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Abstract: In this paper, we propose hybrid models for modelling the daily oil price during the period
from 2 January 1986 to 5 April 2021. The models on S2 manifolds that we consider, including the
reference ones, employ matrix representations rather than differential operator representations of Lie
algebras. Firstly, the performance of LieNLS model is examined in comparison to the Lie-OLS model.
Then, both of these reference models are improved by integrating them with a recurrent neural
network model used in deep learning. Thirdly, the forecasting performance of these two proposed
hybrid models on the S2 manifold, namely Lie-LSTMOLS and Lie-LSTMNLS, are compared with those
of the reference LieOLS and LieNLS models. The in-sample and out-of-sample results show that our
proposed methods can achieve improved performance over LieOLS and LieNLS models in terms of
RMSE and MAE metrics and hence can be more reliably used to assess volatility of time-series data.

Keywords: oil price forecasting; Lie group SO(3); LSTM; deep learning; short-term model

1. Introduction

Crude oil is a strategic natural resource since it is a commodity connected with
many financial instruments, such as futures, options, and bonds. While most financial
instruments have a short-term maturity period, there are cases with long-term pricing
maturity for oil. Additionally, crude oil price has nonlinear behavior.

The nonlinear behavior in the oil price has been well discussed and analyzed by many
articles in the past. Barone-Adesi et al. [1] suggested a semiparametric method to examine
the structure of oil prices. Adrangi et al. [2] determined the presence of low-dimensional
chaotic structure in the oil prices. Lahmiri [3], Bildirici, and Sonustun [4]; Komijani et al. [5];
and He [6] are the other studies that determine the presence of chaos in the oil prices.
Bildirici et al. [7] suggested a new hybrid modelling technique based on the LSTARGARCH
and LSTM models to analyze the volatility of oil prices.

Apart from the works on volatility, the works by [8,9] carry importance. Gibson
and Schwartz [8] also shows “the mean reverting tendency as well as the variability
of its changes requires a stochastic representation in order to price oil-linked securities
accurately”. In [9], a model that depends on a two-factor model for pricing financial and
real assets contingent on the price of oil is developed. For valuing futures contracts, the
parameters of the model were estimated by using the data between January 1984 and
November 1988, and the model was tested on the out of sample data between November
1988 and May 1989. The purpose of the current work is to offer an approach applicable to
pricing based on the Lie method.

In this paper, we employ Lie algebras method to solve stochastic differential equation
(DE) of short-term model of the oil. We suggest that the model is governed by a stochastic
differential equation model on a curved state space and develop oil price models using
matrix representations and differential operator on the S2 manifold. In late 19th century,
under a continuous group of symmetries, Lie discovered that special approaches to solve
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DEs were special states of a general integration process dependent upon the invariance of
the DE. Nowadays, the applications of Lie groups have a deep impact on the branches of
mathematics, mechanics, and robotics sciences.

Especially, in mathematical finance, a few papers employed the Lie method to provide
awareness to the structure of related partial differential equations. The approach of employ-
ing general differentiable manifolds in interest rate models appears in [10–12]. Gazizov
and Ibragimov [11] used the Lie method in the context of Black–Scholes–Merton equation.
Lo and Hui [13] and Carr et al. [14] constructed a concrete example of a short-rate model
on the circle S1. Park et al. [15] tested the proposition that nonlinear and random behavior
of interest rates is governed by a stochastic differential equation model on a curved state
space. They developed short-term interest rate models on S1 and S2 manifolds using matrix
representations instead of differential operator representations of Lie groups.

In this paper, we employed spot price (WTI crude daily oil price) during the period
from 2 January 1986 to 5 April 2021. The selected period includes some important events
that had impacts on the oil price, such as multiple economic crises (1981, 2001, and 2008),
US military intervention in Iraq, COVID-19, etc. These factors lead to nonlinear behavior
in the oil price between spot and futures contracts.

