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Abstract: Algorithms for network flow problems, such as maximum flow, minimum cost flow,
and multi-commodity flow problems, are continuously developed and improved, and so, random
network generators become indispensable to simulate the functionality and to test the correctness and
the execution speed of these algorithms. For this purpose, in this paper, the well-known Erdős–Rényi
model is adapted to generate random flow (transportation) networks. The developed algorithm is
fast and based on the natural property of the flow that can be decomposed into directed elementary
s-t paths and cycles. So, the proposed algorithm can be used to quickly build a vast number of
networks as well as large-scale networks especially designed for s-t flows.

Keywords: network flow; random networks; parallel programming; time efficiency of algorithms

1. Introduction

There are many applications of the network flow problems, e.g., electrical, water, or gas
supply networks, vehicle routing and transportation, wireless networks, data mining, air-
line scheduling, project selection, image segmentation, network reliability, multi-camera
scene reconstruction, security of statistical data, gene function prediction, open-pit mining,
distributed computing, network connectivity, network intrusion detection, finance models,
baseball elimination, etc., [1,2]. Algorithms for network flow problems are continuously
developed and improved. Consequently, it is very important to have a tool for creating net-
works for testing the correctness and to compare the execution time of the new algorithms
with the existing ones.

In the literature, a few methods used to build random graphs are proposed. Erdõs
and Rényi introduced random binomial graphs in [3]. These random graphs are generated
based on the values of two parameters: n (the number of nodes) and p ∈ [0, 1] (the proba-
bility of introducing any edge in the graph). These kinds of random networks have been
applied for Zagreb indices, general sum-connectivity index, general inverse sum indeg
index, and general first geometric-arithmetic index [4]. In a network generated in this
manner, there is the possibility that the source will poorly communicate to the sink or
even not communicate at all. An algorithm for generating simple random graphs with
a given degree sequence was developed in [5]. Using this algorithm, an asymptotically
uniform random graph with a given degree sequence is very quickly generated (almost
linear time). In Reference [6], Barabási and Albert introduced their model (BA) consisting
of an algorithm based on the preferential attachment mechanism for generating random
scale-free networks. The networks generated this manner have real application on the
Internet, citation networks, the World Wide Web, and some social networks. The algorithm
starts with a network having m0 given nodes. Sequentially, nodes are introduced into the
network. Each of these newly added nodes is connected to m ≤ m0 existing nodes using
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a given probability that is proportional to the number of connections that the previously
added nodes already had. The probability pi of connecting a new node to node i is:

pi =
ki

∑j k j
(1)

where ki is the so-called degree of node i. The denominator from Equation (1) is twice the
existing number of edges from the network.

Penrose, M. introduced a so-called random geometric graph (RGG), which is an
undirected geometric graph with randomly sampled nodes. To generate such a graph,
a uniform distribution of the underlying space [0, 1)d is used, where d is the dimension
of the space [7]. The idea behind generating a RGG is that two nodes are linked only if
the distance between them is less than a given parameter r ∈ (0, 1). Therefore, r and n
give the way a RGG is generated. Very recently, RGGs have been successfully applied in
nanomaterials [8]. Waxman generalized RGGs by considering a probabilistic connection
function [9].

Considering the fact that the existing results from the literature about network graphs
are dealing with specific graphs that are not general enough, or not suitable for network
flow problems, in this paper, a new idea for generating random networks is proposed that
has the advantages of being fast and based on the natural property of the flow that can
be decomposed into directed elementary paths and cycles. Consequently, the networks
generated in this manner are suitable for testing the correctness and the time efficiency of
algorithms for network flow problems such as minimum cost flow, maximum flow, multi-
commodity flow problem, etc. The maximum flow problem is to find a flow from source to
sink having the maximum possible value. Very recently, better and better algorithms were
developed to solve this problem [10–12]. Together with maximum flow, the minimum cut
can also be calculated [13]. The minimum cost flow is to find a flow having minimum cost
from supply nodes to demand nodes. Recently, the best-known algorithm was developed
for solving this problem [14]. The multi-commodity flow problem uses flow demands,
or multiple commodities between different source nodes and sink nodes. The best currently
known algorithm to solve this problem is from Karakostas [15]. There exist other flow
problems of which the algorithms can still be improved, e.g., the inverse generalized
maximum flow problems under sum-type distances, which are proved to be NP-hard [16].

