Hermite-Hadamard-Fejér-Type Inequalities and Weighted Three-Point Quadrature Formulae

Mihaela Ribičić Penava

Citation: Ribičić Penava, M.
Hermite-Hadamard-Fejér-Type Inequalities and Weighted
Three-Point Quadrature Formulae. Mathematics 2021, 9, 1720. https:/ /
doi.org/10.3390/math9151720

Academic Editor: Janusz Brzdęk

Received: 28 June 2021
Accepted: 20 July 2021
Published: 22 July 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/ / creativecommons.org/licenses/by/ 4.0/).

Department of Mathematics, Josip Juraj Strossmayer University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia; mihaela@mathos.hr

Abstract

The goal of this paper is to derive Hermite-Hadamard-Fejér-type inequalities for higherorder convex functions and a general three-point integral formula involving harmonic sequences of polynomials and w-harmonic sequences of functions. In special cases, Hermite-Hadamard-Fejértype estimates are derived for various classical quadrature formulae such as the Gauss-Legendre three-point quadrature formula and the Gauss-Chebyshev three-point quadrature formula of the first and of the second kind.

Keywords: Hermite-Hadamard-Fejér inequalities; weighted three-point formulae; higher-order convex functions; w-harmonic sequences of functions; harmonic sequences of polynomials

MSC: 26D15; 65D30; 65D32

1. Introduction

The Hermite-Hadamard inequalities and their weighted versions, the so-called Hermite-Hadamard-Fejér inequalities, are the most well-known inequalities related to the integral mean of a convex function (see [1] (p. 138)).

Theorem 1 (The Hermite-Hadamard-Fejér inequalities). Let $h:[a, b] \rightarrow \mathbb{R}$ be a convex function. Then

$$
\begin{equation*}
h\left(\frac{a+b}{2}\right) \int_{a}^{b} u(x) d x \leq \int_{a}^{b} u(x) h(x) d x \leq\left[\frac{1}{2} h(a)+\frac{1}{2} h(b)\right] \int_{a}^{b} u(x) d x \tag{1}
\end{equation*}
$$

where $u:[a, b] \rightarrow \mathbb{R}$ is nonnegative, integrable and symmetric about $\frac{a+b}{2}$. If h is a concave function, then the inequalities in (1) are reversed.

If $u \equiv 1$, then we are talking about the Hermite-Hadamard inequalities.
Hermite-Hadamard and Hermite-Hadamard-Fejér-type inequalities have many applications in mathematical analysis, numerical analysis, probability and related fields. Their generalizations, refinements and improvements have been an important topic of research (see [1-13], and the references listed therein). In the past few years, Hermite-Hadamard-Fejér-type inequalities for superquadratic functions [2], GA-convex functions [7], quasi-convex functions [11] and convex functions [13] have been largely investigated in the literature.

The importance and significance of our paper are reflected in the way in which we prove new Hermite-Hadamard-Fejér-type inequalities for higher-order convex functions and the general weighted three-point quadrature formula by using inequality (1), and a weighted version of the integral identity expressed by w-harmonic sequences of functions.

For this purpose, let us introduce the notations and terminology used in relation to w-harmonic sequences of functions (see [14]).

Let us consider a subdivision $\sigma=\left\{a=x_{0}<x_{1}<\cdots<x_{m}=b\right\}$ of the segment $[a, b]$, $m \in \mathbb{N}$. Let $w:[a, b] \rightarrow \mathbb{R}$ be an arbitrary integrable function. For each segment $\left[x_{j-1}, x_{j}\right]$, $j=1, \ldots, m$, we define w-harmonic sequences of functions $\left\{w_{j k}\right\}_{k=1, \ldots, n}$ by:

$$
\begin{align*}
w_{j 1}^{\prime}(t) & =w(t), t \in\left[x_{j-1}, x_{j}\right] \tag{2}\\
w_{j k}^{\prime}(t) & =w_{j, k-1}(t), t \in\left[x_{j-1}, x_{j}\right], k=2,3, \ldots, n .
\end{align*}
$$

Further, the function $W_{n, w}$ is defined as follows:

$$
W_{n, w}(t, \sigma)= \begin{cases}w_{1 n}(t), & t \in\left[a, x_{1}\right] \tag{3}\\ w_{2 n}(t), & t \in\left(x_{1}, x_{2}\right] \\ \cdot & \\ \cdot & \\ \cdot & \\ w_{m n}(t), & t \in\left(x_{m-1}, b\right] .\end{cases}
$$

The following theorem gives a general integral identity (see [14]).
Theorem 2. Let $f:[a, b] \rightarrow \mathbb{R}$ be such that $f^{(n)}$ is piecewise continuous on $[a, b]$. Then, the following holds:

$$
\begin{align*}
\int_{a}^{b} w(t) f(t) d t & =\sum_{k=1}^{n}(-1)^{k-1}\left[w_{m k}(b) f^{(k-1)}(b)\right. \tag{4}\\
& \left.+\sum_{j=1}^{m-1}\left[w_{j k}\left(x_{j}\right)-w_{j+1, k}\left(x_{j}\right)\right] f^{(k-1)}\left(x_{j}\right)-w_{1 k}(a) f^{(k-1)}(a)\right] \\
& +(-1)^{n} \int_{a}^{b} W_{n, w}(t, \sigma) f^{(n)}(t) d t
\end{align*}
$$

In [15], the authors proved the following Fejér-type inequalities by using identity (4).
Theorem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be $(n+2)$-convex on $[a, b]$ and $f^{(n)}$ piecewise continuous on $[a, b]$. Further, let us suppose that the function $W_{n, v}$, defined in (3), is nonnegative and symmetric about $\frac{a+b}{2}$ (i.e., $W_{n, w}(t, \sigma)=W_{n, w}(a+b-t, \sigma)$). Then

$$
\begin{align*}
& U_{n}(\sigma) \cdot f^{(n)}\left(\frac{a+b}{2}\right) \tag{5}\\
& \leq(-1)^{n}\left\{\int_{a}^{b} w(t) f(t) d t-\sum_{k=1}^{n}(-1)^{k-1}\left[w_{m k}(b) f^{(k-1)}(b)\right.\right. \\
& \left.\left.+\sum_{j=1}^{m-1}\left[w_{j k}\left(x_{j}\right)-w_{j+1, k}\left(x_{j}\right)\right] f^{(k-1)}\left(x_{j}\right)-w_{1 k}(a) f^{(k-1)}(a)\right]\right\} \\
& \leq U_{n}(\sigma) \cdot\left[\frac{1}{2} f^{(n)}(a)+\frac{1}{2} f^{(n)}(b)\right]
\end{align*}
$$

where

$$
\begin{align*}
U_{n}(\sigma) & =\frac{(-1)^{n}}{n!} \int_{a}^{b} w(t) \cdot t^{n} d t-(-1)^{n} \sum_{k=1}^{n} \frac{(-1)^{k-1}}{(n-k+1)!} \\
& \cdot\left(w_{m k}(b) b^{n-k+1}+\sum_{j=1}^{m-1}\left(w_{j k}\left(x_{j}\right)-w_{j+1, k}\left(x_{j}\right)\right) x_{j}^{n-k+1}-w_{1 k}(a) a^{n-k+1}\right) \tag{6}
\end{align*}
$$

If $W_{n, w}(t, \sigma) \leq 0$ or f is an $(n+2)$-concave function on $[a, b]$, then the inequalities in (5) hold with reversed inequality signs.