Therefore, modeling dynamic processes and solving stochastic differential equations
(SDE) are important. As is widely recognized, the solutions of DEs yield a set of symmetries
that corresponds to Lie groups. In this paper, we employ a model on S2 manifolds that
uses matrix representations instead of differential operator representations of Lie algebras.
As accented by [15], the drift and noise volatility terms of the stochastic state equations
are worked out to reflect various observed phenomena. We try to keep these terms simple
and instead choose an underlying state space that is curved. Park et al. [15] and Goard [16]
used the ordinary least square (OLS) estimation method for parameter estimation. We
preferred the nonlinear least square (NLS) method for parameter estimation due to the
nonlinear behavior in the specified period.

As our primary contribution, we propose the use of LSTM networks for forecasting
in the domain obtained by the Lie method. Specifically, we suggest both the hybrid Lie-
LSTMOLS and the hybrid Lie-LSTMNLS models for more reliable forecasting than standard
regression methods in this domain. The forecasting performances of our proposed hybrid
methods, Lie-LSTMOLS and Lie-LSTMNLS, are compared against those of the Lie NLS and
Lie OLS standard regression methods on the WTI oil price data.

The paper is organized as follows. In Section 2, the orthogonal matrix Lie groups and
algebras are given, and then the oil price model is defined on the Lie groups SO(3). In
Section 3, the data is presented, and some of its descriptive statistics are given. In Section 4,
results are presented and discussed, and the last section gives the conclusion.

2. Materials and Methods
2.1. Preliminaries on Orthogonal Matrix Lie Groups and Algebras

In this section, the definitions of orthogonal matrix Lie groups, their algebras, and the
relations of stochastic dynamics with these groups are given [15,17].

As it is known, a geometrically Lie group is a differentiable manifold, and its algebra
is the tangent space in the unit neighboring to the manifold. Usually, the group is denoted
with a capital letter and algebra with a lowercase letter. Let G and g be a matrix Lie group
with dimension n and its algebra, respectively. In this case, the orthogonal matrix groups
are denoted as O(n) and defined as follows:

O(n) =
{

A ∈ GL(n) : AT A = I
}

Special orthogonal matrix groups are denoted as SO(n) and defined as follows:

SO(n) =
{

A ∈ GL(n) : AT A = I and detA = 1
}
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The manifold of Lie group SO(2) is identified with the unit circle
S1 =

{
(x1, x2) : x1

2 + x2
2 = 1

}
with parametrization x1 = cosθ, x2 = sinθ.

The manifold of Lie group SO(3) is identified with the unit sphere
S2 =

{
(x1, x2, x3) : x1

2 + x2
2 + x3

2 = 1
}

, with parametrization x1 = cosθ, x2 = sinθ sinϕ,
x3 = sinθ cosϕ. Similarly, the Lie group SO(n) is identified with the n− 1 dimensional
manifolds Sn−1.

Lie algebras of these groups are denoted by so(n), and the elements of the algebra
satisfy the condition BT = −B for B ∈ so(n). The relationship between this algebra and
the group is expressed by:

exp : so(3)→ SO(3)
exp(B) = A ∈ SO(3)

Proposition 1. ([15]). Bilinear state equation

dA = ABdt + AdW (1)

where A ∈ G and B, dW ∈ g, A is a constant, and dW is the diffusion process, and the quadratic
function is f (A) = 1

2 Tr
(

ATQAN
)
, where symmetric matrix Q, N ∈ Rn∗n are given. Hence

the dynamics for f are as follows:

d f = Tr
[

ATQA
(

BNdt + dWN +
1
2

dWNdWT +
1
2

dWdWN
)]

(2)

where dt.dt = dwidt = dtdwi = 0, dwidwj = ρijdt, and ρij is the correlation coefficient between
wi and wj.

Proposition 2. ([15]). Under the conditions given in proposition 1, if f (A) = Tr(MA) and M is
symmetric, the dynamics for f is given as

d f = Tr
[

MA
(

Bdt + dW +
1
2

dWdW
)]

(3)

2.2. Stochastic Dynamics on Orthogonal Matrix Lie Groups
2.2.1. The Lie Group SO(2)

As it is known, the Lie group SO(2) is a differentiable manifold, and this manifold can
be identified with the unit circle S1. The oil price is defined as follows: s(A) = Tr(MA),
where A ∈ SO(2) and M is a symmetric positive definite matrix.

