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Abstract: In this paper, we consider a discrete-time multiserver queueing system with correlation
in the arrival process and in the server availability. Specifically, we are interested in the delay
characteristics. The system is assumed to be in one of two different system states, and each state
is characterized by its own distributions for the number of arrivals and the number of available
servers in a slot. Within a state, these numbers are independent and identically distributed random
variables. State changes can only occur at slot boundaries and mark the beginnings and ends of
state periods. Each state has its own distribution for its period lengths, expressed in the number of
slots. The stochastic process that describes the state changes introduces correlation to the system,
e.g., long periods with low arrival intensity can be alternated by short periods with high arrival
intensity. Using probability generating functions and the theory of the dominant singularity, we find
the tail probabilities of the delay.

Keywords: queueing theory; discrete-time; multiserver; correlation; delay; tail

1. Introduction

When, in the early 20th century, the Danish mathematician Agner Erlang used a
mathematical model to describe a telephone switch (at the time, an office where workers
manually connected phone lines), he became the founder of the field of queueing theory.
More than a hundred years later, queueing theory is used in a broad range of practical
problems such as in traffic engineering and industrial engineering, but telecommunications
remains one of the main fields of application [1–3].

Multiserver queueing models have received considerable attention in the past. Most
papers, however, focus on the analysis of the queue length characteristics only. Results are
available for queueing systems with a constant number of available servers [4–6] as well as
for queueing systems with a variable number of available servers [7–9].

When it comes to delay analysis, multiserver queueing systems are notoriously hard
to analyze, but some results do exist in the literature. In [10–12], discrete-time queueing
systems are treated where the number of available servers is constant, while in [13], the
number of available servers in a slot is a stochastic variable which is independent and
identically distributed (i.i.d.) from slot to slot. In [14], a continuous-time queueing sys-
tem is treated where N servers are subject to breakdowns and repair; the results are the
distributions of the queue length and waiting times. The authors of [15] obtain the queue
length distribution and the delay distribution for a discrete-time model with general service
demands and correlated service capacities. In their model, the service time of a customer
depends on both its service demand and the service capacity.

In this paper, we consider a discrete-time multiserver queueing system that is special
in the way that it allows correlation in both the slot-to-slot server availability and the arrival
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process. The buffer capacity is assumed to be infinite and the queueing discipline is First
Come First Served (FCFS). In our earlier paper [16], we handled the system content of such
a queueing system, and now we focus on the analysis of the delay characteristics. Table 1
compares the setting and delay results of the current paper to those of the relevant related
papers indicated above.

Table 1. Brief summary of the setting and delay results of relevant papers in comparison with the
current paper.

Paper Servers Arrivals Delay Results

Chaudhry et al. [10] constant general (bulk), i.i.d. full delay distribution
Bruneel et al. [11] constant general, i.i.d. tail probabilities

Gao et al. [12] constant general, i.i.d. tail probabilities
Laevens et al. [13] i.i.d. general, i.i.d. tail probabilities
Neuts et al. [14] i.i.d. general, i.i.d. full delay distribution

De Muynck et al. [15] correlated general, i.i.d. full delay distribution

The current paper correlated correlated tail probabilites

The considered queueing system can be in two different system states. For every slot,
a stochastic number of servers is available, and a stochastic number of new customers
arrive. These are both i.i.d. within each state, but these distributions can be different for
each state. The system resides for a stochastic number of slots in the same state before state
transitions occur, which can only happen at slot boundaries. The sojourn times follow a
distribution which is also dependent on the system state.

The above setup can be used to model a wide variety of queueing systems, such as
queues with bursty arrivals (where long periods of low/no arrival intensity are alternated
by short periods of high arrival intensity) and queues with cyclical service capacities (where
alternately few and many servers are available for fixed period lengths).

The potential applications can be found in many fields. In [17,18], continuous time
models are used to calculate the delay in a system with time-varying arrival intensity
and service capacity. The envisaged application is a hospital emergency department, but
the model can also be used in other applications. In [19], time-dependent arrival rates
are called a key feature of many real life service systems and it is, therefore, included in
the Erlang loss model which is presented. In [20], an overview of time-varying queueing
models is presented, from a telecommunications point of view. A possible application of
the method of this paper is a processor sharing system with speed scaling [21], where the
processing speed is adapted to the (expected) load. Another possible application is the
domain of mobile ad hoc networks [22]. In such networks, nodes (which can move freely)
must cooperate to send and receive packages. The number of available nodes as well as
the traffic varies over time.

The outline of the paper is as follows. In Section 2, we give the mathematical outline
of the queueing model. In Section 3, we repeat some key results regarding the system
content from our earlier paper [16]. In Section 4, we condition the delay of a customer on
the state of the arrival slot and on the number of customers present in the queue at the
moment of arrival. Section 5 then describes how the delay of an arbitrary customer can
be obtained. In Section 6, we use the theory of the dominant singularity to obtain the tail
characteristics of the delay. The numerical examples in Section 7 illustrate the model and
Section 8 concludes the paper.

