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Abstract: International research has pointed out the importance of integrating mathematical modeling
and inquiry processes into the teaching and learning of mathematics. This paper aims to present an
integrative model that enables analyzing the characteristics inquiry and modeling processes share
in the same model with a view to using them when designing and implementing interdisciplinary
teaching sequences. After presenting a synthesis of the literature review, our theoretical approach to
inquiry and modeling for the analysis of an interdisciplinary teaching sequence will be introduced.
We focus here on the case of an inquiry situation in an archaeological context where mathematics
and history are interrelated. It was implemented at secondary school level with students aged 13–14.
We use this particular case study to analyze the appearance of both processes, in order to look for
coincidences, concatenations and synergies. The main result is an integrative model for the joint
analysis of both processes.

Keywords: inquiry; mathematical modeling; integrative model; interdisciplinary contexts

1. Introduction

Current trends in the teaching of mathematics reveal that the extensive mathematical
education community has reached a consensus on how to improve the teaching of the
subject. One such trend emphasizes the importance of problem solving and modeling
(see, for instance, [1,2]). To “know mathematics” is supposed to include the competence
of using mathematics in and applying it to real-life extra-mathematical situations. In
some countries, this recent trend has led to competence-based curricula including inquiry
and modeling competences. This is the case, for instance, of the modeling competency,
as explained by Blum [1]. A wide range of international studies, such as the TIMSS
study [3] or the Programme for International Students Assessment (PISA) [4,5], provide
significant recommendations with regard to integrating inquiry and modeling competences
in school curricula.

A variety of approaches and research projects related to how to foster inquiry-based
learning (IBL) in mathematics education also attach considerable importance to problem
solving and modeling processes. For instance, the PRIMAS international project aimed at
implementing inquiry-based methodologies in mathematics and science classrooms as well
as in teacher education [6,7]. As highlighted by Maass and Engeln ([7], p. 3), the teaching
of modeling within this project’s framework equates to adopting an inquiry approach in
realistic contexts.

Several research studies on the likely relationship between mathematical modeling
and inquiry—for instance, Niss [8], (focuses on the connections between the processes
of pre-mathematization and inquiry; or Stillman and Brown [9], who analyze the notion
of “implemented anticipation” [8] in the modeling cycle, are regarded as closely related
processes that should be combined. Some authors even consider modeling as a particular
way to approach inquiry-based teaching and learning of mathematics, as stated in Artigue
and Blomhoj [10]. They believe that the similarity with the modeling cycles is striking and

Mathematics 2021, 9, 1714. https://doi.org/10.3390/math9151714 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-9830-312X
https://orcid.org/0000-0001-7228-6210
https://orcid.org/0000-0003-1405-0458
https://doi.org/10.3390/math9151714
https://doi.org/10.3390/math9151714
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9151714
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9151714?type=check_update&version=1


Mathematics 2021, 9, 1714 2 of 19

state the following: “we see a trans-disciplinary structure of a dynamical inquiry process
behind both processes”. In line with what they say, we assume that working with modeling
in mathematics, as in other subjects, can thus lead to gaining a valuable insight into inquiry
as a general process using different implementations in diverse disciplines and contexts.

For the past few years, our research team has been working on the implementation of
inquiry projects in interdisciplinary contexts, involving the subjects of mathematics and
history. Through the analysis of different case studies, it was observed that the students
often developed mathematical modeling cycles at specific moments during their inquiry
process [11–13]. Consequently, one open question that emerged from these works is about
how the students developed inquiry together with mathematical modeling.

However, these commonalities between modeling and inquiry have not been exam-
ined in depth nor have they been clearly conceptualised. This led us to gain a deeper
understanding of how both processes, inquiry and modeling, are interrelated. This paper
aims at contributing to the understanding of the relationships between both processes,
especially when used in an interdisciplinary context, such as archaeology, to develop in-
quiry and mathematical modeling. With this purpose in mind, the following objectives of
this article were established: (1) to analyze the presence of the processes of inquiry and
mathematical modeling in the implementation of an interdisciplinary teaching sequence,
aiming to look for the coincidences, concatenations and synergies between both processes;
and (2) to elaborate an integrated proposal for the joint analysis of both processes in the
implementation of teaching sequences in interdisciplinary contexts.

To accomplish these objectives, we start by presenting a review of some dominant con-
ceptualizations of modeling and inquiry. Then, we make our theoretical position on inquiry
and mathematical modeling explicit. Next, the implementation of an interdisciplinary
teaching sequence is analyzed from each of these two processes. Finally, as one of the main
results of this research, we present a proposal of a model that integrates both processes
for the analysis of interdisciplinary teaching sequences that aims to promote inquiry and
modeling. Some final considerations derived from the analysis of the implementation and
potentialities of the integrative model are highlighted in the last section. We hope that
this integrative model will become a useful tool to, on the one hand, describe the possible
learning paths of students and, on the other hand, to design teaching sequences to promote
mathematical modeling and inquiry in a dialectical relationship. Finally, based on the liter-
ature review we have done, this integrated view of the inquiry and mathematical modeling
is represented as a new contribution to the research field of mathematical modelling in
mathematics education.

2. Literature Review
2.1. Mathematical Modeling and the Teaching of Mathematics

Over the last decades, the research field known as “Modeling and Applications”
has brought together a range of approaches [14] that share the common objective of
fostering modeling activity in the teaching of mathematics at different educational levels
and countries (e.g., [15]) and in teacher education. These developments and their impact
are described, for example, in the 14th ICMI Study [16], the special issues of ZDM in 2006
(38(2) and 38(3)) and ZDM in 2018 (50(1) and 50(2)) as well as in the biannual International
Conferences on the Teaching of Mathematical Modeling and Applications (ICTMA).

In this line of research, modeling has been conceptualized in various ways. One of
the most widely accepted descriptions is the so-called “modeling cycle” of which several
versions exist ([17–19] among others).

This approach describes the modeling cycle as a cyclical process that can be broken
down into different sub-processes (see Figure 1), as proposed by Blomhøj ([20], p. 148) and
represents the modeling process behind the construction of a mathematical model. This
does not imply that the sub-processes need to be followed sequentially, but rather that they
can be used as a framework to analyze the overall dynamic process. The author describes
the modeling process consisting of the following six sub-processes [18,20]:
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Figure 1. A mathematical modeling process description with six sub-processes ([20], p. 148).