Further, let us recall the definition of the divided difference and the definition of an n-convex function (see [1] (p. 15)).

Definition 1. Let f be a real-valued function defined on the segment $[a, b]$. The divided difference of order n of the function f at distinct points $x_{0}, \ldots, x_{n} \in[a, b]$ is defined recursively by

$$
f\left[x_{i}\right]=f\left(x_{i}\right), \quad(i=0, \ldots, n)
$$

and

$$
f\left[x_{0}, \ldots, x_{n}\right]=\frac{f\left[x_{1}, \ldots, x_{n}\right]-f\left[x_{0}, \ldots, x_{n-1}\right]}{x_{n}-x_{0}}
$$

The value $f\left[x_{0}, \ldots, x_{n}\right]$ is independent of the order of points x_{0}, \ldots, x_{n}.
Definition 2. A function $f:[a, b] \rightarrow \mathbb{R}$ is said to be n-convex on $[a, b], n \geq 0$, if, for all choices of $(n+1)$ distinct points $x_{0}, \ldots, x_{n} \in[a, b]$, the n-th order divided difference in f satisfies

$$
f\left[x_{0}, \ldots, x_{n}\right] \geq 0
$$

From the previous definitions, the following property holds: if f is an $(n+2)$-convex function, then there exists the n-th order derivative $f^{(n)}$, which is a convex function (see, e.g., [1] (pp. 16, 293)).

The paper is organized as follows. After this introduction, in Section 2, we establish Hermite-Hadamard-Fejér-type inequalities for weighted three-point quadrature formulae by using the integral identity with w-harmonic sequences of functions, the properties of harmonic sequences of polynomials and the properties of n-convex functions. Since we deal with three-point quadrature formulae that contain values of the function in nodes $x, \frac{a+b}{2}$ and $a+b-x$ and values of higher-ordered derivatives in inner nodes, the level of exactness of these quadrature formulae is retained. In Section 3, we derive Hermite-Hadamard-Fejér-type estimates for a generalization of the Gauss-Legendre three-point quadrature formula, and a generalization of the Gauss-Chebyshev three-point quadrature formula of the first and of the second kind.

Throughout the paper, the symbol B denotes the beta function defined by

$$
B(x, y)=\int_{0}^{1} s^{x-1}(1-s)^{y-1} d s
$$

Γ denotes the gamma function defined as:

$$
\Gamma(x)=2 \int_{0}^{\infty} s^{2 x-1} e^{-s^{2}} d s
$$

and

$$
F(\alpha, \beta, \gamma ; z)=\frac{1}{B(\beta, \gamma-\beta)} \int_{0}^{1} t^{\beta-1}(1-t)^{\gamma-\beta-1}(1-z t)^{-\alpha} d t
$$

is a hypergeometric function with $\gamma>\beta>0, z<1$.
In the paper, we assume that all considered integrals exist and that they are finite.

2. Hermite-Hadamard-Fejér-Type Inequalities for Three-Point Quadrature Formulae

In this section, we establish Hermite-Hadamard-Fejér-type inequalities for the weighted three-point formula using a weighted version of the integral identity expressed by w -
harmonic sequences of functions that are given in Theorem 2 and the method that originated in [15].

In [16] (p. 54), the authors proved the following theorem.
Theorem 4. Let $w:[a, b] \rightarrow \mathbb{R}$ be an integrable function, $x \in\left[a, \frac{a+b}{2}\right)$, and let $\left\{L_{j, x}\right\}_{j=0,1, \ldots, n^{\prime}}$ $n \in \mathbb{N}$, be a sequence of harmonic polynomials such that deg $L_{j, x} \leq j-1$ and $L_{0, x} \equiv 0$. Further, let us suppose that $\left\{w_{j k}\right\}_{k=1, \ldots, n}$ are w-harmonic sequences of functions on $\left[x_{j-1}, x_{j}\right]$, for $j=1,2,3,4$, defined by the following relations:

$$
\begin{gathered}
w_{1 k}(t)=\frac{1}{(k-1)!} \int_{a}^{t}(t-s)^{k-1} w(s) d s, \quad t \in[a, x] \\
w_{2 k}(t)=\frac{1}{(k-1)!} \int_{x}^{t}(t-s)^{k-1} w(s) d s+L_{k, x}(t), \quad t \in\left(x, \frac{a+b}{2}\right], \\
w_{3 k}(t)=-\frac{1}{(k-1)!} \int_{t}^{a+b-x}(t-s)^{k-1} w(s) d s+(-1)^{k} L_{k, x}(a+b-t), \quad t \in\left(\frac{a+b}{2}, a+b-x\right], \\
w_{4 k}(t)=-\frac{1}{(k-1)!} \int_{t}^{b}(t-s)^{k-1} w(s) d s, \quad t \in(a+b-x, b] .
\end{gathered}
$$