2. Queueing Model

We consider the discrete-time multiserver queueing model of [16] with correlation
over time in both the arrival process and the server availability. In this discrete-time model,
the time horizon is divided into slots of equal length and, during a slot, the system can
be either in state 1 or state 2. Note that, in general, in our paper, we will always use i to
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indicate a system state and not repeat that it can only take values 1 and 2. Furthermore, we
will use ı̄ to refer to the other state:

ı̄ , 3− i . (1)

Therefore, put simply, there are two types of slots, which we call state-1-slots and
state-2-slots, and during a state-i-slot the queueing system is in system state i. State changes
can only occur at slot boundaries and mark the beginnings and ends of state-1-periods and
state-2-periods. If we denote with ri,k the length (expressed in the number of slots) of the
kth state-i-period, then the series {ri,k} form two sets of i.i.d. stochastic variables. Their
distribution is given by

ri(n) , Prob[state-i-period has n slots] , n ≥ 1 ; (2)

Ri(z) ,
∞

∑
n=1

ri(n)zn ; ri ,
∞

∑
n=1

nri(n) = R′i(1) , (3)

where we have introduced the probability generating functions (pgfs) Ri(z). We limit the
Ri(z) to be rational functions of their argument:

Ri(z) =
Ai

r(z)
Bi

r(z)
, (4)

with Ai
r(z) and Bi

r(z) mutually prime polynomials of degree mi
Ar and mi

Br, respectively, and
with Ai

r(1) = Bi
r(1) = 1. We define mi

r as:

mi
r , max(mi

Ar, mi
Br) . (5)

The probability that an arbitrary slot belongs to a given state is equal to the fraction of
time the system is in that state and is given by

σi , Prob[arbitrary slot belongs to state i] =
ri

r1 + r2
. (6)

The special feature of our model is that the server availability and the arrival process
both depend on the system state. Specifically, the distribution of the number of available
servers during a slot depends on the system state during that slot in the following way:

si(n) , Prob[n servers available during a state-i-slot] , n ≥ 1 ; (7)

Si(z) ,
∞

∑
n=1

si(n)zn ; si ,
∞

∑
n=1

nsi(n) = S′i(1) . (8)

During every slot, there is at least one server available and within a given state-i-
period the numbers of available servers during the different slots are i.i.d. from slot to slot.
Similarly to the Ri(z), we also limit the Si(z) to be rational functions of their argument:

Si(z) =
Ai

s(z)
Bi

s(z)
, (9)

with Ai
s(z) and Bi

s(z) mutually prime polynomials of degree mi
As and mi

Bs, respectively, and
with Ai

s(1) = Bi
s(1) = 1. We define mi

s as:

mi
s , max(mi

As, mi
Bs) . (10)
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The numbers of arrivals during the different slots of a given state-i-period are i.i.d.
from slot to slot as well. Their common distribution is characterized by

ci(n) , Prob[state-i-slot has n arrivals] , n ≥ 0 ; (11)

Ci(z) ,
∞

∑
n=0

ci(n)zn ; λi ,
∞

∑
n=1

nci(n) = C′i(1) . (12)

The average arrival intensity is then given by

λ , σ1λ1 + σ2λ2 . (13)

Customers can only start service at slot boundaries, so an arriving customer can only
be taken into service at the beginning of the next slot, even if a server is idle at the moment
of arrival. The queue capacity is assumed to be infinite, so an arriving customer will always
join the system. Each customer requires exactly one slot of service.

We assume the system reaches steady state and, therefore, the average number of
customers entering the system should be strictly smaller than the average number of
available servers [23], leading to the following stability condition:

λ < σ1s1 + σ2s2 . (14)

Furthermore, it will prove useful to introduce the following notation:

Yi(z) , Ci(z)Si

(
1
z

)
. (15)

3. System Content

In an earlier work [16], we analyzed the system content for a queueing model as
described above. In the current section, we repeat the main results that are necessary for
the delay analysis in this paper. Let us denote with the stochastic variable gi

k (k ≥ 0),
the total number of customers in the system at the beginning of the (k + 1)st slot of a
state-i-period. The corresponding pgf is Gi

k(z). We can derive the following recursive
equation, valid for k ≥ 1:

Gi
k(z) = Yi(z)Gi

k−1(z) + Ci(z)
∞

∑
l=0

∞

∑
j=1

Prob[gi
k−1 = l]si(l + j)

(
1− z−j

)
. (16)

We can obtain a set of two linear equations for the functions Gi
0(z) by recursive

application of (16) and by stating that the system content at the beginning of a state-i-
period equals the system content at the end of a state-ı̄-period. This set of equations can
then be solved to yield the following expression:

Gi
0(z) =

Sı̄

(
1
z

)
Rı̄(Yı̄(z))

[
Qi(Yi(z), 1)−Qi

(
Yi(z), 1

z

)]
+ Si

(
1
z

)[
Qı̄(Yı̄(z), 1)−Qı̄

(
Yı̄(z), 1

z

)]
Si

(
1
z

)
Sı̄

(
1
z

)
[1− Ri(Yi(z))Rı̄(Yı̄(z))]

, (17)

with the bivariate functions Qi(x, z) unknown. It can be proven that if Ri(z) and Si(z)
are rational functions of their argument, then also the Qi(x, z) are rational and of the
following form:

Qi(x, z) =
Ai

q(x, z)
Bi

r(x)Bi
s(z)

; Ai
q(x, z) ,

mi
r

∑
n=1

mi
s

∑
j=1

εi
njx

nzj . (18)

The (finite number of) unknowns εi
nj can be determined by relying on the properties of

pgfs, namely that they are normalized and that they are analytical within the complex unit
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disk. To do this, the roots within the complex unit disk of the denominator of (17) need to
be determined and a set of linear equations needs to be solved. For many common choices
of the distributions in the model, this does not require large computational effort. Similarly,
it is possible to obtain the pgfs of the system content at the beginning of an arbitrary state-i-
slot and at the beginning of an arbitrary slot. Based on these pgfs, important performance
metrics can be calculated, such as the expected number of customers in the system.