(a) Formulation of a task (more or less explicit) that guides you to identify the charac-
teristics of the perceived reality that is to be modelled; (b) Selection of the relevant objects,
relations etc. from the resulting domain of inquiry, and idealisation of these in order to
make possible a mathematical representation; (c) Translation of these objects and relations
from their initial mode of appearance to mathematics; (d) Use of mathematical methods
to achieve mathematical results and conclusions; (e) Interpretation of these as results
and conclusions regarding the initiating domain of inquiry; (f) Evaluation of the validity
of the model by comparison with data (observed or predicted) and/or with knowledge
(theoretically based or shared/personal experience based) ([20], p. 148).

According to the author, in Figure 1, theoretical knowledge and empirical data (repre-
sented in the diagram by two ellipses) concerning the domain of inquiry are the basis for
all the sub-processes into which modeling has been decomposed. The term “theory” refers
to the knowledge of the “domain of inquiry” used in the modeling process. As far as the
“data” are concerned, they exist prior to the modeling process and may hence be used to
support the processes of systematization and mathematization and, eventually, as a basis
for validating the model. In addition, relevant data often have to be collected as part of the
modeling process.

2.2. Inquiry-Based Teaching and Learning

The word “inquiry” is used with different meanings. Since 1938, in the field of
education, John Dewey [21] described inquiry as “the controlled or directed transformation
of an indeterminate situation into one that is as determinate in its constituent distinctions
and relations as to convert the elements of the original situation into a unified whole”
(Ibid, p. 108). The educational potential of inquiry and its impact on curricula achieved
further recognition when it was included in the National Science Education Standards [22].
Educational practices based on the Inquiry-Based Learning (IBL) approach have been the
subject of countless studies. Some of this research has produced relevant results from the
perspectives of both science education and mathematics.

Among them, as mentioned by Dorier and Maass [23], worthy of note is the research
conducted by Artigue and Baptiste [24] as part of the Fibonacci Project, seeking to promote
and study the teaching of mathematics using an Inquiry Based Mathematical Education
(IBME) approach, as well its relationships with Inquiry Based Science Education (IBSE).
Inquiry-based mathematics education (IBME) refers to a student-centered paradigm of
teaching mathematics and science, in which students are invited to work in ways similar to
how mathematicians and scientists work. This means they have to observe phenomena,
ask questions, look for mathematical and scientific ways of how to answer those questions
(like carrying out experiments, systematically controlling variables, drawing diagrams, cal-
culating, looking for patterns and relationships, and making guesses and generalizations),
interpret and evaluate their solutions, and communicate and discuss them effectively [23].
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Moreover, Artigue et al. [25] proposed the use of a diagram to illustrate the inquiry
process, a legacy of the model proposed in science (see Figure 2). As the authors explain,
“science and mathematics share the dominant mode of knowledge building through in-
quiry” (p. 9). The sequence in this Figure 2 shows that an inquiry process may start with
an initial question. Some preliminary exploration may uncover aspects that remind the
students of existing ideas, which then lead to possible explanations. To falsify (or not)
the hypothesis, data related to the problem studied need to be collected. As shown by
the sequence “prediction–plan and conduct investigation–interpret data”, the result of the
analysis can be used as evidence to check against the predicted result. If more than one hy-
pothesis is formulated, as is desirable, the sequence must be repeated several times. Based
on these results, a conclusion can be drawn providing a solution to the initial problem.
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of the Fibonacci Project ([26], p. 5).

Harlen [27] reflected on the similarities and differences between classroom experiences
that foster understanding in science and mathematics. On the one hand, it is important in
both subjects to establish a question or problem to solve, to engage in collaborative work, to
enter discussions and dialogue, to consider alternative approaches, to build critical thinking,
and to reflect on learning and to communicate. On the other hand, the author highlights
differences in how questions can be addressed, how solutions can be sought, how they can
be validated, and the nature of the explanations. In addition, an important part of IBME
is that of transforming a problem into mathematically based questions through a process
of mathematical modeling. Furthermore, Artigue and Blomhøj [10] have highlighted the
multiple commonalities between the inquiry and modeling research field. Despite the
previous remarks, it remains unclear when, how and why modeling and inquiry interact.
One of the aims of our paper is to examine this in greater depth.

Artigue and Blomhøj [10], in their conceptualization of inquiry-based mathematics
education (IBME), analyze how inquiry-based education, which originated in science edu-
cation, has migrated to mathematics education. The authors examine different approaches
and highlight two aspects of mathematical modeling research. Firstly, inquiry and model-
ing both seek to link the situations under study with the building of knowledge applicable
to personal, educational and social contexts. Secondly, modeling and inquiry conceptu-
alizations present many similarities. Artigue and Blomhøj [10] refer to the description
of inquiry by Harlen [26] in the Fibonacci Project (Figure 2), and to the modeling cycle
presented in Blomhøj [20] (Figure 1) to highlight their commonalities.

The modeling process can be described as a cyclic process where reflections along the
process can lead to changes in previous sub-processes and thereby initiate new loops in the
modeling cycle. The similarity with the diagram [referring to Harlen [26] and Blomhøj [20]]
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is striking. We see a trans-disciplinary structure of a dynamical inquiry process behind
both processes.

According to Artigue and Baptiste [24], mathematical inquiry is often motivated by
questions arising from the natural world or the world around us (as in scientific inquiry).
One of the main ambitions of mathematics is to contribute to the understanding of the
natural, social and cultural world, and to enable human beings to act on this world.
Moreover, mathematics, as a science, also creates its own objects and its own reality, and
the questions posed by these objects have promoted its development. The nature of the
questions obviously influences the inquiry process. When the questions come from an
external source (e.g., daily life, natural phenomena or, as in our work, human artefacts)
the transformation of these questions into accessible issues for mathematical work is an
important part of the inquiry process, which may involve a modelling process. However, it
should be noted that in mathematics education, the term modelling is used in a restricted
sense: it refers to a process of mathematization and construction of mathematical models.