If $f:[a, b] \rightarrow \mathbb{R}$ is such that $f^{(n)}$ is piecewise continuous on $[a, b]$, then we have

$$
\begin{align*}
\int_{a}^{b} w(t) f(t) d t & =\sum_{k=1}^{n} A_{k}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(a+b-x)\right) \\
& +\sum_{k=1}^{n} B_{k}(x) f^{(k-1)}\left(\frac{a+b}{2}\right)+(-1)^{n} \int_{a}^{b} W_{n, w}(t, x) f^{(n)}(t) d t \tag{7}
\end{align*}
$$

where

$$
\begin{gather*}
A_{k}(x)=(-1)^{k-1}\left[\frac{1}{(k-1)!} \int_{a}^{x}(x-s)^{k-1} w(s) d s-L_{k, x}(x)\right], \quad k \geq 1 \tag{8}\\
B_{k}(x)=2\left[\frac{1}{(k-1)!} \int_{x}^{\frac{a+b}{2}}\left(\frac{a+b}{2}-s\right)^{k-1} w(s) d s+L_{k, x}\left(\frac{a+b}{2}\right)\right], \quad \text { for odd } k \geq 1, \tag{9}
\end{gather*}
$$

and

$$
B_{k}(x)=0, \quad \text { for even } k \geq 1
$$

such that

$$
W_{n, w}(t, x)= \begin{cases}w_{1 n}(t), & t \in[a, x] \tag{10}\\ w_{2 n}(t), & t \in\left(x, \frac{a+b}{2}\right] \\ w_{3 n}(t), & t \in\left(\frac{a+b}{2}, a+b-x\right] \\ w_{4 n}(t), & t \in(a+b-x, b]\end{cases}
$$

Remark 1. If we assume $w(t)=w(a+b-t)$, for each $t \in[a, b]$, then the following symmetry conditions hold for $k=1, \ldots, n$:

$$
w_{1 k}(t)=(-1)^{k} w_{4 k}(a+b-t), \quad \text { for } t \in[a, x]
$$

and

$$
w_{2 k}(t)=(-1)^{k} w_{3 k}(a+b-t), \quad \text { for } t \in\left(x, \frac{a+b}{2}\right]
$$

Using Theorems 1 and 4, the properties of both n-convex functions and w-harmonic sequences of functions, and the method that originated in [15], in the next theorem, we derive new Hermite-Hadamard-Fejér-type inequalities for the weighted three-point quadrature Formula (7).

Theorem 5. Let $w:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $w(t)=w(a+b-t)$, for each $t \in[a, b]$ and $x \in\left[a, \frac{a+b}{2}\right)$. Let the function $W_{2 n, w}$, defined by (10), be nonnegative. If $f:[a, b] \rightarrow \mathbb{R}$ is $(2 n+2)$-convex on $[a, b]$ and $f^{(2 n)}$ is piecewise continuous on $[a, b]$, then

$$
\begin{align*}
& U_{n, w}(x) \cdot f^{(2 n)}\left(\frac{a+b}{2}\right) \tag{11}\\
& \leq \int_{a}^{b} w(t) f(t) d t-\sum_{k=1}^{2 n} A_{k}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(a+b-x)\right) \\
& -\sum_{k=1, k o d d}^{2 n} B_{k}(x) f^{(k-1)}\left(\frac{a+b}{2}\right) \leq U_{n, w}(x) \cdot\left[\frac{1}{2} f^{(2 n)}(a)+\frac{1}{2} f^{(2 n)}(b)\right],
\end{align*}
$$

where

$$
\begin{align*}
U_{n, w}(x) & =\frac{1}{(2 n)!} \int_{a}^{b} w(t) \cdot t^{2 n} d t \tag{12}\\
& -\sum_{k=1}^{2 n} A_{k}(x) \frac{x^{2 n-k+1}+(-1)^{k-1}(a+b-x)^{2 n-k+1}}{(2 n-k+1)!} \\
& -\sum_{k=1, k o d d}^{2 n} B_{k}(x) \frac{(a+b)^{2 n-k+1}}{2^{2 n-k+1}(2 n-k+1)!}
\end{align*}
$$

and A_{k} and B_{k} are defined as in Theorem 4. If $W_{2 n, w}(t, x) \leq 0$ or f is a $\left.2 n+2\right)$-concave function, then inequalities (11) hold with reversed inequality signs.

Proof. Let us observe that the function f is $(2 n+2)$-convex. Hence, $f^{(2 n)}$ is a convex function. It follows from Remark 1 that the function $W_{2 n, w}$ is symmetric about $\frac{a+b}{2}$, i.e., $W_{2 n, w}(t, x)=W_{2 n, w}(a+b-t, x)$. Thus, inequalities (11) follow directly from Theorem 1, replacing a nonnegative and symmetric function u by a nonnegative and symmetric function $W_{2 n, w}$, and a convex function h by a convex function $f^{(2 n)}$, and then using identity (7) in $\int_{a}^{b} W_{2 n, w}(t, x) f^{(2 n)}(t) d t$.

Identity (7) yields $U_{n, w}(x)$ by substituting n with $2 n$ and putting $f(t)=\frac{t^{2 n}}{(2 n)!}$. Then, $f^{(2 n)}(t)=1$ and $f^{(k-1)}(t)=\frac{1}{(2 n-k+1)!} \cdot t^{2 n-k+1}$. On the other hand, if $W_{2 n, w}(t, x)$ is nonpositive, then $-W_{2 n, w}(t, x)$ is nonnegative, from where there follow reversed signs in (11).

Further, let us assume that f is a $(2 n+2)$-concave function. Hence, the function $-f^{(2 n)}$ is convex. Reversed signs in (11) are obtained by putting $-f^{(2 n)}$ and the nonnegative function $W_{2 n, w}(t, x)$ in (1). This completes the proof.

Remark 2. The value of $U_{n, w}(x)$ can be obtained from Theorem 3 by taking an appropriate subdivision of the segment $[a, b]$ and applying the properties of functions $w_{1 k}, w_{2 k}, w_{3 k}$ and $w_{4 k}$.

To get a maximum degree of exactness of quadrature Formula (7) for fixed $x \in$ $\left[a, \frac{a+b}{2}\right)$, we consider a sequence of harmonic polynomials $\left\{L_{j, x}\right\}_{j=0,1, \ldots, n}$ defined as follows:

$$
\begin{align*}
L_{0, x}(t) & =0, \text { for } t \in\left[x, \frac{a+b}{2}\right] \\
L_{1, x}(x) & =\int_{a}^{x} w(s) d s-\frac{2}{(a+b-2 x)^{2}} \int_{a}^{b}\left(s^{2}-\left(\frac{a+b}{2}\right)^{2}\right) w(s) d s, \tag{13}\\
L_{j, x}(x) & =\frac{1}{(j-1)!} \int_{a}^{x}(x-s)^{j-1} w(s) d s, j=2,3,4,5,6 \\
L_{j, x}(t) & =\sum_{k=1}^{6 \wedge j} L_{k, x}(x) \frac{(t-x)^{j-k}}{(j-k)!}, \text { for } t \in\left[x, \frac{a+b}{2}\right], j=1, \ldots, n
\end{align*}
$$