In this paper, the Erdős–Rényi model is adapted to generate random flow networks.
The paper is organized as follows. The flow decomposition into directed s-t path and
directed cycles is presented in Section 2. An algorithm for generating random networks
is deduced. The more general case of networks having multiple sources and sinks is also
studied. The algorithm is tested both on CPU and CUDA in Section 3. In Section 4, some
conclusions are discussed.

2. Algorithms for Generating Random Flow Networks
2.1. Flow Decomposition into Elementary Flows

Let G = (V, E, s, t, u, c) be an s-t directed network. V is a set containing n > 0 vertices
(nodes), and E is a set of m≥ 0 so-called arcs (directed edges); each arc a = (i, j) ∈ E connects
two nodes i and j from V, s is a special node called source, and t is a node called sink. In G,
we define the capacity function u : E→ R∗+ and, respectively, the cost function c : E→ R+ .
The value u(a) is the maximum flow that can be transported from node i to node j on the
arc a = (i, j) ∈ E, and c(a) is the per unit cost of transportation of flow on the arc a.

A (feasible) flow in an s-t directed network G is a function f : A→ R+ satisfying the
boundary restrictions (2) and conservation conditions from (3).

0 ≤ f (i, j) ≤ c(i, j), ∀(i, j) ∈ E (2)
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∑
j∈V,(i,j)∈E

f (i, j)− ∑
j∈V,(j,i)∈E

f (j, i) =


0, i f i, j ∈ V − {s, t}

v f , i f i = s
−v f , i f i = t

(3)

where v f = v( f ) ≥ 0 is the so-called the value of the flow f.
A feasible flow f can be decomposed into two feasible flows, f1 and f2, and is denoted

by f = f1 + f2, if f(a) = f1(a) + f2(a), ∀ a ∈ E.
P = (u1, u2, . . . , uk) is called a directed path in G if (ui, ui+1) ∈ E, ∀ i ∈ {1, 2, . . . , k − 1},

where k ≥ 2. A directed path is called elementary if it does not pass a node twice, i.e., ui 6= uj,
∀ i, j ∈ {1, 2, . . . , k}, i 6= j. A directed cycle is a directed path for which the first node is equal
to the last one, i.e., C = (u1, u2, . . . , uk = u1) is a directed cycle. A directed cycle is elementary
if it does not pass a node twice, except for the first node. A flow f is called elementary if it
is 0 on all the arcs of the network except for the arcs of a directed s-t path or of a directed
cycle, where it is equal to a value v > 0.

In Reference [13] the following flow theorem is presented:

Theorem 1. Any feasible flow f can be decomposed into directed paths and directed cycles such that:

(a) Every directed path with positive flow connects the source s to the sink t.
(b) At most n + m directed paths and directed cycles have non-zero flow. Out of these, at most m

cycles have non-zero flow.

Proof of Theorem 1. The proof can be found in [13]. �

So, a direct consequence of Theorem 1 is that a flow can be decomposed into at most
n + m elementary flows.

To illustrate the idea behind Theorem 1, in Figure 1, we present a flow f in a network
G. The flow f is feasible since it satisfies both the conditions (2) and (3). The value of the
flow f is vf = 5. One possible decomposition of the flow f into elementary flows is given by
the f1, f2, and f3 flows corresponding, respectively, to the paths P1 = (1, 2, 5), P2 = (1, 3, 4, 5),
and the cycle C = (2, 3, 4, 2). The value of the flow f1 is 3 and is equal to the value on the
path P1. The value of the flow f2 is 2 and is equal to the value on the path P2. The value of
the flow f3 is 0, but the value on the cycle C is equal to 5.