With the same aim of describing the inquiry process, in her doctoral thesis, Sala
Sebastià [28] studied the competence of inquiry by designing and implementing various
teaching sequences for mathematics in interdisciplinary contexts. These teaching sequences
were set in historical contexts where the students had to address a range of alternative
hypotheses until they determined the most plausible one by taking into account not only
historical aspects, but also mathematical ones by developing mathematical modeling
processes. One of the derived results was the proposal of a specific model to conceptualize
inquiry processes which are presented in Section 3 (in Figure 3). Briefly summarized,
this inquiry cycle starts from a problematic and authentic situation—understood in the
same sense as Vos [29] defines ‘authenticity’ for tasks in mathematics education. From this
starting point, the students are expected to develop each of the sub-processes progressing
(and/or receding) throughout the cycle. When they come to the validation of their results
(sub-process 6 in Figure 3), they can return (dotted arrow) to formulate new hypotheses—in
case the results cannot be validated—or move on to communicate the results obtained and
the answers found to the initial questions.

Figure 3. Inquiry process model ([28], p. 67).
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2.3. Historical Contexts to Foster Inquiry

As history and social sciences are important contexts in the daily lives of students, it
seems obvious that these subjects are present when we are talking about an interdisciplinary
approach in education and, in particular, in mathematics education. Before providing
more details about the design and implementation of the teaching sequence analyzed
in this paper, it is important to clarify that it does not refer to the domain of history of
mathematics in mathematics education, (see, for instance, [30,31]) nor to the domain of
ethnomathematics and its place in the history and pedagogy of mathematics [32]. It is based
on the use of mathematics to provide answers to some questions appearing in historical
contexts, specifically involving archaeological and real historical data.

Traditionally, history has been taught as a static knowledge, mostly presented as a set
of already finished contents that students have to memorize. However, some innovative
trends in the Didactics of History strive for rethinking historical contents and their organi-
zation in school curricula to present their rationale. According to Dean [33], history is a
discipline that consists of posing questions about the sources considering the context of the
epoch and using the imagination to comprehend the facts of the past with empathy. Histo-
rians build a view of the past based on a complex interaction between two “narratives”:
the first one is the narrative of the past, based on all the objective information from the
past which historians can study; the second one includes their wisdom, life experiences,
perceptions, curiosity and their ability to imagine. The result of the interaction between two
narratives is a creative construction, based on facts and developed by means of informed
imagination. To study history, according to this author, students should have access to the
first narrative, but their second narrative is usually highly restricted due to their young
age and lack of experience. Teachers should therefore focus on providing students with
a second narrative that enables them to learn history. Along the same lines, Prats [34]
encourages students to “learn history by doing history”, gaining insight into the historical
method so as to learn biology, physics, etc.

In this work, students could learn mathematics and history by doing inquiry as
archaeologists. Following the work of the museum archaeologists’ team, and interacting
with them, students could know the methods experts use to formulate and validate their
hypothesis and how experts in the field use to interpret and give sense to the results thanks
constant feedback and dialogue between history and mathematics.

3. Our Framework of Modeling and Inquiry

In this paper, we assume the modeling cycle put forward in Blomhøj [20] (as explained
in Section 2.1 and in Figure 1). We have chosen this conceptualization of mathematical
modeling (among other possible options) as it explicitly includes the domain of inquiry
in the modeling process, in particular, between sub-process (a) “task formulation” and
sub-process (b) “systematization”.

With respect to the analysis of the inquiry process, we use the inquiry cycle proposed
in Sala Sebastià [28] (Figure 3), which is described as a cycle of seven sub-processes that are
supposed to be developed by the students when involved in an inquiry into an authentic
problem and situation.

The sub-processes into which inquiry is decomposed and analytically described are
the following:

(1) Problem formulation, which consist in turning the initial problematic situation into
particular questions to address, and thus converting it into the main object and aim of
the inquiry.

(2) Looking for possible answers, intentionally showing a critical attitude, of doubt, and
of contrast to the information that emerges from the context and from the inquiry
work in progress.

(3) Formulating hypotheses and/or predictions, making predictions and/or hypotheses
based on different variables identified in the problematic situation, with the aim of
contrasting and validating them.
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(4) Planning and organizing the work of the inquiry community (students and teachers),
proposing flexible and adaptable plans for the development of the inquiry work.

(5) Collecting, classifying, elaborating and interpreting data, when looking for, collecting,
recording and selecting data useful for the inquiry from all possible sources. When
the information is analyzed and evaluated, connections are created between that
information and the previously formulated hypotheses with the help of the necessary
theoretical tools chosen.

(6) Validating results, when validating the results by contrasting them with the initially
formulated hypotheses and analyzing those findings critically. In the case of non-
acceptance of the initial hypotheses, alternative or new hypotheses are here expected
to be formulated (shown in Figure 3 with a dashed arrow going from validation
to hypothesis).

(7) Communicating results and answering questions, when one elaborates research
reports, arguing the results and answers to the questions addressed. Moreover, this
is when any other question raised throughout the inquiry work carried out may
be answered, either individually or in groups, and when its impact and limitations
are observed.

4. Research Methodology and Methods of Analysis

The methodology adopted in this research was structured into the following steps.
We first conducted a literature review on modeling and inquiry to later, based on this
review, adopt a theoretical approach on how to interpret and conceptualize inquiry and
mathematical modeling. This positioning has allowed us to have a priori defined cate-
gories for data analysis (see Table 1), which correspond to the sub-processes into which
inquiry and modeling were decomposed. Using these categories, an implementation of
an interdisciplinary teaching sequence at secondary school was then analyzed based on
the categories (sub-processes) for modeling and inquiry respectively. This analysis allows
us to determine when both processes, modeling and inquiry, occur simultaneously, when
they are concatenated, or when synergies between both arise. The term “synergy” is here
used in the same sense as the one defined by Maracci et al. [35] as “the interaction of
two or more agents or forces so that their combined effect is greater than the sum of their
individual effects”.

Table 1. List of sub-processes of inquiry and of mathematical modeling.

Sub-Processes of Inquiry from Figure 3 Sub-Processes of Mathematical Modeling from Figure 1

I1 Problem formulation Ma Task formulation

I2 Looking for possible answers Mb Systematization

I3 Formulating hypotheses Mc Mathematization

I4 Planning Md Mathematical analysis

I5 Collecting, classifying and interpreting data Me Interpretation/Evaluation

I6 Validating results Mf Validation

I7 Communicating results and answering questions

Design and Implementation of an Interdisciplinary Teaching Sequence

With regard to this last step, this paper focuses on analyzing one implementation of a
teaching sequence with secondary school students with the aim of developing a complete
inquiry process in an interdisciplinary context combining mathematics with history. This
teaching sequence is referred to as “What lies behind these ruins?” (The worksheets used in
the implementation are available at: https://ruinesdebaetulo.blogspot.com.es/ (accessed
on 19 July 2021). It corresponds to the blog created for the implementation, where the
option “Translate” can be used to select the language) (more details can be found [28]).

https://ruinesdebaetulo.blogspot.com.es/
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The design of the teaching sequence followed the theoretical conceptualization of an
inquiry process, as shown in Figure 3, described in [28], and some of the main traits of
the proposal of the study and research paths [36,37]. From this last proposal, we used the
arborescence of questions and answers to trace the design and possible paths followed by
the students. The starting point of this sequence was an initial generating question about
hidden Roman ruins. The question was productive enough to make history and mathemat-
ics interact and was structured in terms of some derived questions that guided the inquiry
process throughout its implementation. Its structure in term of questions and answers is
used in the next section to analyze the implementation of this interdisciplinary project.