Therefore, we have

$$
\begin{gather*}
A_{1}(x)=\frac{2}{(a+b-2 x)^{2}} \int_{a}^{b}\left(s^{2}-\left(\frac{a+b}{2}\right)^{2}\right) w(s) d s \tag{14}\\
B_{1}(x)=\int_{a}^{b} w(s) d s-2 A_{1}(x)
\end{gather*}
$$

$A_{k}(x)=0$, for $k=2,3,4,5,6$ and $B_{k}(x)=0$, for $k=2,3,4$.
Finally, from identity (7), for $x \in\left[a, \frac{a+b}{2}\right)$, we obtain the following three-point weighted integral formula:

$$
\begin{align*}
\int_{a}^{b} w(t) f(t) d t & =A_{1}(x)[f(x)+f(a+b-x)]+\left(\int_{a}^{b} w(s) d s-2 A_{1}(x)\right) f\left(\frac{a+b}{2}\right) \\
& +T_{n, w}(x)+(-1)^{n} \int_{a}^{b} W_{n, w}(t, x) f^{(n)}(t) d t \tag{15}
\end{align*}
$$

where

$$
\begin{align*}
T_{n, w}(x) & =\sum_{k=7}^{n} A_{k}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(a+b-x)\right) \\
& +\sum_{k=5, o d d k}^{n} B_{k}(x) f^{(k-1)}\left(\frac{a+b}{2}\right) . \tag{16}
\end{align*}
$$

Now, applying results from Theorem 5 to identity (15), we get the following results.
Corollary 1. Let $w:[a, b] \rightarrow \mathbb{R}$ be an integrable function such that $w(t)=w(a+b-t)$, for each $t \in[a, b]$ and let $x \in\left[a, \frac{a+b}{2}\right)$. Let the function $W_{2 n, w}$, defined by (10), be nonnegative and let $L_{j, x}$ be defined by (13). If $f:[a, b] \rightarrow \mathbb{R}$ is $(2 n+2)$-convex on $[a, b]$ and $f^{(2 n)}$ is piecewise continuous on $[a, b]$, then

$$
\begin{align*}
& U_{n, w}(x) \cdot f^{(2 n)}\left(\frac{a+b}{2}\right) \tag{17}\\
& \leq \int_{a}^{b} w(t) f(t) d t-A_{1}(x)[f(x)+f(a+b-x)] \\
& -\left(\int_{a}^{b} w(s) d s-2 A_{1}(x)\right) f\left(\frac{a+b}{2}\right)-T_{2 n, w}(x) \\
& \leq U_{n, w}(x) \cdot\left[\frac{1}{2} f^{(2 n)}(a)+\frac{1}{2} f^{(2 n)}(b)\right]
\end{align*}
$$

where

$$
\begin{align*}
U_{n, w}(x) & =\frac{1}{(2 n)!} \int_{a}^{b} w(t) \cdot t^{2 n} d t-A_{1}(x) \frac{x^{2 n}+(a+b-x)^{2 n}}{(2 n)!} \tag{18}\\
& -\left(\int_{a}^{b} w(s) d s-2 A_{1}(x)\right) \frac{(a+b)^{2 n}}{2^{2 n}(2 n)!} \\
& -\sum_{k=7}^{2 n} A_{k}(x) \frac{x^{2 n-k+1}+(-1)^{k-1}(a+b-x)^{2 n-k+1}}{(2 n-k+1)!} \\
& -\sum_{k=5, k o d d}^{2 n} B_{k}(x) \frac{(a+b)^{2 n-k+1}}{2^{2 n-k+1}(2 n-k+1)!} .
\end{align*}
$$

If $W_{2 n, w}(t, x) \leq 0$ or f is a $\left.2 n+2\right)$-concave function, then inequalities (17) hold with reversed inequality signs.

Proof. The proof follows from Theorem 5 for the special choice of the polynomials $L_{j, x}$.
Remark 3. If we assume $B_{5}(x)=0$, then we get

$$
x=\frac{a+b}{2}-\sqrt{\frac{\int_{a}^{b}\left(s-\frac{a+b}{2}\right)^{4} w(s) d s}{\int_{a}^{b}\left(s^{2}-\left(\frac{a+b}{2}\right)^{2}\right) w(s) d s}}
$$

Therefore, for such a choice of x, we obtain the quadrature formula with three nodes, which is accurate for the polynomials of degree at most 5, and the approximation formula includes derivatives of order 6 and more.

3. Special Cases

Considering some special cases of the weight function w, in our results given in the previous section, we obtain estimates for the Gauss-Legendre three-point quadrature formula and for the Gauss-Chebyshev three-point quadrature formula of the first and of the second kind.

3.1. Gauss-Legendre Three-Point Quadrature Formula

Let us assume that $w(t)=1, t \in[a, b]$ and $x \in\left[a, \frac{a+b}{2}\right)$.
Now, from Theorem 4, we calculate

$$
W_{n}^{G L}(t, x)= \begin{cases}w_{1 n}(t)=\frac{(t-a)^{n}}{n!}, & t \in[a, x], \tag{19}\\ w_{2 n}(t)=\frac{(t-x)^{n}}{n!}+L_{n, x}(t), & t \in\left(x, \frac{a+b}{2}\right], \\ w_{3 n}(t)=\frac{(t-a-b+x)^{n}}{n!}+(-1)^{n} L_{n, x}(a+b-t), & t \in\left(\frac{a+b}{2}, a+b-x\right], \\ w_{4 n}(t)=\frac{(t-b)^{n}}{n!}, & t \in(a+b-x, b],\end{cases}
$$

and

$$
\begin{gathered}
A_{k}^{G L}(x)=(-1)^{k-1}\left[\frac{(x-a)^{k}}{k!}-L_{k, x}(x)\right], \quad \text { for } k \geq 1, \\
B_{k}^{G L}(x)=2\left[\frac{\left(\frac{a+b}{2}-x\right)^{k}}{k!}+L_{k, x}\left(\frac{a+b}{2}\right)\right], \quad \text { for odd } k \geq 1,
\end{gathered}
$$

and

$$
B_{k}^{G L}(x)=0, \quad \text { for even } k>1
$$

Corollary 2. Let $w_{2,2 n}(t) \geq 0$, for all $t \in\left(x, \frac{a+b}{2}\right]$ and for $n \in \mathbb{N}$. If $f:[a, b] \rightarrow \mathbb{R}$ is a $(2 n+2)$-convex function and $f^{(2 n)}$ is piecewise continuous on $[a, b]$, then