Figure 1. A network G and a flow f.
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2.2. Algorithm for Generating Random s-t Flow Networks

Correctness and time efficiency comparisons of algorithms for network flow problems
are important when new methods are elaborated. To do that, a fast and reliable tool is
needed to generate random networks, starting with simple ones and continuing with
large-scale networks. We develop a method based on the Erdős–Rényi model using the
idea of Theorem 1 to create such a tool. Since a flow can be decomposed into elementary
flows, a natural approach is to generate random directed elementary s-t paths and cycles.

We present now a first algorithm (Algorithm 1) to generate a random directed elemen-
tary s-t path:

Algorithm 1. Algorithm Random s-t Directed Elementary Path v1 (ARDEP1)

/* source is considered having the first index, and sink is considered having the last one */
s = 0;
t = n − 1;
/* only source is initially part of the path */
for each node j other than s do

pathnode[j] = false;
end for;
pathnode[s] = true;
/* build the random path */
u = s;
for j = 1 to n-1 do

/* choose a random index k of the next node to be added to the path */
k = random(0, n–j-1);
l = 0;
/* find node v as the k-th node out of the not before chosen nodes */
for each node v do

if pathnode[v] then
continue;

end if;
if l = k then

break;
end if;
l = l + 1;

end for;
/* add arc (u,v) to the network */
ma[u][v] = 1;
/* mark node v as being part of path */
pathnode[v] = true;
/* if the last node v added to the path is sink, then path is completed */
if v = t then

break;
end if;
/* node u becomes v in order to prepare the adding of another node to the path */
u = v;

end for;

In ARDEP1, without restricting the generality of the algorithm, we consider the
source’s index equal to 0, and n-1 as the index of the sink node t. The algorithm builds
a path starting from s. At each iteration, a new node that was not previously added to
the path is randomly selected and pushed at the end of the path. Each time a new node
v is pushed back to the path, the arc (u, v) is added to the network, i.e., the value of the
adjacency matrix ma is set to 1 on the position (u, v), where u is the node previously added
to the path. The algorithm ends when the sink node is added to the path.
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Next, we present Algorithm 2 to generate a random directed elementary cycle:

Algorithm 2. Algorithm Random Directed Elementary Cycle v1 (ARDEC1)

/* choose a random node u0 */
u0 = random(0, n-1);
/* only node u0 is initially part of the cycle */
for each node j other than u0 do

cyclenode[j] = false;
end for;
cyclenode[s] = true;
/* build the random cycle */
u = u0;
for j = 0 to n-1 do

/* choose a random index k of the next node to be added to the cycle */
k = random(0, n–j-1);
l = 0;
/* find node v as the k-th node out of the not before chosen nodes */
for each node v do

if cyclenode[v] then
continue;

end if;
if l = k then

break;
end if;
l = l + 1;

end for;
/* if v is u then regenerate v. This can only happen when u = u0 */
if u = v then

j = j – 1;
else

/* add arc (u,v) to the network */
ma[u][v] = 1;
/* mark node v as being part of cycle */
cyclenode[v] = true;

end if;
/* if v is the first chosen node u0, then cycle is completed */
if v = u0 then

break;
end if;
/* node u becomes v in order to prepare the adding of another node to the cycle */
u = v;

end for;

In ARDEC1, a cycle is built starting with a randomly chosen node u0. At each iteration,
a new node that is not already part of the cycle is randomly selected and added to the
cycle. Each time a new node v is introduced into the cycle, the arc (u, v) is also added to the
network, where u is the node previously added to the cycle. The algorithm ends when the
node u0 is added again to the cycle.

The algorithms ARDEP1 and ARDEC1 can naturally build directed elementary s-t
paths and cycles. Their time complexity is obviously O(n2). These two algorithms could be
used together to build random networks. However, we shall present a faster approach below.