It was implemented for two weeks, during 10 sessions of approximately 4 h each, at the
end of school year 2014–2015 with a group of 32 students (14 boys and 18 girls), in their first
year of compulsory secondary education (12–13 years) at a secondary school in Badalona
(Catalonia, Spain). The history and mathematics teachers guided the implementation of
the project. The students worked in cooperative teams of inquiry. There were 10 teams or
groups of 3–4 students (identified from 1 to 10). All of them were asked to write a report
throughout their process of inquiry. The curricular objectives of the teaching sequence
were to develop the mathematical and core competences corresponding to the first year
of secondary education through key contents such as spatial reasoning, representation of
figures, geometric relationships and transformations, etc. At a social level, the influence of
Romanization in Catalonia was considered.

To perform the analysis, three group of students [Group 6, Group 8 and Group 10]
were selected to analyze the inquiry and modeling processes they followed in depth.
Following the objectives set out in this research, we selected these three groups after
the implementation was completed. This decision was made based on the researchers’
observations and after watching the audio and video recordings of the sessions. Said
three groups were the most involved in the inquiry and developed the richest modeling
processes. It is worth mentioning that during the implementation of the teaching sequence
the first author of the paper acted as a non-participating observer. The observer regularly
elaborated observation reports about the different discussions and activities posted on
the blog created for the implementation. Apart from these observation reports, the data
gathered concerned the students’ reports, and the students’ interactions in the classroom
sessions. The teachers and the observer had permanent access to the students’ reports,
which were uploaded as a document in Google Drive. In summary, the data gathered
and analyzed in this paper correspond to: (1) the students’ reports in Google Drive, (2)
the final report submitted by the working groups, (3) the “chronicles” written by one of
the educators acting as an observer of the whole group of participants, and (4) audio and
video recordings.

We used the decomposition of modeling and inquiry processes into sub-processes
to analyze the four called type of evidence of the students’ work in the interdisciplinary
project ab out Roman ruins. Table 1 includes the sub-processes of the modeling cycle
(from [20] as described in Figure 1) and of the inquiry cycle ([28] as described in Figure 3),
and the acronyms that will be used throughout the analysis of the students’ work. The
column on the left corresponds to the inquiry process, and the one on the right to the
modeling process.

The first author of the article did the preliminary analysis of all evidence collected
in each session of implementation. This data come from the transcripts of the sessions’
recordings, her fieldnotes during the implementation, and the students’ productions, most
of which were collected through the writing of students’ reports. All this empirical data
was firstly analyzed by the first authors who code the data and identified the evidence
corresponding to the categorization presented in Table 1. Each category corresponds,
respectively, to one of subprocess of inquiry and modeling, which are described in detail
in the theoretical framework section. Following, this first analysis was triangulated with
the other two authors of the paper, who analyzed again the data, complementing and
validating the initial analysis. As the data collected was too big, we agreed to focus on
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the most active working groups. That is, our analysis focused on Group 6, Group 8 and
Group 10 whose work we consider rich and representative enough of implementation. As
an example of the kind of analysis that will be presented in Section 5, we illustrate the
initial episode when the question that initiated the inquiry was presented to students as:
What lies behind these ruins? After a group discussion, the students agreed that the problem
formulation could be reformulated as: What type of Roman building could the Roman ruins
correspond to? In this episode, the whole group agreed to reformulate the problem and
task to be solved, which is the first sub-process of the cycles of modeling and inquiry. This
sub-process took place and is indicated by the acronyms [I1] and [Ma].

The analysis of the presence of the different sub-processes (categories described in
Table 1) was carried out following the timeline of the implementation of the whole sequence
during 10 sessions. For each session, a summary of the students’ activity is included, which
allows us to infer the use of the sub-processes linked to inquiry and modeling.

5. Analysis of the Didactic Sequence Based on Inquiry and Modeling Processes

In the first session, the students were introduced to the initial problem, which was
related to the discovery ten years ago of Roman ruins in the center of Badalona by the
team of archaeologists of the Badalona Museum. According to archaeological research [38],
these ruins belonged to an old building in the Roman city of Baetulo—the Roman name
for Badalona. The activities were structured along certain questions that facilitated the
students to progress within the cycle of inquiry. The students were asked to find out what
type of public building the Roman ruins belonged to. The teachers suggested the main
questions of the project described below.

The students worked with real data from the beginning of the project. For example,
to introduce the project, the teachers showed the students how to locate and study the
area of the city where the ruins were discovered by using Google Maps and Badalona’s
urban geo-portal. Managing these real local data was important for some teams in order to
formulate their initial working hypotheses about what kind of building the ruins could
correspond to.

The main initial question that initiated and motivated the inquiry was: What lies behind
these ruins? After a group discussion, the students agreed that the problem formulation (and
the task formulation) of the real situation had to be specified as: What type of Roman building
could the Roman ruins correspond to? [I1] and [Ma].

Faced with this question, the students proposed that the ruins could correspond to,
for instance, a theater, a circus, an amphitheater, a basilica, baths, a pantheon, a temple,
etc. The students then focused on searching historical information to look for possible
answers [I2] about the kind of roman construction this building could be. Different kinds of
explanations [sub-process to justify the choice of building] could be provided, but the most
satisfactory ones in the school context were related to taking into account the shape of the
building. For example, the students deduced that “if the ruins correspond to an ellipse,
the building could be an amphitheater; or, if it is a semicircle it could be a theater; or, if a
section of its perimeter was rectangular, it could have been a circus, etc.” [Mb]. The rest of
the possible buildings that have a regular polygonal layout were rejected, as it turned out
the wall was curvilinear.