$$
\begin{align*}
& U_{n}^{G L}(x) \cdot f^{(2 n)}\left(\frac{a+b}{2}\right) \tag{20}\\
& \leq \int_{a}^{b} f(t) d t-\sum_{k=1}^{2 n} A_{k}^{G L}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(a+b-x)\right) \\
& -\sum_{k=1, k o d d}^{2 n} B_{k}^{G L}(x) f^{(k-1)}\left(\frac{a+b}{2}\right) \leq U_{n}^{G L}(x) \cdot\left[\frac{1}{2} f^{(2 n)}(a)+\frac{1}{2} f^{(2 n)}(b)\right]
\end{align*}
$$

where

$$
\begin{align*}
U_{n}^{G L}(x) & =\frac{b^{2 n+1}-a^{2 n+1}}{(2 n+1)!} \tag{21}\\
& -\sum_{k=1}^{2 n} A_{k}^{G L}(x) \frac{x^{2 n-k+1}+(-1)^{k-1}(a+b-x)^{2 n-k+1}}{(2 n-k+1)!} \\
& -\sum_{k=1, k o d d}^{2 n} B_{k}^{G L}(x) \frac{(a+b)^{2 n-k+1}}{2^{2 n-k+1}(2 n-k+1)!}
\end{align*}
$$

If f is a $2 n+2)$-concave function, then inequalities (20) hold with reversed inequality signs.
Proof. A special case of Theorem 5 for $w(t)=1, t \in[a, b]$, and a nonnegative function $W_{2 n}^{G L}$ defined by (19).

If we assume that the polynomials $L_{j, x}(t)$ are such that

$$
\begin{align*}
L_{0, x}(t) & =0, \text { for } t \in\left[x, \frac{a+b}{2}\right] \tag{22}\\
L_{1, x}(x) & =x-a-\frac{(b-a)^{3}}{6(a+b-2 x)^{2}} \\
L_{j, x}(x) & =\frac{(x-a)^{j}}{j!}, j=2,3,4,5,6 \\
L_{j, x}(t) & =\sum_{k=1}^{6 \wedge j} L_{k, x}(x) \frac{(t-x)^{j-k}}{(j-k)!}, \text { for } t \in\left[x, \frac{a+b}{2}\right], j=1, \ldots, n
\end{align*}
$$

we get $A_{1}^{G L}(x)=\frac{(b-a)^{3}}{6(a+b-2 x)^{2}}, A_{k}^{G L}(x)=0$, for $k=2,3,4,5,6, B_{1}^{G L}(x)=b-a-2 A_{1}^{G L}(x)$ and $B_{3}^{G L}(x)=0$. Thus, we obtain the following non-weighted three-point quadrature formulae:

$$
\begin{align*}
\int_{a}^{b} f(t) d t & =\frac{(b-a)^{3}}{6(a+b-2 x)^{2}}[f(x)+f(a+b-x)] \\
& +\left(b-a-\frac{(b-a)^{3}}{3(a+b-2 x)^{2}}\right) f\left(\frac{a+b}{2}\right) \\
& +T_{n}^{G L}(x)+(-1)^{n} \int_{a}^{b} W_{n}^{G L}(t, x) f^{(n)}(t) d t \tag{23}
\end{align*}
$$

where

$$
\begin{align*}
T_{n}^{G L}(x) & =\sum_{k=7}^{n} A_{k}^{G L}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(a+b-x)\right) \\
& +\sum_{k=5, o d d k}^{n} B_{k}^{G L}(x) f^{(k-1)}\left(\frac{a+b}{2}\right) \tag{24}
\end{align*}
$$

In particular, according to Remark 3 , for $[a, b]=[-1,1]$ and $x=\frac{-\sqrt{15}}{5}$, we get $B_{5}^{G L}(x)=0$, and there follows a generalization of the Gauss-Legendre three-point formula. Now, we derive Hermite-Hadamard-Fejér-type estimates for this generalization of the Gauss-Legendre three-point formula.

If the assumptions of Corollary 1 hold for $w(t)=1, t \in[-1,1]$, and if $f:[-1,1] \rightarrow \mathbb{R}$ is a $(2 n+2)$-convex function, we derive:

$$
\begin{align*}
& U_{n}^{G L}\left(\frac{-\sqrt{15}}{5}\right) \cdot f^{(2 n)}(0) \tag{25}\\
& \leq \int_{-1}^{1} f(t) d t-\frac{1}{9}\left[5 f\left(\frac{-\sqrt{15}}{5}\right)+8 f(0)+5 f\left(\frac{\sqrt{15}}{5}\right)\right]-T_{2 n}^{G L}\left(\frac{-\sqrt{15}}{5}\right) \\
& \leq U_{n}^{G L}\left(\frac{-\sqrt{15}}{5}\right) \cdot\left[\frac{1}{2} f^{(2 n)}(-1)+\frac{1}{2} f^{(2 n)}(1)\right]
\end{align*}
$$

where

$$
\begin{aligned}
U_{n}^{G L}\left(\frac{-\sqrt{15}}{5}\right) & =\frac{2 \cdot 5^{n-1}-2(2 n+1) \cdot 3^{n-2}}{5^{n-1}(2 n+1)!} \\
& -\sum_{k=7}^{2 n} A_{k}^{G L}\left(\frac{-\sqrt{15}}{5}\right) \frac{(-\sqrt{15})^{2 n-k+1}+(-1)^{k-1}(\sqrt{15})^{2 n-k+1}}{5^{2 n-k+1}(2 n-k+1)!} .
\end{aligned}
$$

In a special case, for $n=3$, we get

$$
\begin{align*}
& \frac{1}{15,750} \cdot f^{(6)}(0) \tag{26}\\
& \leq \int_{-1}^{1} f(t) d t-\frac{1}{9}\left[5 f\left(\frac{-\sqrt{15}}{5}\right)+8 f(0)+5 f\left(\frac{\sqrt{15}}{5}\right)\right] \\
& \leq \frac{1}{15,750} \cdot\left[\frac{1}{2} f^{(6)}(-1)+\frac{1}{2} f^{(6)}(1)\right]
\end{align*}
$$

