and h→ φ(n) we get∣∣∣∣ 1
β− α

∫ β

α
L(t)φ(n)(t)dt− 1

β− α

∫ β

α
L(t)dt · 1

β− α

∫ β

α
φ(n)(t)dt

∣∣∣∣
≤ 1√

2
[T(L,L)]

1
2

1√
β− α

∣∣∣∣∫ β

α
(t− α)(β− t)

[
φ(n+1)(t)

]2

dt
∣∣∣∣

1
2

.

Therefore, we have

∫ β

α
L(t)φ(n)(t)dt =

φ(n−1)(β)− φ(n−1)(α)

β− α

∫ β

α
L(t)dt + R(α, β; φ),

where the remainder R(α, β; φ) satisfies the estimation. Now from the identity (7) we
obtain (15).

The following Grüss type inequality also holds.

Theorem 10. Suppose that all the assumptions of Theorem 3 hold. Let φ(n+1) ≥ 0 on [α, β] and L
be defined as in (14). Then the identity (15) holds and the remainder R(φ; a, b) satisfies the bound

|R(α, β; φ)| ≤
∥∥L′∥∥∞

{
φ(n−1)(β) + φ(n−1)(α)

2
− φ(n−2)(β)− φ(n−2)(α)

β− α

}
. (16)

Proof. By applying Theorem 8 for g→ L and h→ φ(n) we obtain∣∣∣∣ 1
β− α

∫ β

α
L(t)φ(n)(t)dt− 1

β− α

∫ β

α
L(t)dt.

1
β− α

∫ β

α
φ(n)(t)dt

∣∣∣∣ (17)

≤ 1
2(β− α)

∥∥∥L′∥∥∥
∞

∫ β

α
(t− α)(β− t)φ(n+1)(t)dt.

Since ∫ β

α
(t− α)(β− t)φ(n+1)(t)dt =

∫ β

α
[2t− (α + β)]φ(n)(t)dt

= (β− α)
[
φ(n−1)(β) + φ(n−1)(α)

]
− 2
(

φ(n−2)(β)− φ(n−2)(α)
)

,

using the identities (7) and (17) we deduce (16).

We continue with the following result that is an upper bound for generalized Hardy’s
inequality.

Theorem 11. Suppose that all the assumptions of Theorem 3 hold. Let (p, q) be a pair of conjugate
exponents, that is 1 ≤ p, q ≤ ∞, 1

p + 1
q = 1. Then
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∣∣∣∣∣∣
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x) (18)

−
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


−

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)∣∣∣∣∣∣

≤
∥∥∥φ(n)

∥∥∥
p

∫ β

α

∣∣∣∣∣∣
∫

Ω2

v(y)Gmn( f (y), t)dµ2(y)−
∫

Ω1

u(x)Gmn(Ak f (x), t)dµ1(x)

∣∣∣∣∣∣
q

dt


1
q

.

The constant on the right-hand side of (18) is sharp for 1 < p ≤ ∞ and the best possible for
p = 1.

Proof. We apply the Hölder inequality to the identity (7) and get∣∣∣∣∣∣
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x) (19)

−
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


−

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)∣∣∣∣∣∣

=

∣∣∣∣∣∣
β∫

α

∫
Ω2

v(y)Gmn( f (y), t)dµ2(y)−
∫

Ω1

u(x)Gmn(Ak f (x), t)dµ1(x)

φ(n)(t)dt

∣∣∣∣∣∣
≤
∥∥∥φ(n)

∥∥∥
p

(∫ β

α
|F (t)|qdt

) 1
q

where F (t) is defined as in (14).
The proof of the sharpness is analog to one in proof of Theorem 11 in [13].

We continue with a particular case of Green’s function Gmn(u, t) defined by (6). For
n = 2, m = 1, we have

G12(u, t) =

{
u− t, α ≤ t ≤ u
0, u ≤ t ≤ β

, (20)

If we choose n = 2 and m = 1 in Theorem 11, we get the following corollary.