4. Delay of a Customer with K Customers Ahead

For the system content, the specific queueing discipline is not of importance, as long
as it is work conserving. However, for the delay analysis it needs to be specified. We will
assume a First Come First Served (FCFS) policy. We do not specify the exact arrival instant
of a customer within a slot and, therefore, define its delay as the time interval from the first
slot boundary after the customer’s arrival until the end of its service slot. This definition is
illustrated in Figure 1. The delay thus consists of an integer number of slots and is at least
one slot long. This setup is also referred to as a Late Arrival System with Delayed Access
(LAS-DA) [24].

TIME

delay of customer P

arrival instant
customer P

departure instant
customer P

service time

slot

Figure 1. The delay of customer P.

Let us denote with the stochastic variable di,n
k the delay of a customer that arrives

during a state-i-slot, with n more slots until the next state-ı̄-slot and with k customers
waiting in the queue with priority over the arriving customer (excluding the customer(s)
currently in service, if any). The corresponding pgf is Di,n

k (z). Clearly, if during the slot after
the considered customer’s arrival slot more than k servers are available, the customer’s
delay will consist of exactly one slot. Otherwise, if during the first delay slot only l ≤ k
servers are available, there will be an additional number of delay slots that corresponds
to the delay of a customer with k− l customers ahead. Based on these observations, we
can state

Di,n
0 (z) = z ; (19)

Di,n
k (z) = z

∞

∑
l=k+1

si(l) + z
k

∑
l=1

Di,n−1
k−l (z)si(l) , k, n ≥ 1 ; (20)

Di,0
k (z) = z

∞

∑
l=k+1

sı̄(l) + z
∞

∑
n=1

rı̄(n)
k

∑
l=1

Dı̄,n−1
k−l (z)sı̄(l) , k ≥ 1 . (21)

Furthermore, we use the stochastic variable di
k for the delay of a customer arriving

during the first slot of a state-i-period and with k customers in the queue with priority over
the arriving customer. The corresponding pgf Di

k(z) can be expressed as

Di
k(z) =

∞

∑
n=1

ri(n)Di,n−1
k (z) . (22)
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Let us now introduce two auxiliary functions

Di,n(x, z) ,
∞

∑
k=0

Di,n
k (z)xk ; (23)

Di(x, z) ,
∞

∑
k=0

Di
k(z)xk (24)

=
∞

∑
n=1

∞

∑
k=0

ri(n)Di,n−1
k (z)xk =

∞

∑
n=1

ri(n)Di,n−1(x, z) .

Using the Relations (19) and (20), we obtain

Di,n(x, z) = zSi(x)Di,n−1(x, z) + z
1− Si(x)

1− x
, n ≥ 1 . (25)

After recursive application this leads to

Di,n(x, z) = [zSi(x)]nDi,0(x, z) + z
1− [zSi(x)]n

1− zSi(x)
1− Si(x)

1− x
, n ≥ 0 . (26)

Multiplying (26) with ri(n + 1) and summing over all n ≥ 0 we get

Di(x, z) =
1

zSi(x)
Ri(zSi(x))Di,0(x, z) + z

1− Si(x)
(1− x)[1− zSi(x)]

[
1− Ri(zSi(x))

zSi(x)

]
. (27)

Using (21) we can also work out an expression for Di,0(x, z):

Di,0(x, z) = zSı̄(x)Dı̄(x, z) + z
1− Sı̄(x)

1− x
. (28)

Combining (27) and (28) we then obtain the following set of equations:

Di(x, z) =
1

Si(x)
Ri(zSi(x))

[
Sı̄(x)Dı̄(x, z) +

1− Sı̄(x)
1− x

]
+ z

1− Si(x)
(1− x)[1− zSi(x)]

[
1− Ri(zSi(x))

zSi(x)

]
, (29)

which can be solved to find an explicit expression for Di(x, z):

Di(x, z) =
f̃ i(x, z)
g̃i(x, z)

, (30)

with

f̃ i(x, z) =z2Si(x)Sı̄(x)Ri(zSi(x))Rı̄(zSı̄(x))[1− Si(x)] + zSi(x)2Ri(zSi(x))Rı̄(zSı̄(x))

+ z2Si(x)2Sı̄(x)− zSı̄(x)Ri(zSi(x))Rı̄(zSı̄(x))− z2Si(x)Sı̄(x)

+ Ri(zSi(x))[Rı̄(zSı̄(x)) + z− 1][Sı̄(x)− Si(x)]− zSi(x)2 + zSi(x) ; (31)

g̃i(x, z) =Si(x)(1− x)[1− zSi(x)][1− zSı̄(x)][1− Ri(zSi(x))Rı̄(zSı̄(x))] . (32)

Note that f̃ i(x, z) is divisible by Si(x) as Ri(0) = 0. Bearing in mind that all pgfs are
normalized, we can furthermore verify that f̃ i(x, z) is divisible by (1− x), (1− zSi(x)) and
(1− zSı̄(x)). In order to rewrite (30) as a rational function of x, we divide numerator and
denominator by those common factors. To remove the remaining poles in x in g̃i(x, z), we
multiply with the auxiliary function u(x, z), which in view of (4) and (9) is defined as

u(x, z) , Bi
r(zSi(x))Bı̄

r(zSı̄(x))Bi
s(x)mi

r Bı̄
s(x)mı̄

r . (33)
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Therefore, we obtain

Di(x, z) =
f i(x, z)
g(x, z)

, (34)

with

f i(x, z) =
f̃ i(x, z)u(x, z)

Si(x)(1− x)[1− zSi(x)][1− zSı̄(x)]
; (35)

g(x, z) =[1− Ri(zSi(x))Rı̄(zSı̄(x))]u(x, z) . (36)