3.2. Gauss-Chebyshev Three-Point Quadrature Formula of the First Kind

Let us assume that $w(t)=\frac{1}{\sqrt{1-t^{2}}}, t \in(-1,1)$ and $x \in[-1,0)$.
From Theorem 4, there follow:

$$
\begin{align*}
& W_{n, w}^{G C 1}(t, x)= \begin{cases}w_{1 n}(t)=\frac{1}{(n-1)!} \int_{-1}^{t} \frac{(t-s)^{n-1}}{\sqrt{1-s^{2}}} d s, & t \in[-1, x], \\
w_{2 n}(t)=\frac{1}{(n-1)!} \int_{x}^{t} \frac{(t-s)^{n-1}}{\sqrt{1-s^{2}}} d s+L_{n, x}(t), & t \in(x, 0], \\
w_{3 n}(t)=-\frac{1}{(n-1)!} \int_{t}^{-x} \frac{(t-s)^{n-1}}{\sqrt{1-s^{2}}} d s+(-1)^{n} L_{n, x}(-t), & t \in(0,-x], \\
w_{4 n}(t)=-\frac{1}{(n-1)!} \int_{t}^{1} \frac{(t-s)^{n-1}}{\sqrt{1-s^{2}}} d s, & t \in(-x, 1],\end{cases} \tag{27}\\
& A_{k}^{G C 1}(x)=(-1)^{k-1}\left[\frac{(x+1)^{k-1 / 2} \sqrt{\pi}}{\sqrt{2} \Gamma\left(\frac{1}{2}+k\right)} F\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}+k, \frac{x+1}{2}\right)-L_{k, x}(x)\right], k \geq 1,
\end{align*}
$$

and

$$
B_{k}^{G C 1}(x)=2\left[\frac{(-1)^{k-1}}{(k-1)!} \int_{x}^{0} \frac{s^{k-1}}{\sqrt{1-s^{2}}} d s+L_{k, x}(0)\right], \quad \text { for odd } k \geq 1
$$

and

$$
B_{k}^{G C 1}(x)=0, \quad \text { for even } k>1
$$

Corollary 3. Let $w_{2,2 n}(t) \geq 0$, for all $t \in(x, 0]$ and for $n \in \mathbb{N}$. If $f:[-1,1] \rightarrow \mathbb{R}$ is a $(2 n+2)$-convex function and $f^{(2 n)}$ is piecewise continuous on $[-1,1]$, then

$$
\begin{align*}
& U_{n}^{G C 1}(x) \cdot f^{(2 n)}(0) \tag{28}\\
& \leq \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t-\sum_{k=1}^{2 n} A_{k}^{G C 1}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(-x)\right) \\
& -\sum_{k=1, k o d d}^{2 n} B_{k}^{G C 1}(x) f^{(k-1)}(0) \leq U_{n}^{G C 1}(x) \cdot\left[\frac{1}{2} f^{(2 n)}(-1)+\frac{1}{2} f^{(2 n)}(1)\right],
\end{align*}
$$

where

$$
\begin{align*}
U_{n}^{G C 1}(x) & =\frac{1}{(2 n)!} B\left(\frac{1}{2}, \frac{1}{2}+n\right) \tag{29}\\
& -\sum_{k=1}^{2 n} A_{k}^{G C 1}(x) \frac{x^{2 n-k+1}+(-1)^{k-1}(-x)^{2 n-k+1}}{(2 n-k+1)!}
\end{align*}
$$

If f is $a(2 n+2)$-concave function, then inequalities (28) hold with reversed inequality signs.
Proof. A special case of Theorem 5 for $w(t)=\frac{1}{\sqrt{1-t^{2}}}, t \in(-1,1)$, and a nonnegative function $W_{2 n, w}^{G C 1}$ defined by (27).

If we assume that the polynomials $L_{j, x}(t)$ are such that

$$
\begin{aligned}
L_{0, x}(t) & =0, \text { for } t \in[x, 0] \\
L_{1, x}(x) & =\arcsin x+\frac{\pi}{2}-\frac{\pi}{4 x^{2}} \\
L_{j, x}(x) & =\frac{(x+1)^{j-1 / 2} \sqrt{\pi}}{\sqrt{2} \Gamma\left(\frac{1}{2}+j\right)} F\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}+j, \frac{x+1}{2}\right), j=2,3,4,5,6 \\
L_{j, x}(t) & =\sum_{k=1}^{6 \wedge j} L_{k, x}(x) \frac{(t-x)^{j-k}}{(j-k)!}, \text { for } t \in[x, 0], j=1, \ldots, n
\end{aligned}
$$

we calculate $A_{1}^{G C 1}(x)=\frac{\pi}{4 x^{2}}, A_{k}^{G C 1}(x)=0$, for $k=2,3,4,5,6, B_{1}^{G C 1}(x)=\pi-\frac{\pi}{2 x^{2}}$ and $B_{3}^{G C 1}(x)=0$.

Now, we derive

$$
\begin{align*}
\int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t & =\frac{\pi}{4 x^{2}} f(x)+\left(\pi-\frac{\pi}{2 x^{2}}\right) f(0)+\frac{\pi}{4 x^{2}} f(-x) \\
& +T_{n, w}^{G C 1}(x)+(-1)^{n} \int_{-1}^{1} W_{n, w}^{G C 1}(t, x) f^{(n)}(t) d t \tag{30}
\end{align*}
$$

where

$$
\begin{align*}
T_{n, w}^{G C 1}(x) & =\sum_{k=7}^{n} A_{k}^{G C 1}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(-x)\right) \\
& +\sum_{k=5, o d d k}^{n} B_{k}^{G C 1}(x) f^{(k-1)}(0) \tag{31}
\end{align*}
$$

In particular, there follows a generalization of the Gauss-Chebyshev three-point quadrature formula of the first kind for $x=-\frac{\sqrt{3}}{2}$. Now, we derive Hermite-Hadamardtype estimates for the Gauss-Chebyshev three-point quadrature formula of the first kind.

If the assumptions of Corollary 1 hold for $w(t)=\frac{1}{\sqrt{1-t^{2}}}, t \in(-1,1)$, and if $f:$ $[-1,1] \rightarrow \mathbb{R}$ is a $(2 n+2)$-convex function, we get

$$
\begin{align*}
& U_{n}^{G C 1}\left(\frac{-\sqrt{3}}{2}\right) \cdot f^{(2 n)}(0) \tag{32}\\
& \leq \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t-\frac{\pi}{3}\left[f\left(\frac{-\sqrt{3}}{2}\right)+f(0)+f\left(\frac{\sqrt{3}}{2}\right)\right]-T_{2 n, w}^{G C 1}\left(\frac{-\sqrt{3}}{2}\right) \\
& \leq U_{n}^{G C 1}\left(\frac{-\sqrt{3}}{2}\right) \cdot\left[\frac{1}{2} f^{(2 n)}(-1)+\frac{1}{2} f^{(2 n)}(1)\right]
\end{align*}
$$

where

$$
\begin{aligned}
U_{n}^{G C 1}\left(\frac{-\sqrt{3}}{2}\right) & =\frac{1}{(2 n)!} B\left(\frac{1}{2}, \frac{1}{2}+n\right)-\frac{\pi \cdot 3^{n-1}}{2^{2 n-1}(2 n)!} \\
& -\sum_{k=7}^{2 n} A_{k}^{G C 1}\left(\frac{-\sqrt{3}}{2}\right) \frac{(-\sqrt{3})^{2 n-k+1}+(-1)^{k-1}(\sqrt{3})^{2 n-k+1}}{2^{2 n-k+1}(2 n-k+1)!}
\end{aligned}
$$