Richard Durstenfeld proposes an algorithm to randomly generate a permutation [17].
In Algorithm 3, we propose a similar but simpler approach to generate a shuffled vector of
nodes having the indexes between istart and iend:



Mathematics 2021, 9, 1716 6 of 14

Algorithm 3. Algorithm Shuffled Vector of Nodes (ASVN)

Input: istart, iend;
/* the vector “nodes” initially contains the indexes from istart to iend */
for j = istart to iend do

nodes[j] = j;
end for;
/* shuffle the vector “nodes” */
for k = istart to iend do

u = random(istart, iend);
v = random(istart, iend);
if u 6= v then

swap = nodes[u];
nodes[u] = nodes[v];
nodes[v] = swap;

end if;
end for;

ASVN starts with a vector having all the nodes with indexes from istart to iend. Then,
this vector is shuffled by two randomly chosen nodes from the vector and by interchanging
their positions. These interchanges are executed n times, where n is the length of the vector.
We have the following theorem that proves the quality of the obtained shuffled vector:

Theorem 2. Using ASVN, any vector of the nodes randomly generated by ASVN has equal
probability to be generated.

Proof of Theorem 2. Let us suppose we have n values that have to be generated using
ASVN. The initial vector of nodes contains n distinct values. There are n random swapping
operations applied to the vector. We shall prove that any permutation of the initial values
can be obtained this way.

Let p = (p1, p2, . . . ., pn) be a permutation of the initial values istart, istart+1, . . . ., iend.
The following algorithm (Agorithm 4) transforms the initial vector nodes into p.

Algorithm 4. Algorithm Nodes Permutation (ANP)

/* generate the permutation pk of the nodes */
for k = 1 to n do

Find the index i of pk in nodes;
swap = nodes[i];
nodes[i] = nodes[k];
nodes[k] = swap;

end for;

Using ANP, there are n swapping operations that transform nodes into p. ASVN per-
forms n random swapping operations to nodes. So, there always is a chance for ASVN to
generate p from nodes. The probability to generate p from nodes is 1

n! using ASVN, and,
since the total number of possible permutations is n!, it results that any permutation of the
vector nodes has an equal chance to be generated using ASVN. �

We now introduce two new methods to randomly generate directed elementary s-t
paths and cycles using ASVN.

In Algorithm 5, first, ARDEP2 randomly generates the length of the path. lpath-2
nodes are then taken from the shuffled vector of nodes, and together with source and sink,
generate the path.



Mathematics 2021, 9, 1716 7 of 14

Algorithm 5. Algorithm Random s-t Directed Elementary Path v2 (ARDEP2)

/* efficiently generate a shuffled vector of nodes without s and t */
ASVN(1, n-2);
s = 0;
t = n – 1;
/* randomly generate the length of the path */
lpath = random(2, n);
/* add the arcs given by the first lpath nodes of the shuffled vector to the network */
m_ma[s][nodes[1]] = 1;
for k = 1 to lpath – 3 do

m_ma[nodes[k]][nodes[k + 1]] = 1;
end for;
ma[nodes[lpath - 2]][t] = 1;

In Algorithm 6, ARDEC2 takes lcycle nodes from the shuffled vector of nodes and
generates a cycle.

Algorithm 6. Algorithm Random Directed Elementary Cycle v2 (ARDEC2)

/* efficiently generate a shuffled vector of nodes */
ASVN(0, n-1);
/* randomly generate the length of the cycle */
lcycle = random(2, n);
/* add the arcs given by the first lcycle nodes of the shuffled vector to the network */
for k = 0 to lcycle – 1 do

m_ma[nodes[k]][nodes[k + 1]] = 1;
end for;
ma[nodes[lcycle - 1]][nodes[0]] = 1;

Below, we introduce Algorithm 7 for generating a random flow network.

Algorithm 7. Algorithm Generating Random s-t Flow Network (AGRFN)

Input: p, npath, ncycle, minu, maxu, minc, maxc;
/* generate “npath” random paths */
for k = 1 to npath do

ARDEP2;
end for;
/* generate “ncycle” random cycles */
for k = 1 to ncyle do

ARDEC2;
end for;
/* generate the adjacency lists “la” using the adjacency matrix “ma” */
for i = 0 to n do

la[i] = null;
end for;
/* randomly attach capacities and costs to the arcs when they are added to “la” */
for i = 0 to n do

for j = 0 to n do
/* generate arcs according to Erdős–Rényi model */
if ma[i][j] = 0 and random(0, 1000) < p*1000 then

ma[i][j] = 1;
end if;
if ma[i][j] = 1 then

Push back (j,random(minu,maxu),random(minc,maxc)) to la[i];
end if;

end for;
end for;
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Before starting AGRFN, the adjacency matrix ma is set to 0. The algorithm builds ma
and then the adjacency lists la using ma.