The new denominator g(x, z) of Di(x, z) is a polynomial in x of degree M , mi
smi

r +
mı̄

smı̄
r and the numerator is of degree M − 1. We can do a partial fraction expansion of

Di(x, z) based on its poles xφ in x, which we assume distinct. Note that the xφ (φ = 1, . . . , M)
are functions of z, but for notational simplicity the argument is omitted. We can then write
Di(x, z) as

Di(x, z) =
M

∑
φ=1

f i(xφ, z
)

gx
(
xφ, z

)
(x− xφ)

, (37)

with

gx(x, z) ,
∂

∂x
g(x, z) . (38)

The above allows us to easily obtain an expression for Di
k(z), which is the pgf of

the delay of a customer arriving during the first slot of a state-i-period with k customers
waiting in the queue with priority over the considered customer:

Di
k(z) =

1
k!

∂k

∂xk Di(x, z)

∣∣∣∣∣
x=0

=
M

∑
φ=1

− f i(xφ, z
)

xk+1
φ gx

(
xφ, z

) . (39)

5. Delay of an Arbitrary Customer

Let us now consider the arbitrary customer P, arriving during slot S. We denote the
probability that S is a state-i-slot with hi and that it is the lth slot of a state-i-period of in
total l + n slots as hi

l|n:

hi , Prob[P arrives during state-i-slot] =
λiri

λ1r1 + λ2r2
; (40)

hi
l|n , Prob[P arrives during lth slot of state-i-period with n + l slots in total]

= hi ri(n + l)
ri

. (41)

The pgf Fi(z) of the number of customers that arrive during slot S but before customer
P and given that S is a state-i-slot is known to be given by (see, e.g., [1])

Fi(z) =
Ci(z)− 1
λi(z− 1)

. (42)

The queue content as experienced by P upon arrival, are the customers with priority
over P that can start service after S. It thus consists of the customers that were present in
the system at the beginning of S, minus those that receive service during S and plus those
that arrived during S but before P. It is a stochastic variable that depends on the state of S
and on the time since the last state change. Given that S is the lth slot of a state-i-period, we
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will denote this stochastic variable as ti
l (l ≥ 1). Its pgf Ti

l(z) can be obtained by translating
the above observations into the z-domain:

Ti
l(z) = Fi(z)

∞

∑
k=0

Prob
[

gi
l−1 = k

]{ k

∑
j=1

si(j)zk−j +
∞

∑
j=1

si(k + j)

}

= Fi(z)Gi
l−1(z)Si

(
1
z

)
+ Fi(z)

∞

∑
k=0

∞

∑
j=1

Prob
[

gi
l−1 = k

]
si(k + j)(1− z−j) . (43)

We will denote the inverse z-transform of the above pgf as ti
l(k). We can now develop

the pgf W(z) of the delay of an arbitrary customer

W(z) = ∑
i

hi
∞

∑
n=0

∞

∑
l=1

ri(n + l)
ri

∞

∑
k=0

ti
l(k)Di,n

k (z) . (44)

The functions Ri(z) are assumed to be rational, if we further assume that they only
have poles of multiplicity 1, we can write them in the form

Ri(z) =
Mi

∑
j=1

ηi
jz

j +
Ni

∑
j=1

ωi
j

(1− αi
j)z

1− αi
jz

. (45)

Note that the summations in the above formula do not necessarily both appear. In the
remainder of this paper, we will assume that both summations are present, the results can
be easily modified for the other cases. The corresponding probability mass function (pmf)
ri(n) can be written as

ri(n) =

ηi
n + ∑Ni

j=1 ωi
j(1− αi

j)
(

αi
j

)n−1
, if n ≤ Mi ;

∑Ni
j=1 ωi

j(1− αi
j)
(

αi
j

)n−1
, if n > Mi .

(46)

We substitute (46) into (44) and rearrange the summations to get:

W(z) = ∑
i

hi

ri

{
Mi

∑
j=1

ηi
j

j

∑
l=1

∞

∑
k=0

ti
l(k)Di,j−l

k (z) +
Ni

∑
j=1

ωi
j

∞

∑
n=0

∞

∑
l=1

(1− αi
j)
(

αi
j

)n+l−1 ∞

∑
k=0

ti
l(k)Di,n

k (z)

}
. (47)

We will look at the above expression in more detail in two steps and, therefore,
introduce the following auxiliary notations:

uj,l
i (z) ,

∞

∑
k=0

ti
l(k)Di,j−l

k (z) ; (48)

vj
i(z) ,

∞

∑
n=0

∞

∑
l=1

∞

∑
k=0

(1− αi
j)
(

αi
j

)n+l−1
ti
l(k)Di,n

k (z) . (49)

Let us first look at (48) for l = j. In that case, the arrival slot of customer P is the
last slot of a state-i-period. We denote with n the number of servers available in the next
slot (which is the first slot of a state-ı̄-period). With probability ti

j(k) there are k customers
waiting in the queue with priority over P. The delay of the tagged customer P is 1 slot if
n > k, or the pgf of its delay is given by zDı̄

k−n(z) if n ≤ k. In the z-domain, this yields
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uj,j
i (z) =

∞

∑
n=1

sı̄(n)
n−1

∑
k=0

ti
j(k)z +

∞

∑
n=1

sı̄(n)
∞

∑
k=n

ti
j(k)zDı̄

k−n(z)

=
∞

∑
n=1

sı̄(n)
n−1

∑
k=0

ti
j(k)