Corollary 1. Let φ ∈ C2([α, β]) and (p, q) be a pair of conjugate exponents, that is 1 ≤ p, q ≤ ∞,
1
p + 1

q = 1. Then
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∣∣∣∣∣∣
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

∣∣∣∣∣∣ (21)

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∫

Ω2

v(y)G12( f (y), t)dµ2(y)−
∫

Ω1

u(x)G12(Ak f (x), t)dµ1(x)

∣∣∣∣∣∣
q

dt


1
q

.

The constant on the right hand side of (21) is sharp for 1 < p ≤ ∞ and the best possible for
p = 1.

Remark 4. If we additionally suppose that φ is convex, then the difference
∫

Ω2

φ( f (y))v(y)dµ2(y)−∫
Ω1

φ(Ak f (x))u(x)dµ1(x) is non-negative and we have

0 ≤
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x) (22)

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∫

Ω2

v(y)G12( f (y), t)dµ2(y)−
∫

Ω1

u(x)G12(Ak f (x), t)dµ1(x)

∣∣∣∣∣∣
q

dt


1
q

.

In sequel we consider some particular cases of this result.

Example 1. Let Ω1 = Ω2 = (0, b), 0 < b ≤ ∞, replace dµ1(x) and dµ2(y) by the Lebesque
measures dx and dy, respectively, and let k(x, y) = 0 for x < y ≤ b. Then Ak coincides with the
Hardy operator Hk defined by

Hk : Hk f (x) :=
1

K(x)

x∫
0

f (t)k(x, t) dt, (23)

where

K(x) :=
x∫

0

k(x, t) dt < ∞.

If also u(x) is replaced by u(x)/x and v(x) by v(x)/x, then

0 ≤
b∫

0

v(y)φ( f (y))
dy
y
−

b∫
0

u(x)φ(Hk f (x))
dx
x

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
b∫

0

v(y)G12( f (y), t)
dy
y
−

b∫
0

u(x)G12(Hk f (x), t)
dx
x

∣∣∣∣∣∣
q

dt


1
q

.

Example 2. By arguing as in Example 1 but Ω1 = Ω2 = (b, ∞), 0 ≤ b < ∞ and with kernels
such that k(x, y) = 0 for b ≤ y < x we obtain the following result



Mathematics 2021, 9, 1724 11 of 14

0 ≤
∞∫

b

φ( f (y))v(y)
dy
y
−

∞∫
b

φ(Hk̄ f (x))u(x)
dx
x

(24)

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∞∫

b

v(y)G12( f (y), t)
dy
y
−

∞∫
b

u(x)G12(Hk̄ f (x), t)
dx
x

∣∣∣∣∣∣
q

dt


1
q

.

where the dual Hardy operator Hk̄ f is defined by

Hk̄ f (x) :=
1

K̄(x)

∞∫
x

k(x, y) f (y)dy, (25)

where K̄(x) =
∞∫
x

k(x, y)dy < ∞.

We continue with the following Example.

Example 3. Let Ω1 = Ω2 = (0, ∞) and k(x, y) = 1, 0 ≤ y ≤ x, k(x, y) = 0, y > x, dµ1(x) =
dx, dµ2(y) = dy and u(x) = 1

x (so that v(y) = 1
y ) we obtain the following result

0 ≤
∞∫

0

φ( f (y))
dy
y
−

∞∫
0

φ(Ak f (x))
dx
x

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∞∫

0

G12( f (y), t)
dy
y
−

∞∫
0

G12(Ak f (x), t)
dx
x

∣∣∣∣∣∣
q

dt


1
q

where Ak is defined by

Ak f (x) =
1
x

x∫
0

f (y)dy.