To work on the justification and validation of these hypotheses, the students worked
with a new set of questions and their corresponding answers, which meant going back a
few steps in the cycle of inquiry. The teachers, following the students’ comments and their
firsts hypotheses, proposed working on these questions: What geometrical shapes could fit
into the building’s partial wall discovered by the archaeologists (a 1.5-m-high curvilinear wall)?

The students knew that the wall was curvilinear, as they refer to it using the archae-
ological report available on the blog. They thus hypothesized [I3] that the Roman wall
had been part of a curved building [Mb], such as a (semi-circular) theater, an (elliptical)
amphitheater or a circus (as a part of its semi-circular floor). Different questions arose that
were further specified as follows: How can we find out the original shape of the discovered wall?
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To validate their hypotheses, the students worked on defining an action plan [I4] with
the help of the history and mathematics teachers to determine the original shape of the
remnants of the curved wall. To do this, the students undertook a range of mathematically
orientated actions. To find out whether the Roman wall was part of an ellipse or a circum-
ference, in order to look for possible answers [I2]), the students went to a public square near
their school where the teachers had drawn the shape of the Roman wall on the ground
using the archaeological information available. In this activity, the students developed
mathematical modeling because they tried to find a geometrical model that would fit a
representation of the original wall. First of all, the students tried to graphically fit the
drawn wall into an ellipse using a manual method. Two students of group 10 were then
placed at the foci (determined by trial and error) of the possible ellipse, each holding the
end of a rope. A ring, which could move along the rope, was used. A third student held on
to the ring to keep the rope tight at all times while following the trajectory of the drawn
wall. This process of data collection [I5], mathematization [Mc] mathematical systematization
[Md] analysis and interpretation [Me] was repeated several times as the students changed
the location of the foci of the ellipse to be able to follow the wall drawn on the ground and
to try to validate the model [Mf] and [I6] the results geometrically. The students encountered
numerous difficulties to fit the shape of the wall into an ellipse, basically because it was not
easy to draw such a large ellipse. Considering the dimensions of the wall represented on
the floor of the square, the radius of the ellipses had to be at least 16 m long. Moreover, it
was not easy for the students to visualize the wall’s curved shape, as it looked more like
straight line than part of an ellipsis or a circumference. The students concluded that the
wall could not possibly be part of an ellipse. A student from inquiry team 8 drew an ellipse
on the floor and justified the following [Mb]: “If it really was an ellipse, it could only be
the flatter part, the middle part, because if it was this part (pointing toward the vertex of
an imaginary ellipse she was drawing with her finger), it wouldn’t be curved enough”.
Another student added: “But . . . It could be a part of a big circumference, right? There
were buildings that were round, don’t you remember? We should try to find out if this
shape has a center

Once the ellipse hypothesis was rejected, the students continued looking for answers
[I2] and tried to fit the wall into a circumference by aligning its center and radius. To
collect new data, to mathematize, systematize, analyze and interpret them [I5], [Mc], [Md] and
[Me], the inquiry teams used different methods of construction. First, when the students
remembered that all the points of a circumference are at the same distance from its center,
they tried to find the center by testing possible centers through trial and error [Mc] and
[Md]. As this was unsuccessful, they tried again by using plaster to draw some of the
tangents at different points of the wall. They drew a perpendicular to these tangents (using
a large ruler and a wooden square) to find the center at their intersection to then be able
to determine the radius ([Mc] and [Md]). Teams 6 and 10 opted for a different strategy:
they drew two bisections at three points of the arch of the wall using a rope and plaster
to mark them. They found the center at the midpoint of the bisector and thus concluded
that the wall belonged to a circular building ([Mc] and [Md]). The teachers encouraged the
students to measure the radius—16 m—and to draw the complete semi-circumference on
the square [I5]. The students decided to ‘draw’ it placing some classmates side-by-side at a
distance of 16 m to the center of the circumference. The students realized that the perimeter
of the building was enormous. A student said: “It was bigger than our school! And . . .
how many people fit in it? A lot of people, right?” [Me]. At this stage of the activity, it is
observed that all the inquiry teams completed a mathematical modeling cycle and they
managed to develop the initial strategies to work on the validation of the initial hypothesis
formulated ([Mf] and [I6]) testing the geometrical models that best fit the simulation of
the Roman ruins and rejecting those that do not fit. The use the students gave to the
tangible construction of the geometrical model was an important contribution in order
to progress in the modeling and inquiry cycle. At this point of the inquiry, almost all the
teams concluded that the wall fit into a circumference.
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Given the fact that the question of having to discover what kind of curve the wall
could fit into was complex, the historical context of the situation played a central role.
The students look for answers [I2], collect and interpret [I5] data from the historical context,
that is, from the information found about the reported shape of the Roman building, the
information from the archaeological report, etc. This historical context allowed the students
to formulate and work on the most plausible hypotheses [I3]. Indeed, the number of possible
curves was limited to the forms used in public Roman constructions (an ellipse or circumfer-
ence and their defining elements). Moreover, the students could select (systematization [Mb])
the most relevant and mathematizable [Mc] data based on limited information. Limiting
the wide variety of possible models to fit the shape of the ruins, thanks to the historical
context and the answers found, allowed the students to make the problem accessible to
them and to put into practice some mathematical knowledge easily available to them.

Once the students validated [I6] and [Mf] that the wall fit into a circumference, two
possible types of buildings were historically possible: a (semi-circular) theater or a circus
(with a semi-circular floor layout on one side and a rectangular one on the other). To
determine which of these two options the building could correspond to [I2], the students
went back to the information provided by the historical data about the size and area [I5],
which helped them discard one of the options.

At this point, students considered two new hypotheses (a theater or a circus), prob-
lematized by the following questions: In Roman times, what were theaters actually like?
What about circuses? Do we have the necessary data to sketch their layout?

The students needed to know more about Roman architecture. The teachers decided
to talk about the work “De Architectura” by Marcus Vitruvius (a free English version of
“The Ten Books on Architecture” by Vitruvius is available online 19 July 2021: http://
www.gutenberg.org/files/20239/20239-h/20239-h.htm#Page_137 but we use the Spanish
version available on the blog (see endnote 1)) (c. 80-70 BCE-15 BCE) that describes the
construction rules for a range of public Roman buildings, detailing their parts, proportions,
etc. By doing so, the students could look for possible answers [I2].