[
z−

M

∑
φ=1

−z f ı̄(xφ, z
)

xk−n+1
φ gx

(
xφ, z

) ]+ ∞

∑
n=1

sı̄(n)
∞

∑
k=0

ti
j(k)

M

∑
φ=1

−z f ı̄(xφ, z
)

xk−n+1
φ gx

(
xφ, z

)
=

∞

∑
n=1

sı̄(n)
n−1

∑
k=0

ti
j(k)

[
z−

M

∑
φ=1

−z f ı̄(xφ, z
)

xk−n+1
φ gx

(
xφ, z

) ]+ M

∑
φ=1

Sı̄
(

xφ

)
Ti

j

(
1

xφ

)−z f ı̄(xφ, z
)

xφgx
(

xφ, z
) , (50)

where we have also introduced (39). Similarly, we now look at the situation where l = j− 1,
with j > 1. The arrival slot of customer P is the penultimate slot of a state-i-period. We
denote with n1 and n2 the number of servers available in the next two slots (of which one is
the last slot of a state-i-period and one is the first slot of a state-ı̄-period). With probability
ti

j−1(k), there are k customers waiting in the queue with priority over the tagged customer
P. The delay of P equals 1 slot if n1 > k, the delay equals 2 slots if n1 ≤ k < n1 + n2 and
the pgf of its delay is given by z2Dı̄

k−n1−n2
(z) if n1 + n2 ≤ k. In the z-domain, this yields

uj,j−1
i (z) =

∞

∑
n1=1

si(n1)
n1−1

∑
k=0

ti
j−1(k)z +

∞

∑
n1=1

si(n1)
∞

∑
n2=1

sı̄(n2)
n1+n2−1

∑
k=n1

ti
j−1(k)z

2

+
∞

∑
n1=1

si(n1)
∞

∑
n2=1

sı̄(n2)
∞

∑
k=n1+n2

ti
j−1(k)z

2Dı̄
k−n1−n2

(z)

=
∞

∑
n1=1

si(n1)
n1−1

∑
k=0

ti
j−1(k)

z−
M

∑
φ=1

−z2 f ı̄(xφ, z
)
Sı̄
(

xφ
)

xk−n1+1
φ gx

(
xφ, z

)


+
∞

∑
n1=1

si(n1)
∞

∑
n2=1

sı̄(n2)
n1+n2−1

∑
k=n1

ti
j−1(k)

z2 −
M

∑
φ=1

−z2 f ı̄(xφ, z
)

xk−n1−n2+1
φ gx

(
xφ, z

)


+
M

∑
φ=1

Si
(

xφ
)
Sı̄
(

xφ
)
Ti

j−1

(
1

xφ

)−z2 f ı̄(xφ, z
)

xφgx
(

xφ, z
) . (51)

The same reasoning can be applied to obtain an expression for the general function
uj,l

i (z). There are (j− l) full slots until the next state-ı̄-period. In these slots, n1, n2, . . . , nj−l
servers are available, with probabilities si(n1), si(n2), . . . , si(nj−l) and in the slot after-
wards (the first slot of a state-ı̄-period), there are nj−l+1 servers available with probability
sı̄(nj−l+1). With probability ti

l(k) there are k customers waiting in the queue with priority
over the tagged customer P. The delay of P equals s slots (with 1 ≤ s ≤ j − l + 1) if
∑s−1

p=1 np ≤ k < ∑s
p=1 np and its delay is defined by the pgf zj−l+1Dı̄

k−n1−...−nj−l+1
(z) if

∑
j−l+1
p=1 np ≤ k. In the z-domain, this yields

uj,l
i (z) =

∞

∑
n1=1

si(n1)
n1−1

∑
k=0

ti
l(k)

z−
M

∑
φ=1

−zj−l+1 f ı̄(xφ, z
)
Sı̄
(

xφ
)
Si
(

xφ
)j−l−1

xk−n1+1
φ gx

(
xφ, z

)


+
∞

∑
n1=1

si(n1)
∞

∑
n2=1

si(n2)
n1+n2−1

∑
k=n1

ti
l(k)

z2 −
M

∑
φ=1

−zj−l+1 f ı̄(xφ, z
)
Sı̄
(

xφ
)
Si
(

xφ
)j−l−2

xk−n1−n2+1
φ gx

(
xφ, z

)


+ . . .

+
∞

∑
n1=1

si(n1) . . .
∞

∑
nj−l=1

si(nj−l)
∞

∑
nj−l+1=1

sı̄(nj−l+1)
n1+...+nj−l+1−1

∑
k=n1+...+nj−l

ti
l(k)

zj−l+1 −
M

∑
φ=1

−zj−l+1 f ı̄(xφ, z
)

x
k−n1−...−nj−l+1+1
φ gx

(
xφ, z

)


+
M

∑
φ=1

Si
(

xφ
)j−lSı̄

(
xφ
)
Ti

l

(
1

xφ

)−zj−l+1 f ı̄(xφ, z
)

xφgx
(

xφ, z
) . (52)
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Now, we look at the second part of (47). In order to work out vj
i(z) as given in (49), we

first introduce the following auxiliary functions:

Di
k,j(z) ,

∞

∑
n=0

(1− αi
j)
(

αi
j

)n
Di,n

k (z) ; (53)

Di
j(x, z) ,

∞

∑
n=0

∞

∑
k=0

(1− αi
j)
(

αi
j

)n
Di,n

k (z)xk . (54)

Taking first the sum over k in (54), we identify the definition of Di,n(x, z) as given
in (23), so we can bring expression (26) into (54) and then work out the summation over n:

Di
j(x, z) =

∞

∑
n=0

(1− αi
j)
(

αi
j

)n
{
[zSi(x)]nDi,0(x, z) + z

1− [zSi(x)]n

1− zSi(x)
1− Si(x)

1− x

}

=
1− αi

j

1− αi
jzSi(x)

Di,0(x, z) + z
1− Si(x)

(1− x)[1− zSi(x)]

[
1−

1− αi
j

1− αi
jzSi(x)

]
. (55)

Using the expression (28) for Di,0(x, z), we obtain

Di
j(x, z) =

1− αi
j

1− αi
jzSi(x)

[
zSı̄(x)Dı̄(x, z) + z

1− Sı̄(x)
1− x

]
+ αi

jz
1− Si(x)

(1− x)
[
1− αi

jzSi(x)
] . (56)

We then fill in the expression (34) for Dı̄(x, z) and rearrange to get

Di
j(x, z) =

f i
j(x, z)

g(x, z)
, (57)

with g(x, z) a polynomial in x of degree M as given in (36) and with

f i
j(x, z) =

(1− αi
j)z(1− x)Sı̄(x) f ı̄(x, z) + z

[
1− (1− αi

j)Sı̄(x)− αi
jSi(x)

]
g(x, z)

(1− x)
[
1− αi

jzSi(x)
] , (58)

which can be shown to be a polynomial function in x of degree M− 1. We can do a partial
fraction expansion of Di

j(x, z) based on its poles xφ in x. We can then obtain an expression

for Di
k,j(z) as

Di
k,j(z) =

M

∑
φ=1

− f i
j
(

xφ, z
)

xk+1
φ gx

(
xφ, z

) . (59)

These results now allow us to work out vj
i(z), taking the summation over n in (49)

introduces Di
k,j(z), so we get

vj
i(z) =

∞

∑
l=1

∞

∑
k=0

(
αi

j

)l−1
ti
l(k)

M

∑
φ=1

− f i
j
(

xφ, z
)

xk+1
φ gx

(
xφ, z

)
=

1
1− αi

j

M

∑
φ=1

− f i
j
(
xφ, z

)
xφgx

(
xφ, z

)Ti,j
(

1
xφ

)
, (60)

where Ti,j(z) is defined as

Ti,j(z) ,
∞

∑
l=1

(1− αi
j)
(

αi
j

)l−1
Ti

l(z) . (61)
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Using (15), (16) and (43), we can rewrite the expression for Ti,j(z) as

Ti,j(z) =
∞

∑
l=1

(1− αi
j)
(

αi
j

)l−1
Fi(z)Si

(
1
z

)
[Yi(z)]

l−1Gi
0(z)

+
∞

∑
l=1

(1− αi
j)
(

αi
j

)l−1
Fi(z)

l−1

∑
m=0

[Yi(z)]
m

∞

∑
k=0

∞

∑
n=1

Prob
[

gi
l−1−m = k

]
si(k + n)(1− z−n)

= (1− αi
j)

Fi(z)Si

(
1
z

)
1− αi

jYi(z)
Gi

0(z) + Fi(z)
[

Q̂i,j(1)− Q̂i,j

(
1
z

)]
, (62)

where the functions Q̂i,j(z) are still unknown, but they are similar to the functions Qi(x, z)
in (18). It can be proven that they are rational functions with denominator equal to
the denominator of Si(z) and that the unknown coefficients of their numerators can be
determined using the properties of pgfs. However, it will turn out that it is not necessary
to determine these unknowns.

We now have an expression for W(z), the pgf of the delay of an arbitrary customer:

W(z) = ∑
i

hi

ri

{
Mi

∑
j=1

ηi
j

j

∑
l=1

uj,l
i (z) +

Ni

∑
j=1

ωi
jv

j
i(z)

}
. (63)

The above expression is rather complex and, therefore, cannot be easily inverted to
give the full delay analysis. On top of that, it still contains (a finite number of) unknowns.
However, a tail approximation can be obtained, which will be done in the following section.

6. Tail Approximation

To obtain a tail approximation of the delay, we can use the theory of the dominant
singularity, which has been used extensively in the literature, see for example [11,25]. The
theory stipulates that

Prob[Delay = k slots] ≈ −w0

z0
z−k

0 ; (64)

Prob[Delay > k slots] ≈ −w0

z0(z0 − 1)
z−k

0 , (65)

for k sufficiently large and with z0 the pole of W(z) with smallest modulus and with

w0 , lim
z→z0

W(z)(z− z0) . (66)

Note that z0 will be positive, real-valued and strictly larger than 1, see, e.g., [11]. Let us
take a closer look at W(z) and its subparts (52) and (60) to determine where the dominant
pole z0 can be found. The functions f i(x, z) are polynomials and, therefore, contain no poles.
The xφ (φ = 1, . . . , M) are assumed to be single roots of g(x, z) and, therefore, gx

(
xφ, z

)
contains no zeros. Furthermore, xφ = 0 cannot give a pole, as g(0, z) = 0 has no solutions.

Therefore, z0 can only be a pole of Si
(
xφ

)
, a pole of Ti

l

(
1

xφ

)
or a pole of Ti,j

(
1

xφ

)
.

Conjecture 1. The dominant pole z0 can only be found as a pole of Gi
0

(
1

xφ

)
.