Example 4. By arguing as in Example 3 but only with φ(x) = xp, ∏k
i=1(p + 1− i) ≥ 0 we

obtain the following result

0 ≤
∞∫

0

f p(x)
dx
x
−

∞∫
0

 1
x

x∫
0

f (t) dt

p
dx
x

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∞∫

0

G12( f (y), t)
dy
y
−

∞∫
0

G12(Ak f (x) f (x), t)
dx
x

∣∣∣∣∣∣
q

dt


1
q

We continue with the result that involves Hardy–Hilbert’s inequality.
If p > 1 and f is a non-negative function such that f ∈ Lp(R+), then

∞∫
0

 ∞∫
0

f (x)
x + y

dx

p

dy ≤

 π

sin
(

π
p

)
p ∞∫

0

f p(y) dy. (26)

Inequality (26) is sometimes called Hilbert’s inequality even if Hilbert himself only
considered the case p = 2.
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Example 5. Let Ω1 = Ω2 = (0, ∞), replace dµ1(x) and dµ2(y) by the Lebesque measures dx and

dy, respectively. Let k(x, y) = (
y
x )
−1/p

x+y , p > 1 and u(x) = 1
x . Then K(x) = K = π

sin(π/p) and

v(y) = 1
y . Let φ(u) = up, ∏k

i=1(p− i + 1) ≥ 0, replace f (y) with f (y)y
1
p then the following

result follows

0 ≤
∞∫

0

f p(y)dy− K−p
∞∫

0

 ∞∫
0

f (y)
x + y

dy

p

dx

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∞∫

0

G12

(
f (y)y

1
p , t
)

dy
y
−

∞∫
0

G12(Ak f (x), t)
dx
x

∣∣∣∣∣∣
q

dt


1
q

where

Ak f (x) =
sin(π/p)

π

∞∫
0

f (y)
x + y

x
1
p dy.

We also mention Pólya–Knopp’s inequality,

∞∫
0

exp

 1
x

x∫
0

ln f (t) dt

 dx < e
∞∫

0

f (x) dx, (27)

for positive functions f ∈ L1(R+). Pólya–Knopp’s inequality may be considered as a
limiting case of Hardy’s inequality since (27) can be obtained from (5) by rewriting it with

the function f replaced with f
1
p and then by letting p→ ∞.

Example 6. By applying (22) with φ(x) = ex, and f replaced by ln f p, p > 0 we obtain that

0 ≤
∫

Ω2

f p(y)v(y)dµ2(y)−
∫

Ω1

exp

 1
K(x)

∫
Ω2

k(x, y) ln f (y)dµ2(y)

p

u(x)dµ1(x) (28)

≤
∥∥φ′′

∥∥
p

∫ β

α

∣∣∣∣∣∣
∫

Ω2

v(y)G12(ln f p(y), t)dµ2(y)−
∫

Ω1

u(x)G12(Ak f (x), t)dµ1(x)

∣∣∣∣∣∣
q

dt


1
q

where k(x, y), K(x), u(x) and v(y) are defined as in Theorem 1 and

Ak f (x) =
p

K(x)

∫
Ω2

k(x, y) ln f (y)dµ2(y).

At the end, we give interesting application.
Using (10), under the assumptions of Theorem 4, we define the linear functional

A : Cn([α, β])→ R by
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A(φ) =
∫

Ω2

φ( f (y))v(y)dµ2(y)−
∫

Ω1

φ(Ak f (x))u(x)dµ1(x)

−
m

∑
s=1

φ(s)(α)

s!

∫
Ω2

( f (y)− α)sv(y)dµ2(y)−
∫

Ω1

(Ak f (x)− α)su(x)dµ1(x)


−

n−m−2

∑
r=0

r

∑
s=0

(−1)r−s(β−α)r−sφ(m+1+r)(β)
(m+1+s)!(r−s)!

(∫
Ω2

( f (y)− α)m+1+sv(y)dµ2(y)

−
∫

Ω1

(Ak f (x)− α)m+1+su(x)dµ1(x)
)

.

If φ ∈ Cn([α, β]) is n-convex, then A(φ) ≥ 0 by Theorem 4. Using the positivity and the
linearity of functional A we can get corresponding mean-value theorems. We may also
obtain new classes of exponentially convex functions and get new means of the Cauchy
type applying the same method as given in [14–21].
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