After presenting this external resource, the students decided to try to validate the
hypothesis of a theater. They planned the actions to be carried out and started by system-
atizing [Mb] and mathematizing [Mc] the data collected during the inquiry (data from the
archaeological report, historical data, data from the site’s location, data from the previous
modeling cycle developed, etc.), interpreting them [Me] according to the rules of Vitruvius
on theater building with the help of the teachers. At this stage, the students started a
modeling cycle that consisted of building a geometrical model of a Roman theater by
following the construction method recommended by Vitruvius.

The students had a Spanish translation of the facsimile in the blog of the project, where
the method for the construction of a Roman theater model was explained. The students
also had a document on the blog, prepared by the participant-researcher, which helped
them to reproduce Vitruvius’ method by using GeoGebra (considering it could be difficult
for the students to set it up using Geogebra). Nevertheless, they quickly learned how to
use the program. Moreover, they resorted to images of ancient Roman theaters they found
on the Internet in order to understand and visualize their forms and likely sizes.

This whole process concluded with the construction of several geometric models of the
Baetulo theater that each research team built (see Figure 4a). The models were adjusted and
simulated using the information provided by Vitruvius’ canon of proportions as well as
the measurements the students had gathered and shared in the class with the other teams.

Regarding the work developed by Group 8, they distinguished the main parts of a
Roman theater, which were: the cavea (tiered seating space for spectators), the orchestra
(semicircular space for the musicians, between the bleachers and the stage), the frons scaena
(decorated stage background to which actors had access) and the stage (rectangular space
in front of the stage background). The cavea, which was shaped like a semicircle, was the
grandstand where the spectators used to sit. It was enclosed by an external semicircular

http://www.gutenberg.org/files/20239/20239-h/20239-h.htm#Page_137
http://www.gutenberg.org/files/20239/20239-h/20239-h.htm#Page_137
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wall. Group 8 assumed that the fragment of the curvilinear wall found in the ruins was a
part of this wall bordering the cavea.

Figure 4. (a). Drawing of the theater model built by Group 8 using GeoGebra; (b). Model simulation proposed by Group 8
superimposing it onto the archaeological site map.

Group 8 followed the procedure described in Figure 4, when they built and simulated
their model with GeoGebra. As shown in Figure 4, they distinguished the different parts
to propose different models fitting each part. Firstly, group 8 estimated the radius of the
semicircle to be 16 m, as was concluded in the first part of the activity carried out at the
square near the school. The students drew the outer semicircular shape of a part of the
theater. Then, following the classical rules of construction, which indicated to give to the
orchestra part of the building a value of 5 m, they drew it. They subsequently simulated the
frons scaena and the scaena, which corresponds to a polygon that closes the perimeter of the
theater on the opposite side. They extended two straight lines tangent to the semicircle of
the outer perimeter of the cavea, drawing a perpendicular to both, as shown in Figure 4.
Next, they drew, between the external circumference (corresponding to the cavea) and the
internal one (corresponding to the orchestra), other circumferences distanced at 0.74 m
(equivalent to 2.5 feet), which corresponds to the classical proportions of construction.
Group 8 correctly interpreted that each of these circumferences represented one tier (or
terrace) in the cavea (or bleacher) where Roman citizens sat to watch the performance.

Once the model was built using GeoGebra, the teachers asked some new questions to
help the students reject the hypothesis of the circus and validate the hypothesis of the theater:
Does the built model fit properly into the dimensional layout of the area where the ruins were found?
How can we evaluate how well it fits?

To answer these questions, the students superimposed a simulation of the theater they
had drawn using GeoGebra onto the archaeological site plan (which showed the details
and contours of the ruins) adapting the scale and checking whether the contours fit or not.
Figure 4b shows the proposal of group 8. This group, like others in the class, pivoted their
model until they thought the theater simulation was in an appropriate position according
to what was shown on the real map. In other words, the students thought it necessary to
validate ([Mf] and [I6]) the model simulation with respect to reality, in this case the real map.

The fact that the GeoGebra model fit the site plan did not validate (or disprove) the
hypothesis of the circus. Since the process of fitting the model meant it had to be reduced
or enlarged beyond its form, it was necessary to check if the resulting model continued
to meet the characteristics of a Roman theater set out by Vitruvius, such as its location
(theater exits had to be placed next to city squares) or (that had to continue to comply with
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several building rules after applying the scale of the map to the building). The students
performed these checks appropriately, obtaining the answer to the questions proposed
by the teachers and, consequently, validating the hypothesis that the wall might have
belonged to a Roman theater.

At this point of the inquiry, the students were asked to compare their conclusions with
the results obtained by the team of archaeologists of the local museum so as to validate their
answers and processes followed with external experts [I6]. To this end, a meeting was scheduled
with the main archaeologist, P. Padrós, who was responsible for the discovery of the real
ruins. Each team prepared some questions to interview her. The students’ questions were
about the archaeologist’s discoveries to check their own results. She answered all the
questions and showed interest in the students’ work.

She also offered new historical information on the theater in the city of Baetulo, such
as the estimated population in the first century before the common era (BCE) when the
theater was already in operation, the location of the city wall and its gates in relation to
the theater, etc. One of the gates was located close by, supposedly so the theater could
welcome people from neighboring towns.

Thanks to the archaeologist’s new contributions and after sharing this information,
the students were able to answer the inquiry’s initial and main question. They argued that
the Roman wall belonged to a Roman theater, which meant the inquiry could be considered
as concluded. However, the archaeologist had sparked off new questions related to the
details of her team’s current research process and this led to a new cycle of inquiry. For
example, the students wanted to calculate the capacity of their theater model to re-evaluate
it, checking whether it coincided with that obtained by the archaeological experts. This
means that the situation was again problematized ([I1] and [Ma]) and new questions were
posed: What was the theater’s occupant capacity? How many people could it hold?

A new cycle of inquiry was initiated to look for possible answers regarding the occu-
pant capacity of the theater [I2]. Baetulo’s population (approximate data provided by the
archaeologist) was taken into account to formulate new hypotheses [I3] on the theater’s
maximum occupancy to meet the needs of the inhabitants of Baetulo. Historical data were
collected to estimate the number of inhabitants out of the total population that would
usually have gone to the theater: for example, what type of performances were planned,
to which audience were the performances addressed—only to adults or to children, to
what social classes, etc. In this way, a hypothesis was formulated only based, like in the first
stage, on inquiry processes of historical content looking for information about other similar
Roman theaters in Spain, such as Pollentia (in Mallorca) or theaters in Málaga.