In a special case, for $n=3$, we obtain

$$
\begin{align*}
& \frac{\pi}{23,040} \cdot f^{(6)}(0) \tag{33}\\
& \leq \int_{-1}^{1} \frac{f(t)}{\sqrt{1-t^{2}}} d t-\frac{\pi}{3}\left[f\left(\frac{-\sqrt{3}}{2}\right)+f(0)+f\left(\frac{\sqrt{3}}{2}\right)\right] \\
& \leq \frac{\pi}{23,040} \cdot\left[\frac{1}{2} f^{(6)}(-1)+\frac{1}{2} f^{(6)}(1)\right]
\end{align*}
$$

3.3. Gauss-Chebyshev Three-Point Quadrature Formula of the Second Kind

Assuming $w(t)=\sqrt{1-t^{2}}, t \in[-1,1]$ and $x \in[-1,0)$ and using Theorem 4, we obtain

$$
\begin{gather*}
W_{n, w}^{G C 2}(t, x)= \begin{cases}w_{1 n}(t)=\frac{1}{(n-1)!} \int_{-1}^{t}(t-s)^{n-1} \sqrt{1-s^{2}} d s, & t \in[-1, x], \\
w_{2 n}(t)=\frac{1}{(n-1)!} \int_{x}^{t}(t-s)^{n-1} \sqrt{1-s^{2}} d s+L_{n, x}(t), & t \in(x, 0], \\
w_{3 n}(t)=-\frac{1}{(n-1)!} \int_{t}^{-x}(t-s)^{n-1} \sqrt{1-s^{2}} d s+(-1)^{n} L_{n, x}(-t), & t \in(0,-x], \\
w_{4 n}(t)=-\frac{1}{(n-1)!} \int_{t}^{1}(t-s)^{n-1} \sqrt{1-s^{2}} d s, \\
A_{k}^{G C 2}(x)=(-1)^{k-1}\left[\frac{(x+1)^{k+1 / 2} \sqrt{2 \pi}}{\Gamma\left(\frac{3}{2}+k\right)} F\left(-\frac{1}{2}, \frac{3}{2}, \frac{3}{2}+k, \frac{x+1}{2}\right)-L_{k, x}(x)\right], k \geq 1, \\
B_{k}^{G C 2}(x)=2\left[\frac{(-1)^{k-1}}{(k-1)!} \int_{x}^{0} s^{k-1} \sqrt{1-s^{2}} d s+L_{k, x}(0)\right], & \text { for odd } k \geq 1,\end{cases} \tag{34}
\end{gather*}
$$

and

$$
B_{k}^{G C 2}(x)=0, \quad \text { for even } k>1
$$

Corollary 4. Let $w_{2,2 n}(t) \geq 0$, for all $t \in(x, 0]$ and for $n \in \mathbb{N}$. If $f:[-1,1] \rightarrow \mathbb{R}$ is a $(2 n+2)$-convex function and $f^{(2 n)}$ is piecewise continuous on $[-1,1]$, then

$$
\begin{align*}
& U_{n}^{G C 2}(x) \cdot f^{(2 n)}(0) \tag{35}\\
& \leq \int_{-1}^{1} f(t) \sqrt{1-t^{2}} d t-\sum_{k=1}^{2 n} A_{k}^{G C 2}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(-x)\right) \\
& -\sum_{k=1, k o d d}^{2 n} B_{k}^{G C 2}(x) f^{(k-1)}(0) \leq U_{n}^{G C 2}(x) \cdot\left[\frac{1}{2} f^{(2 n)}(-1)+\frac{1}{2} f^{(2 n)}(1)\right]
\end{align*}
$$

where

$$
\begin{align*}
U_{n}^{G C 2}(x) & =\frac{1}{(2 n)!} B\left(\frac{3}{2}, \frac{1}{2}+n\right) \tag{36}\\
& -\sum_{k=1}^{2 n} A_{k}^{G C 2}(x) \frac{x^{2 n-k+1}+(-1)^{k-1}(-x)^{2 n-k+1}}{(2 n-k+1)!}
\end{align*}
$$

If f is a $2 n+2)$-concave function, then inequalities (35) hold with reversed inequality signs.
Proof. A special case of Theorem 5 for $w(t)=\sqrt{1-t^{2}}, t \in[-1,1]$, and a nonnegative function $W_{2 n, w}^{G C 2}$ defined by (34).

If the polynomials $L_{j, x}(t)$ are such that

$$
\begin{aligned}
L_{0, x}(t) & =0, \text { for } t \in[x, 0] \\
L_{1, x}(x) & =\frac{1}{2}\left(\arcsin x+\frac{\pi}{2}-\frac{\pi}{8 x^{2}}+\frac{x \sqrt{1-x^{2}}}{2}\right) \\
L_{j, x}(x) & =\frac{(x+1)^{j+1 / 2} \sqrt{2 \pi}}{\Gamma\left(\frac{3}{2}+j\right)} F\left(-\frac{1}{2}, \frac{3}{2}, \frac{3}{2}+j, \frac{x+1}{2}\right), j=2,3,4,5,6, \\
L_{j, x}(t) & =\sum_{k=1}^{6 \wedge j} L_{k, x}(x) \frac{(t-x)^{j-k}}{(j-k)!}, \text { for } t \in[x, 0], j=1, \ldots, n,
\end{aligned}
$$

we have $A_{1}^{G C 2}(x)=\frac{x \sqrt{1-x^{2}}}{4}-\frac{\pi}{16 x^{2}}, A_{k}^{G C 2}(x)=0$, for $k=2,3,4,5,6, B_{1}^{G C 2}(x)=\frac{\pi}{2}-$ $\frac{x \sqrt{1-x^{2}}}{2}+\frac{\pi}{8 x^{2}}$ and $B_{3}^{G C 2}(x)=0$, so we obtain

$$
\begin{align*}
\int_{-1}^{1} f(t) \sqrt{1-t^{2}} d t & =A_{1}^{G C 2}(x)[f(x)+f(-x)]+B_{1}^{G C 2}(x) f(0) \\
& +T_{n, w}^{G C 2}(x)+(-1)^{n} \int_{-1}^{1} W_{n, w}^{G C 2}(t, x) f^{(n)}(t) d t \tag{37}
\end{align*}
$$

where

$$
\begin{align*}
T_{n, w}^{G C 2}(x) & =\sum_{k=7}^{n} A_{k}^{G C 2}(x)\left(f^{(k-1)}(x)+(-1)^{k-1} f^{(k-1)}(-x)\right) \\
& +\sum_{k=5, o d d k}^{n} B_{k}^{G C 2}(x) f^{(k-1)}(0) \tag{38}
\end{align*}
$$