After the directed s-t paths and directed cycles are built, arcs are randomly added to
the network using the Erdős–Rényi model. According to this model, the probability of
adding a new arc is p ∈ [0, 1]. Consequently, in AGRFN, for each pair of nodes (i, j), i 6= j,
so that ma[i, j] = 0, i.e., (i, j) is not currently an arc in the network, a random integer number
is generated in the interval [0, 999] using the function random, and if this value is less then
p · 1000, the arc (i, j) is added to the network.

The capacities of the arcs are randomly generated between the given values minu and
maxu. The costs on the arcs are also randomly generated between minc and maxc. There are
more parameters for some flow problems such as lower bounds [13,18], modification limits
for capacities [19,20], arc resistance [21,22], or gain factor [16,23]. These values can also be
randomly generated on arcs.

Theorem 3. The time complexity of AGRFN is O (n · max{npath, ncycle, n}).

Proof of Theorem 3. For the time complexity of generating an s-t path or a cycle using
ARDEP2, respectively, ARDEC2 is O(n). Consequently, the adjacency matrix ma is generated
in O(max{npath, ncycle} · n), and since generating the adjacency lists takes O(n2) time, the
time complexity of the algorithm is O(n ·max{npath, ncycle, n}). �

Usually, it is enough to consider the number of paths and the number of cycles less
than the number of nodes. So, in practice, the time complexity is likely to be O(n2).

The time complexity from Theorem 3 can be improved if the generation of the paths,
cycles, and the adjacency lists are parallelized. The computations from the algorithm
are elementary and they only involve integer values. So, AGRFN can be naturally par-
allelized on GPUs. Since the speed of generating of large-scale random networks is
essential, time complexity improvement by parallelization can act an important role. Con-
sidering a total of g GPUs, the generation of the paths and cycles can be divided into
max{1, (npath+ncycle)/g} groups. The generation of the adjacency lists can also be divided
into max{1, n/g} groups. So, the time complexity of the parallel implementation on GPUs
of AGRFN is O(n ·max{npath, ncycle, n}/g).

The C++ source code for generating random networks using AGRFN can be found in
Appendix A.

The network from Figure 2 was generated using AGRFN. The input parameters
were as follows: p = 0.2, npath = 4, ncycle = 2, minu = 1, maxu = 7, minc = 1, and
maxc = 7. The algorithm generated the following directed paths: P1 = (1, 2, 3, 6), P2 = (1, 6),
P3 = (1, 4, 5, 6), and P4 = (1, 2, 4, 6), as well as the directed cycles C1 = (4, 5, 2, 3, 4), and
C2 = (2, 4, 5, 1, 2). In the end, from the remaining 19 pairs of nodes were not connected
with arcs, based on the considered probability of p = 0.2, and AGRFN generated three more
arcs: (1, 5), (3, 4), and (3, 5).

2.3. The Case of Multiple Sources and Multiple Sinks

There are situations when networks having multiple source and sink nodes have to be
generated. We shall show how AGRFN can be adapted for this more general case.

Let G = (V, E, S, T, u, c) be a directed network, where S = {s1, s2, . . . , sns} is the set of
ns ≥ 1 sources and T = {t1, t2, . . . , tnt} is the set of nt ≥ 1 sink nodes. G is equivalent to
an s-t network G’ = (V’, E’, s, t, u’, c’) by introducing a super-source s, a super-sink t, and
the arcs (s, si) and (tj, t), where si ∈ S, i ∈ {1, 2, . . . , ns}, and tj ∈ T, j ∈ {1, 2, . . . , nt} [13].
The capacities and costs for the newly introduced arcs are irrelevant at this point. Using
AGRFN, a random network G’ is built. In the end, the arcs (s, si) and (tj, t), where si ∈ S,
i ∈ {1, 2, . . . , ns}, and tj ∈ T, j ∈ {1, 2, . . . , nt} are eliminated together with the nodes s and
t, so that a random network G with multiple source and sink nodes is randomly generated.
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Figure 2. Network generated with AGRFN.