To validate their hypotheses, the students devised an action plan [I4] based on complet-
ing the model built in the second stage of the previous cycle with a drawing of the essential
details (such as stands, stairs, access, evacuation corridors, etc.) to calculate the number
of seats. They continually took the proportions recommended by Vitruvius into account.
Group 8, for instance, counted how many rows there were present in their model. They
had considered a total of 15 rows (see Figure 4a). Then, using their model, they calculated
the approximate length of each of the semicircles that represented a stand of the cavea. With
this information, they estimated how many people could sit in the theater, assuming that
two people could be seated in 1 square meter.

This meant a new model had to be prepared to systematize [Mb] the data, to mathematize
[Mc] them, to analyze [Md] them, and obtain new results to be validated based on the real
archaeological context. The students performed a graphical analysis of the resulting
new model [Me], based on the determining elements of the theater’s capacity (number
of stands, distance between stands, space between spectators, location, number of stairs
and entrances, etc.). Several groups made some adjustments with regard to the capacity.
For instance, they took into account that it was likely that the first stand was reserved for
senators and other important people in the city and that they were therefore supposed to
have more space to sit there. Again, historical and archaeological data were enriched by
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mathematical data, and vice versa. Both kinds of data and models had to be combined to
obtain relevant answers.

The model that emerged from this second modeling process based on the new archae-
ological and historical data and Vitruvius’ rules enabled quantifying the theater’s capacity.
All the inquiry teams obtained similar results on the approximation of this capacity, which
oscillated between 878 and 1100 spectators. This result, together with the new model, was
interpreted and validated [Me] with respect to the real work of the experts, the archaeologists.
The students, guided by their history teacher, concluded that the theater seemed to be
able to hold more spectators than expected, taking into account Baetulo’s population at
that time. This exceeded the students’ initial hypothesis. However, taking into account
the information provided by the archaeologist of the museum, this result was consistent
with the fact that the theater welcomed inhabitants from neighboring towns. Finally, once
all the inquiry teams had shared their work, the students drew up their inquiry report
with the aim of communicating their results and providing their answers to the questions
posed throughout the process [I7]. During this collective process, new questions emerged
that could have led to new cycles of inquiry, accompanied by new modeling processes,
but mainly due to time constraints, it could not be further extended. At the end of the
implementation, for instance, some questions emerged about if the way to inquire into
the Roman theater model here studied could help to model and explain other ruins found
around the world.

6. Results and Discussion
6.1. Visualization of the Relationships between Inquiry and Modeling

The analysis described in the previous section has been outlined and represented
using the online visual collaboration platform called Miro. It has allowed us to visualize
the relationships between the different sub-processes of inquiry and modeling, as shown
in Figure 5. This platform is an online resource that enabled us to cluster categories and to
show the relationships established between them. The circles corresponding to the inquiry
sub-processes were colored in yellow, and the ones for the modeling sub-processes in blue.

Figure 5. Representation of relationships between the sub-processes of inquiry and the sub-processes of mathematical modeling.
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To facilitate the understanding of Figure 5, the cluster represented corresponds to the
analysis of the first cycle of inquiry and modeling (explained in Section 5). This figure
was elaborated from the synthesis of the different episodes described earlier, following
the chronological thread of the implementation. The different episodes, numbered from
1 to 10, in accordance with the chronological order of the implementation, are represented
in rectangles inside the figure. They are connected to the sub-processes of inquiry and
modeling (as described in Table 1) in the same way as in the analysis in Section 5. By means
of arrows, each circle (or sub-process) is connected to the different episodes where evidence
has been found that the students accomplished this particular sub-process.

On the right of the cluster, an example is shown of how to zoom into the representation
of the sub-processes [I1] and [Ma] of inquiry and modeling. This particular example
corresponds to episode 1 when the teacher introduced the situation and to the main initial
question that initiated the inquiry (What lies behind these ruins?). After a group discussion
to understand the situation, the students reformulated the problem by specifying the
questions to address.

6.2. Coincidences, Concatenation, and Synergies between the Two Processes

The first thing that can be observed in the analysis of the implementation is that
there are some sub-processes that are common to both the inquiry and modeling process,
such as validating results, as described by [I6] and [Mf], and the problem formulation or
task formulation, corresponding to [I1] and [Ma]. Similarly, systematization [Mb] is a sub-
process of modeling that appears together with that of formulating hypotheses [I3] during
the implementation, which is the moment when the students defined the system and
formulated the first hypotheses about it.

The subprocess of inquiry about communicating results and answering questions [I7] is
not considered as such in the modeling cycle that we have used as reference for the analysis.
In this regard, this sub-process seems independent of the modeling process, although we
are aware that there are other conceptualizations of modeling proposed by other authors
that take into account this important sub-process, such as the one put forward by Galbraith
and Stillman [39].

The inquiry sub-process called looking for possible answers [I2] is present throughout the
implementation, and overlaps some modeling subprocesses, such as systematization [Mb]
and the mathematical analysis [Md]. On the one hand, this further confirms that students do
not follow the sub-processes of the cycle sequentially, as has been commented by several
authors (e.g., [12,13,20], among others). On the other hand, it shows the importance of
this subprocess to ensure that the students’ work is successful both in the inquiry and
modeling activity.

When the students reached the point of collecting, classifying and interpreting data [I5]
(inquiry sub-process) because they had some data to be mathematized, they began with a
modeling process that allowed them to continue progressing in the inquiry. This modeling
process is inserted between [I5] about collecting, classifying and interpreting data and [I6],
the validation of the results. When this modeling cycle unfolded, the inquiry process and
certain modeling sub-processes concatenated, as was the case of the systematization [Mb],
mathematization [Mc], mathematical analysis [Md] and interpretation and evaluation [Me] of
the model. This concatenation and, to some extent, complementarity, has allowed the
emergence of a mathematical work in relation to, for instance, the properties of curves,
measuring tools, polygons, etc. It provides more accurate tools to look for answers and to
validate the results ([I6] and [Mf]).

The relationships between inquiry and modeling have already aroused the interest of
various researchers, as observed in the literature review section. Artigue and Blomhøj [10],
in their paper on conceptualizing inquiry-based education in mathematics when they
address the modeling perspectives, comment that the modeling cycle and the inquiry cycle
share certain similarities. In their words:
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Working with modeling in mathematics and in other subjects can thereby lead to
valuable understanding of inquiry as a more general process with different particular
realizations in different disciplines and contexts [10].