Thus the bilinear state equation is given:

dA = ABdt + AdW where B, dW ∈ so(2)

Indeed, for

M =

[
m11 m12
m21 m22

]
> 0 and A =

[
cosθ −sinθ
sinθ cosθ

]
, θ ∈ [o, 2π],

B =

[
0 −b
b 0

]
, dW =

[
0 −dw

dw 0

]
∈ so(2)

s(A) = (m11 + m22)cosθ ,

cosθ = s
γ , sinθ =

√
γ2−s2

γ

where γ = m11 + m22.
Using Equation (3) for (s, θ) dynamics:

ds =
(
−bγsinθ − b

2
cosθ

)
dt + (−γsinθ)dw
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and for s dynamics using the oil price relation:

ds =
(
−b
√

γ2 − s2 − s
2

)
dt−

√
γ2 − s2dw

2.2.2. The Lie Group SO(3)

The Lie group SO(3) is a differential manifold, and it can be identified with unit
sphere S2. In this manifold, the bilinear state equation, the oil price, and the dynamics for f
are given respectively as follows:

dA = ABdt + AdW,

s(A) =
1
2

Tr
(

QANAT
)

,

d f = Tr
[

ATQA
(
(B− I)Ndt + dWN +

1
2

dWNdWT
)]

(4)

where A ∈ SO(3), B, dW ∈ so(3), and Q , N ∈ R3×3 are positive symmetric matrices.
As a result, the terms in Equation (4) can be defined as follows:

B =

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 and dW =

 0 −dw3 dw2
dw3 0 −dw1
−dw2 dw1 0

 ∈ so(3)

Q =

 q11 q12 q13
q12 q22 q23
q13 q23 q33

, N =

 n11 n12 n13
n12 n22 n23
n13 n23 n33



exp

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 = I3 + sinθ B(b1, b2, b3) + (1− cosθ) B(b1, b2, b3)
2 = A ε SO(3)

Hence, we obtain the s oil price and the stochastic dynamic ds for f on SO(3) as follows:

s(A) =
1
2
[c11n11 + c22n22 + c33n33 + (c12 + c21)n12 + (c13 + c31)n13 + (c23 + c32)n23]

where
c11 = b11a11 + b12a21 + b13a31, c22 = b22a11 + b22a22 + b23a32
c33 = b31a13 + b32a23 + b33a33, c12 = b11a12 + b12a22 + b13a32
c21 = b21a11 + b22a21 + b23a31, c13 = b11a13 + b12a23 + b13a33
c31 = b31a11 + b32a21 + b33a31, c23 = b21a13 + b22a23 + b23a33

c32 = b31a12 + b32a22 + b33a32

and
b11 = a11q11 + a21q21 + a31q31, b12 = a11q12 + a21q + a31q32

b21 = a12q11 + a22q21 + a32q31, b22 = a12q12 + a22q22 + a23q32
b31 = a13q11 + a23q21 + a33q31, b32 = a13q12 + a23q22 + a33q32
b13 = a11q13 + a21q23 + a31q33, b23 = a12q13 + a22q23 + a32q33

b33 = a13q13 + a23q23 + a33q33 where aij ∈ SO(3)

ds = Tr


ATQA︸ ︷︷ ︸

cij

(B− I)N︸ ︷︷ ︸
dij

dt + ATQA︸ ︷︷ ︸
cij

[dWN]︸ ︷︷ ︸+
eij

ATQA︸ ︷︷ ︸
cij

(
dWNdWT

)
︸ ︷︷ ︸

kij


= [c11d11 + c12d21 + c13d31 + c12d12 + c22d22 + c23d32 + c13d13 + c23d23 + c33d33]dt

+ [c11e11 + c12e21 + c13e31 + c21e12 + c22e22 + c23e32 + c13e13 + c23e23 + c33e33]
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+
1
2
[c11k11 + c12k21 + c13k31 + c21k12 + c22k22 + c23k32 + c31k13 + c32k23 + c33k33]

dij =

 −1 −b3 b2
b3 −1 −b1
−b2 b1 −1

 n11 n12 n13
n21 n22 n23
n31 n32 n33



eij =

 0 −dw3 dw2
dw3 0 −dw1
dw2 dw1 0

 n11 n12 n13
n21 n22 n23
n31 n32 n33



kij =

 e11 e12 e13
e21 e22 e32
e31 e32 e33

 0 dw3 −dw2
−dw3 0 dw1
dw2 −dw1 0


ds =

{
β(t)s + α2s2

}
dt + α3s3/2dw (5)

β(t) = β1 + β2sin(θt) + β3cos(θt) + β4sin(2θt) + β5cos(2θt)

Thereby, the ds state dynamic obtained by the matrix representation of the Lie group
SO(3) coincides with the state dynamic obtained by the differential representations.