From (17) it follows that G1
0

(
1

xφ

)
and G2

0

(
1

xφ

)
have the same poles. The dominant pole

z0, therefore, appears in Ti
l

(
1

xφ

)
and Ti,j

(
1

xφ

)
, for i = 1, 2 and j = 1, . . . , Ni. It is found for

a specific value of φ, which we will call ξ and we will denote the value of xξ(z0) as x0.
Using (66), we can find an expression for w0:
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w0 = ∑
i

hi

ri

{
Mi

∑
j=1

ηi
j

j

∑
l=1

uj,l∗
i (z0) +

Ni

∑
j=1

ωi
jv

j∗
i (z0)

}
, (67)

with

uj,l∗
i (z0) , Si(x0)

j−lSı̄(x0)
−zj−l+1

0 f ı̄(x0, z0)

x0gx(x0, z0)
Ti∗

l

(
1
x0

)
; (68)

vj∗
i (z0) ,

1
1− αi

j

− f i
j(x0, z0)

x0gx(x0, z0)
Ti,j∗

(
1
x0

)
, (69)

where furthermore

Ti∗
l

(
1
x0

)
, Fi

(
1
x0

)
Si(x0)Yi

(
1
x0

)l−1
Gi∗

0

(
1
x0

)
; (70)

Ti,j∗
(

1
x0

)
, (1− αi

j)
Fi

(
1
x0

)
Si(x0)

1− αi
jYi

(
1
x0

)Gi∗
0

(
1
x0

)
, (71)

and

Gi∗
0

(
1
x0

)
= lim

z→z0
Gi

0

(
1

xξ(z)

)
(z− z0) . (72)

Following an application of L’Hôpital’s Rule Gi∗
0

(
1
x0

)
is then obtained from (17) by

dividing the numerator of Gi
0

(
1

xξ (z)

)
by the derivative with respect to z of its denominator

and evaluating at z = z0:

Gi∗
0

(
1
x0

)
, x2

0

Sı̄(x0)Rı̄

(
Yı̄

(
1
x0

))[
Qi

(
Yi

(
1
x0

)
, 1
)
−Qi

(
Yi

(
1
x0

)
, x0

)]
+ Si(x0)

[
Qı̄

(
Yı̄

(
1
x0

)
, 1
)
−Qı̄

(
Yı̄

(
1
x0

)
, x0

)]
Si(x0)Sı̄(x0)

[
R′i
(

Yi

(
1
x0

))
Y′i
(

1
x0

)
Rı̄

(
Yı̄

(
1
x0

))
+ Ri

(
Yi

(
1
x0

))
R′ı̄
(

Yı̄

(
1
x0

))
Y′ı̄
(

1
x0

)]
dxξ

dz

∣∣∣
z=z0

. (73)

In order to evaluate dxξ

dz

∣∣∣
z=z0

we recall that xξ is a solution of

1− R1
(
zS1
(
xξ

))
R2
(
zS2
(
xξ

))
= 0 . (74)

Deriving both sides of the above equation with respect to z, working out for dxξ

dz and
evaluating at z = z0, we find

dxξ

dz

∣∣∣∣
z=z0

= −
S1(x0)R2(z0S2(x0))R′1(z0S1(x0)) + S2(x0)R1(z0S1(x0))R′2(z0S2(x0))

z0S′1(x0)R2(z0S2(x0))R′1(z0S1(x0)) + z0S′2(x0)R1(z0S1(x0))R′2(z0S2(x0))
. (75)

Note that z0 does not necessarily exist. Indeed, if we consider the case where every slot
contains at most 1 arrival, every arriving customer will experience an empty queue, and
will be served in the slot following its slot of arrival. The delay will be 1 for all customers,
i.e., W(z) = z.

7. Numerical Examples

In this section, we will illustrate the model with some numerical examples and validate
the obtained results using simulation. First we compare the delay characteristics of two
very similar queueing systems and then we look at the influence of the period lengths
(while keeping their ratio constant).
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7.1. Two Similar Queueing Systems

In this example, we compare two cases with the following input parameters:

Case A Case B

C1(z) = eλ1(z−1) ; λ1 = 0.1 C1(z) = eλ1(z−1) ; λ1 = 4.25

C2(z) = eλ2(z−1) ; λ2 = 1.985 C2(z) = eλ2(z−1) ; λ2 = 0.1

S1(z) =
20z− 19z2

44− 64z + 21z2 ; s1 = 4 S1(z) =
20z− 19z2

44− 64z + 21z2 ; s1 = 4

S2(z) =
1.5z− 0.5z2

2− z
; s2 = 1.5 S2(z) =

1.5z− 0.5z2

2− z
; s2 = 1.5

R1(z) =
1

10− 9z
; r1 = 10 R1(z) =

1
10− 9z

; r1 = 10

R2(z) =
1

20− 19z
; r2 = 20 R2(z) =

1
20− 19z

; r2 = 20

For the stochastic processes describing the numbers of servers available per slot, and
the period lengths, we take the same distributions for both Case A and Case B. The expected
numbers of available servers are s1 = 4 and s2 = 1.5, and the expected period lengths are
r1 = 10 and r2 = 20. For the numbers of arrivals per slot we take Poisson distributions
with intensities as given above. The chosen values mean that in Case A in the first state
there are barely any arrivals and in the second state the system is overloaded, while in
Case B this situation is reversed.

This specific choice for the parameters results in two queueing systems with an equal
expected delay of 10.0 slots, which can be obtained using the method of [16] and using
Little’s Law [26], and which was also confirmed by simulation. Using the method of the
current paper, it can be seen that despite having the same expected delay, and despite being
two very similar queueing systems, the tail characteristics of the delay are different, as
plotted in Figure 2. We observe that for Case B, there is a larger probability that the delay
exceeds a large given value, i.e., the delay distribution of customers has a heavier tail in
Case B as compared to Case A.