This paper intends to delve deeper into how these two processes relate to each other.
It shows the coincidences, concatenations and synergies between the two processes.

What has allowed the modeling and inquiry processes, beyond being linked or concate-
nated to enrich each other, producing certain synergies, is the key role of interdisciplinarity
in the proposal of the teaching sequence.

History allowed the students to limit the range of possible hypotheses and models
to be considered (of the possible curves that could fit the wall, as there were only two
types of curves: a circumference and an ellipse). Limiting the hypotheses meant that
the mathematical knowledge required of the students to be able to progress with regard
to elaborating their answers was part of their Zone of Proximal Development (ZPD).
During the implementation, the students had the chance to improve their knowledge of
the properties of these curves, circumferences and ellipses. The fact that there were two
types of possible curves (known by the students) that appeared as hypotheses to validate
or reject was a key aspect for the students to develop complete modeling cycles, as the ones
described in the analysis. It led the students to the construction and use of these models to
fit geometrical forms.

Another aspect that favors the synergy between inquiry and modeling is based on the
fact that history provides the rules of construction (the ones established by Vitruvius were
used in the implementation). This allows the students to progress in the formulation of
geometrical models and enables them to simulate them and validate them when comparing
them with the real plan of the ruins. The use and role of technology might be emphasized,
especially the use of GeoGebra. It had a significant role mainly to facilitate that students go
ahead with the representation and simulation of the models proposed and their contrast
against their data. The use of these technological tools allowed the students to reflect on
their hypothesis, providing them tools to work with different representations of models,
their experimentation (as is explained in Pedersen et al. [40], simulations and validation.

Last but not least, the interaction the students had with an expert of the team of
archaeologists of the museum in Badalona responsible for the ruins found in the city let
them obtain an external validation of their answers and of the whole process followed. It
also facilitated the formulation of new questions, such as what the capacity of the Roman
theater of Baetulo might be, thus allowing for the students to begin a new cycle in inquiry,
as explained in Section 5.

7. Conclusions

To analyze inquiry processes and modeling processes we could use either one of
the pre-existing analytical models for each type of process, which correspond to specific
conceptualizations of what inquiry and modeling consist of, could be used. However, the
models proposed for inquiry do not consider some important processes characteristic of
mathematical modeling, such as the mathematization or the systematization processes.
Consequently, none of these models allowed us to adopt an integrative approach concern-
ing inquiry and modeling developed when students are involved in open-disciplinary
and ground-breaking teaching projects. We thus aimed at building an integrative model,
presented in this paper, that integrates all these aspects and that enables us to perform the
joint analysis of inquiry and modeling within the empirical context of our implementation.

To do so, first, we adopted the proposal put forward by Blomhøj [20] to analyze
the mathematical modeling processes and the model formulated by Sala Sebastià [28] for
the inquiry processes. We then used these two models to analyze the presence of these
processes in the implementation of an interdisciplinary teaching sequence, which was
designed for students to develop inquiry. Our aim was also to look for coincidences,
concatenations and synergies, established between both processes.
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Based on this analysis, we obtained the relationships between the two processes
shown in Figure 5. These relationships led us to propose a model (Figure 6) that integrates
both processes here considered. The sub-processes corresponding to an inquiry cycle,
in accordance with the model used by Sala Sebastià [28], are represented on the right in
Figure 6. In the analysis of the teaching sequence, we observed that both processes begin
with the problematization ([Ma] and [I1]) of a real-life situation, as we have seen in the
implementation analyzed. After the emergence of some derived questions [I2], a process is
initiated to look for answer to them—which could correspond to the so-called domain of
inquiry in the Blomhøj [20] diagram (Figure 1). We consider that, at this point, both cycles
could be connected.

Figure 6. Integrative analytical model of the inquiry and modeling processes based on inquiry models by Sala Sebastià [28]
Authors (2016) and modeling by Blomhøj (2004) [20].

Different hypotheses can be considered (sub-process 3 in Figures 3 and 6) and, in
order to validate them—or reject them—, an action plan is drawn up (sub-process 4 in
Figures 3 and 6) to collect data and select relevant data in order to classify, organize and interpret
them (sub-process 5 in Figures 3 and 6). Modeling can come into play at this stage when
looking for the validation of the hypotheses under consideration. The inquiry cycle could
again be connected with a modeling cycle (on the left in Figure 6) in the 5 sub-processes,
when the students carried out the inquiry and had to mathematize the data collected—as
we have seen in the implementation analysis—. This connection is shown in Figure 6 by a
horizontal dotted arrow. The left part of Figure 6 displays the cycle of modeling, adapted
from the original model of Blomhøj [20].

The proposed integrative model (Figure 6) shows how the modeling cycle is initiated
after the sub-process (5)—sub-process (b) on the left part in Figure 6 corresponding to the
systematization of the data for its subsequent mathematization (sub-process c). Next come
the sub-processes including the mathematical analysis (sub-process d), and the interpretation
and/or evaluation of the resulting model. This sub-process is another shared characteristic
(shown by another horizontal dotted arrow) between the two cycles. Validation is a common
sub-process in the two cycles: it is sub-process f of the modeling (in Figure 1) and sub-
process 6 of the inquiry (in Figure 3). In both processes, as observed in the analysis of
the implementation, this step consists in validating the constructed model. Its validity
is evaluated taking into account the inquiry context, data and/or theoretical knowledge
and personal or shared experience. When the model is not validated and it needs to be
either improved or rejected, or a different model needs to be built, the modeling cycle
can start again from sub-process 5 based on the collection of new data or a previous sub-
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process (see the vertical dotted arrow inside the cycle of inquiry in Figure 6), with the
formulation of new hypotheses. Once the validation stage of the model(s) is completed, the
sub-process consisting in communicating results begins (sub-process 7 in Figure 6) during
which questions from the initial problem are answered. At this stage, at the end of the cycle
of inquiry, it is likely–and desirable–that new questions be generated in relation to the initial
problem thus launching new cycles of inquiry.

We consider the integrative model presented in this section useful to analyze other
teaching proposals originated in other kinds of interdisciplinary contexts for inquiry. It
can also be used as a descriptive and analytical tool, and as a design-oriented tool to help
provide a blended view of inquiry and mathematical modeling. In these terms, this work
could constitute a significant contribution to the field.
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