In Algorithm 8, the nodes s and t are eliminated from V, and the adjacency matrix ma
is modified accordingly.

Algorithm 8. Algorithm Generating Random Network Multiple Sources and Sinks (AGRFNMSS)

Input: p, npath, ncycle, minu, maxu, minc, maxc;
/* add super-source and super-sink nodes */
Add s and t to V;
/* the adjacency matrix initially has no arcs */
ma = 0;
/* connect super-source with the other sources */
for i = 1 to ns do

ma[s][si] = 1;
end for;
/* connect super-sink with the other sinks */
for j = 1 to nt do

ma[tj][t] = 1;
end for;
/* call AGRFN to generate a random netowrk */
AGRFN(p, npath, ncycle, minu, maxu, minc, maxc);
/* come back to the initial network having multiple sources and sinks */

It is obvious that the time complexity of AGRFNMSS is the same as for AGRFN.

3. Results and Discussions

In Figure 3, three networks having 6, 20, and 100 nodes, respectively, were generated
and displayed. For the first network, 3 paths and 2 cycles were generated. For the second
network, 10 paths and 2 cycles were generated, and for the last network, 20 paths and
10 cycles were generated.

Different tests were performed to illustrate the generating time of increasing the scale
of random networks having the number of nodes between 10 and 10,000. As expected, and
as shown in Table 1, the number of nodes together with the number of considered paths
and cycles directly influence the speed of the network generation. An Asus ROG Strix
G17 G712LV, Intel Core i7-10750H up to 5.10 GHz processor, 16GB RAM, NVIDIA GeForce
RTX 2060 6GB GDDR6 with 1920 CUDA cores was used. The tests showed that the usage
of parallelization becomes more and more effective with the increase of the dimension
of the networks. The parallelization was implemented using CUDA programming on
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GPU. Each path and cycle were created on a different thread. Additionally, the creation
of adjacency lists from the adjacency matrix was parallelized, the list for each node being
obtained on a different thread. For small networks (less than 50 nodes) it is better to
use the implementation of the algorithm on CPU, but when the number of the nodes of
the networks is more than 50, the CUDA implementation is preferred resulting in a clear
speed-up, up to 19 times faster than the CPU implementation. The speed-up was calculated
as the ratio between CUDA and CPU execution times. The best speed-up was obtained for
large-scale networks having thousands of nodes (Table 1).

Figure 3. Networks generated using AGRFN. (a) Network with n = 6, npath = 3, ncycle=2; (b) network with n = 20,
npath = 10, ncycle = 2; (c) network with n = 100, npath = 20, ncycle = 10.

Table 1. Random network generation and running time comparison.

No. of
Networks

No. of
Nodes

No. of
Paths

No. of
Cycles

CPU Time
(Seconds)

CUDA Time
(Seconds)

No. of
Blocks

Threads
Per Block Speed-Up

1,000,000 10 5 2 8.42 69.50 1 10 0.12
100,000 50 20 10 14.39 10.99 1 50 1.31
50,000 100 50 25 31.33 8.64 1 100 3.62
4000 500 200 100 44.66 6.10 1 500 7.32
1000 1000 500 250 55.33 4.09 1 1000 13.54
50 5000 2000 1000 58.19 3.20 5 1000 18.16
10 10,000 5000 2500 57.33 3.01 10 1000 19.05
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In Figure 4, the speed-up evolution for generating networks of different dimensions
is presented.

Figure 4. Speed-up CUDA/CPU.