0 10 20 30 40

10−3

10−2

10−1

100

k

P
ro
b
[D

el
ay

=
k

sl
ot

s]

Case A: tail formula Case A: simulation
Case B: tail formula Case B: simulation

Figure 2. Distribution of delay for Case A and Case B both based on the theory of this paper (tail distribution) and based on
simulation (probability mass function).
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In the figure the probability mass function of the delay obtained by simulation is also
plotted, as a validation of the tail probabilities obtained via the method developed in this
paper. For Case A, the results obtained by the method of this paper are within 5% of the
results obtained by simulation for k > 8. For Case B, this is so for k > 17. The difference
between the simulated and calculated results decreases for increasing k, e.g., for Case A the
difference is under 1% for k > 15. The method of this paper thus clearly provides the tail
probabilities of the delay with a good accuracy for k sufficiently large. This was verified in
several other settings as well, with similar observations on the accuracy. It must be noted
that the computational effort to obtain the results by simulation is much higher compared
to the method of this paper.

7.2. Influence of Period Lengths

In a second example, we look at the influence of the period lengths on the average
delay and 99th percentile. Throughout this subsection, we take the arrival process and the
distribution of the period lengths the same for both states, namely a Poisson arrival process
with intensity λ and a geometrical distribution for the period lengths with parameter 1− 1

r
(and thus an expected period length of r):

C1(z) = C2(z) = eλ(z−1) ; (76)

R1(z) = R2(z) =
z

r− (r− 1)z
. (77)

For the server availability, we take a fixed number of four servers available per slot in
the first state and a fixed number of two servers available per slot in the second state:

S1(z) = z4 ; S2(z) = z2 . (78)

In Figure 3, we plot the average delay and the 99th percentile of the delay in function of
the expected period lengths r for λ = 2.4. The average delay is calculated from the average
system content (as obtained by the method of [16]) by application of Little’s Law [26]. The
99th percentile of the delay, i.e., the smallest k for which Prob[delay > k slots] < 0.01, is
calculated by inversion of (65):

99th percentile = ceil

− ln
(

0.01·z0(z0−1)
−w0

)
ln(z0)

 . (79)

As, on average, there are three servers available, the load is 80%, but in the second
state, the system is temporarily overloaded. With increasing period lengths, the average
delay increases linearly. This is to be expected as the system remains for longer periods in
the overloaded state. The same trend is visible for the 99th percentile of the delay; however,
the increase happens with a much steeper slope. This proves that valuable information
can be obtained from a tail analysis of the delay. The results of Figure 3 were verified by
simulation as well (not plotted as they are not distinguishable from the results obtained by
the method of this paper).

7.3. Brief Summary for Implementation

In this subsection, we briefly indicate how the method of this paper can be imple-
mented in order to obtain results such as for the numerical examples given earlier in this
section, starting from the pgfs fully describing the queueing system (Ri(z), Si(z) and Ci(z),
as defined in Section 2).

1. Numerically obtain the solutions zp of

1− R1(Y1(z))R2(Y2(z)) = 0 for |z| ≤ 1, (80)
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where Yi(z) = Ci(z)Si

(
1
z

)
and with z1 = 1. There are a total of M = m1

r m1
s + m2

r m2
s

such solutions.
2. Introduce the functions Qi(x, z) according to (18). Calculate the unknowns εi

nj by
solving the following set of equations for i = 1 or for i = 2 (both give an equivalent
set of equations):

Sı̄

(
1
zp

)
Rı̄
(
Yı̄
(
zp
))[

Qi
(
Yi
(
zp
)
, 1
)
−Qi

(
Yi
(
zp
)
,

1
zp

)]
+Si

(
1
zp

)[
Qı̄
(
Yı̄
(
zp
)
, 1
)
−Qı̄

(
Yı̄
(
zp
)
,

1
zp

)]
= 0 , p = 2 . . . M ; (81)

∂
∂z Q1(x, z)|(x,z)=(1,1) +

∂
∂z Q2(x, z)|(x,z)=(1,1)

r1(s1 − λ1) + r2(s2 − λ2)
= 1 . (82)

3. Numerically obtain the solutions xp of

1− R1

(
Y1

(
1
x

))
R2

(
Y2

(
1
x

))
= 0 ; |x| < 1. (83)

4. Find z0 as the solution closest to 1 of the following polynomial Equation (for all
possible xp):

g(xp, z) = 0 , (84)

with g(x, z) given in (36) and x0 is then equal to the corresponding xp.
5. Fill in the obtained values for z0 and x0 in the expression (67) for w0.

5 10 15 20 25
0

10

20

30

40

r

D
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ay

Average
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Figure 3. Average and 99th percentile of the delay for the example of Section 7.2.

8. Conclusions

In this paper, we have studied the delay characteristics of a discrete-time multiserver
queueing model. It is the extension of an earlier work where the system content was
treated [16].
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The queueing model considers two different system states. Each state is characterized
by its own distributions for the number of arrivals and the number of available servers in a
slot. Within a state, these numbers are independent and identically distributed random
variables. The state transitions occur after stochastic period lengths, and each state has
its own distribution for the sojourn time in that state. This setup allows to model a broad
variety of queueing systems, where correlations can be introduced in the slot-to-slot arrivals
and server availability.

In this paper, we have obtained the tail distribution of the delay for such a queueing
model, using a generating functions approach and using the theory of the dominant
singularity. Numerical examples have shown the accuracy of the obtained results, and the
importance of the work. We have seen that tail characteristics of the delay of a customer in
two separate queueing systems can be substantially different even when the systems are
very similar and the expected delay is the same. Tail characteristics also provide a further
in-depth understanding of the behavior of a queueing system.
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