In particular, a generalization of the Gauss-Chebyshev three-point quadrature formula of the second kind follows for $x=-\frac{\sqrt{2}}{2}$. Now, we derive Hermite-Hadamard-type estimates for the Gauss-Chebyshev three-point quadrature formula of the second kind.

Applying Corollary 1 to $w(t)=\sqrt{1-t^{2}}, t \in[-1,1], x=-\frac{\sqrt{2}}{2}$, and a $(2 n+2)$-convex function f, we obtain

$$
\begin{aligned}
& U_{n}^{G C 2}\left(\frac{-\sqrt{2}}{2}\right) \cdot f^{(2 n)}(0) \\
& \leq \int_{-1}^{1} f(t) \sqrt{1-t^{2}} d t-\frac{\pi}{8}\left[f\left(-\frac{\sqrt{2}}{2}\right)+2 f(0)+f\left(\frac{\sqrt{2}}{2}\right)\right]-T_{2 n, w}^{G C 2}\left(\frac{-\sqrt{2}}{2}\right) \\
& \leq U_{n}^{G C 2}\left(\frac{-\sqrt{2}}{2}\right) \cdot\left[\frac{1}{2} f^{(2 n)}(-1)+\frac{1}{2} f^{(2 n)}(1)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
U_{n}^{G C 2}\left(\frac{-\sqrt{2}}{2}\right) & =\frac{1}{(2 n)!} B\left(\frac{3}{2}, \frac{1}{2}+n\right)-\frac{\pi}{2^{n+2}(2 n)!} \\
& -\sum_{k=7}^{2 n} A_{k}^{G C 2}\left(\frac{-\sqrt{2}}{2}\right) \frac{(-\sqrt{2})^{2 n-k+1}+(-1)^{k-1}(\sqrt{2})^{2 n-k+1}}{2^{2 n-k+1}(2 n-k+1)!}
\end{aligned}
$$

As a special case, for $n=3$, we obtain

$$
\begin{aligned}
& \frac{\pi}{92,160} \cdot f^{(6)}(0) \\
& \leq \int_{-1}^{1} f(t) \sqrt{1-t^{2}} d t-\frac{\pi}{8}\left[f\left(-\frac{\sqrt{2}}{2}\right)+2 f(0)+f\left(\frac{\sqrt{2}}{2}\right)\right] \\
& \leq \frac{\pi}{92,160} \cdot\left[\frac{1}{2} f^{(6)}(-1)+\frac{1}{2} f^{(6)}(1)\right]
\end{aligned}
$$

Funding: The author received no funding for this work.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.
Conflicts of Interest: The author declares no conflict of interest.

References

1. Pečarić, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings, and Statistical Applications; Academic Press: San Diego, CA, USA, 1992.
2. Abramovich, S. Hermite-Hadamard, Fejér and Sherman type inequalities for generalizations of superquadratic and convex functions. J. Math. Inequal. 2020, 14, 559-575. [CrossRef]
3. Abramovich, S.; Barić, J.; Pečarić, J. Fejér and Hermite-Hadamard type inequalities for superquadratic functions. J. Math. Anal. Appl. 2008, 344, 1048-1056. [CrossRef]
4. Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite-Hadamard Inequalities and Applications. RGMIA Monographs; Victoria University: Melbourne, Australia, 2000.
5. Franjić, I.; Pečarić, J.; Perić, I.; Vukelić, A. Euler Integral Identity, Quadrature Formulae and Error Estimations; Element: Zagreb, Croatia, 2011.
6. Gessab, A.; Schmeisser, G. Sharp integral inequalities of the Hermite-Hadamard type. J. Approx. Theory 2002, 115, 260-288. [CrossRef]
7. Iscan, I.; Turhan, S. Generalized Hermite-Hadamard-Fejér type inequalities for GA-convex functions via Fractional integral. Moroc. J. Pure Appl. Anal. 2016, 2, 34-46. [CrossRef]
8. Jakšić, R.; Kvesić, L.J.; Pečarić, J. On weighted generalization of the Hermite-Hadamard inequality. Math. Inequal. Appl. 2015, 18, 649-665. [CrossRef]
9. Klaričić Bakula, M.; Pečarić, J.; Perić, J. Extensions of the Hermite-Hadamard inequality with applications. Math. Inequal. Appl. 2012, 15, 899-921. [CrossRef]
10. Latif, M.A.; Dragomir, S.S. New Inequalities of Hermite-Hadamard Type for n-Times Differentiable Convex and Concave Functions with Applications. Filomat 2016, 30, 2609-2621. [CrossRef]
11. Latif, M.A.; Dragomir, S.S. New Inequalities of Fejér and Hermite-Hadamard type Concerning Convex and Quasi-Convex Functions with Applications. Punjab Univ. J. Math. 2021, 53, 1-17.
12. Rostamian Delavar, M.; Dragomir, S.S.; De La Sen, M. Estimation type results related to Fejér inequality with applications. J. Inequal. Appl. 2018, 2018, 85. [CrossRef] [PubMed]
13. Vivas-Cortez, M.; Kórus, P.; Valdés, J.E.N. Some generalized Hermite-Hadamard-Fejér type inequality for convex functions. Adv. Differ. Equ. 2021, 2021, 199. [CrossRef]
14. Kovač, S.; Pečarić, J. Weighted version of general integral formula of Euler type. Math. Inequal. Appl. 2010, 13, 579-599. [CrossRef]
15. Barić, J.; Kvesić, L.J.; Pečarić, J.; Ribičić Penava, M. Fejér type inequalities for higher order convex functions and quadrature formulae. Aequationes Math. 2021. [CrossRef]
16. Aglić Aljinović, A.; Čivljak, A.; Kovač, S.; Pečarić, J.; Ribičić Penava, M. General Integral Identities and Related Inequalities; Element: Zagreb, Croatia, 2013.