4. Conclusions

We developed a fast and reliable algorithm called AGRFN to randomly generate
networks. The resulted networks can be used to test the correctness and efficiency of
algorithms developed for network flow problems, e.g., minimum cost flow, maximum flow,
or multi-commodity flow problems. The CUDA parallelized version of AGRFN proved to
be up to 19 times faster when large-scale networks need to be generated.

Considering further developments, other problems in specific networks could be
identified in which AGRFN can be adapted.
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Appendix A

Source code S1: The C++ source code for generating random networks using AGRFN.

// The header file (“.h” file):
#pragma once
#include"vector"
using namespace std;
struct arc
{ // i = end node of the arc

int i, u, c; // u = capacity of the arc
}; // c = cost of the arc
class NetworkCreation
{

vector<vector<int>> m_ma; // adjacency matrix
vector<vector<arc>> m_la; // adjacency lists
void CreateLAFromMA(float p, int mincap, int maxcap, int mincost, int maxcost);

public:
NetworkCreation(float p, int nnod, int npath, int ncycle, int mincap, int maxcap, int

mincost, int maxcost);
vector<vector<int>>& GetMA();
vector<vector<arc>>& GetLA();

};

// The implementations (“.cpp” file):
#include"NetworkCreation.h"
#include"time.h"
void NetworkCreation::CreateLAFromMA(float p, int mincap, int maxcap, int mincost, int
maxcost)
{

int nnod = m_ma.size();
if (!nnod)

return;
m_la.resize(nnod);
int u, c;
for (int i = 0; i < nnod; i++)

for (int j = 0; j < nnod; j++)
{

if (!m_ma[i][j] && rand() % 1000 < p * 1000)
m_ma[i][j] = 1;

if (m_ma[i][j])
{

u = maxcap;
if (mincap < maxcap)

u = rand() % (maxcap - mincap + 1) + mincap;
c = maxcost;
if (mincost < maxcost)

c = rand() % (maxcost - mincost + 1) + mincost;
m_la[i].push_back({ j,u,c });

}
}

}
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NetworkCreation::NetworkCreation(float p, int nnod, int npath, int
ncycle, int mincap, int maxcap, int mincost, int maxcost)
{

if (nnod < 2)
return;

m_ma.resize(nnod);
for (int i = 0; i < nnod; i++)
{

m_ma[i].resize(nnod);
for (int& k : m_ma[i])

k = 0;
}
srand(time(0));
int s = 0, t = nnod - 1;
// randomly generate paths
for (int i = 0; i < npath; i++)
{

vector<int> generate(nnod - 2);
for (int k = 0; k < nnod - 2; k++)

generate[k] = k + 1;
// shuffle nodes
for (int k = 0; k < nnod - 2; k++)
{

int u = rand() % (nnod - 2);
int v = rand() % (nnod - 2);
int swap = generate[u];
generate[u] = generate[v];
generate[v] = swap;

}
// generate random path
int lpath = rand() % (nnod - 2) + 1;
m_ma[s][generate[0]] = 1;
for (int k = 0; k < lpath - 1; k++)

m_ma[generate[k]][generate[k + 1]] = 1;
m_ma[generate[lpath - 1]][t] = 1;

}
// randomly generate cycles
for (int i = 0; i < ncycle; i++)
{

vector<int> generate(nnod);
for (int k = 0; k < nnod; k++)

generate[k] = k;
// shuffle nodes
for (int k = 0; k < nnod; k++)
{

int u = rand() % (nnod);
int v = rand() % (nnod);
int swap = generate[u];
generate[u] = generate[v];
generate[v] = swap;

}
// generate random cycle
int lcycle = rand() % nnod + 1;
for (int k = 0; k < lcycle - 1; k++)

m_ma[generate[k]][generate[k + 1]] = 1;
m_ma[generate[lcycle - 1]][generate[0]] = 1;

}
CreateLAFromMA(p, mincap, maxcap, mincost, maxcost);

}
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vector<vector<int>>& NetworkCreation::GetMA()
{

return m_ma;
}
vector<vector<arc>>& NetworkCreation::GetLA()
{

return m_la;
}
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