Overall forecasting is formed as

ds ◦ L(t) (6)

where L(t) shows long short-term memory (LSTM). LSTM [18] is a recurrent neural network
that exploits the dependencies among the samples of a segment of the time series on the
SO(3) manifold for accurate prediction. The equations governing the LSTM operation may
be stated as

mt = ft
⊙
∗mt−1 + jt

⊙
∗m̃t (7)

m̃t = tanh(Vmxt + Wmrt−1 +
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Vjxt + Wjrt−1 +
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is a bias vector, W and V are weight matrices, the sigmoid function is denoted as
σ(·), and

⊙
∗ denotes element-wise multiplication.

The LSTM unit inputs the state vector mt−1 and the output vector rt−1 from time step
t − 1 as well as the input feature vector xt at time step t to yield the state vector mt and the
output vector rt at time step t. Based on xt and rt−1, LSTM exploits temporal dependencies
by determining the part of the previous state that needs to be kept by using the forget gate
ft, forming the new information in normalized form as m̃t, and determining its strength by
applying the input gate activation jt to it. The new state is thus formed as mt in Equation
(7), which is normalized by tanh function and modulated by the output gate activation ot
(Equation (12)) to yield the bounded output prediction as rt.

3. Data and Some Descriptive Statistics

In this paper, daily West Texas Intermediate (WTI) Crude Oil Prices dataset acquired
from the FRED Economic Data. It includes oil price data between 2 January 1986 and
5 April 2021.

The published oil price is the spot price given as

A(t, t + τ) = E
[

1
τ

(∫ t+τ

t
s(r)dr

)]
(13)
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As with [15], we have used Monte Carlo simulation to evaluate the above expectation.
Firstly, the descriptive statistics of WTI oil price data were obtained, and unit root test

was applied. In Table 1, the statistics are shown. Since the data exhibits excess kurtosis,
it cannot be modelled by a normal distribution, as confirmed by the Jarque–Bera (JB) test.
The main problem seems to be excess kurtosis but not so much excess skewness.

Table 1. Descriptive statistics and unit root tests.

Descriptive Statistic

Kurtosis 28.79
Skewness 0.983

JB 1180.97
Observations 8884

Unit Root Test

ADF −18.44
KSS −9.65

From the unit root test results in Table 1, it can be seen that H0 hypothesis can be
accepted for all variables at the level. ADF and KSS tests suggest the stationarity of the
data at the level.

Next, the results of the nonlinearity tests are presented in Tables 2 and 3. In Table 2,
Teraesvirta’s neural network test, White neural network test, Likelihood ratio test for
threshold nonlinearity, and Tsay’s test for nonlinearity indicate that the linear form is
mis-specified. Teraesvirta and White tests perform similarly to the Tsay test.

Table 2. Nonlinearity Test Statistics.

Tests X-Squared

Teraesvirta’s neural network test 26.03616

White neural network test 20.77706

Likelihood ratio test for
threshold nonlinearity 360.5499

F-statistics

Tsay’s test for nonlinearity 7.94491

The R software nonlinearTseries package [19] for calculating Nonlinearity Test Statistics.

Table 3. BDS test statistic.

Dimension z-Statistic

2 276.5526

3 297.6034

4 323.5149

5 360.5517

6 410.8878

The BDS test (Brock et al. [20]) in Table 3 suggests that the (linear) functional form is
misspecified for the variables.

4. Models and Results

The Lie parameters in Equation (5) were obtained by using the OLS and NLS methods.
Table 4 shows estimates of the Lie parameters. The α2 coefficient estimates obtained with
the two methods turned out to be very similar, whereas α3 coefficient estimates obtained



Mathematics 2021, 9, 1708 7 of 10

with the two methods were significantly different. The AIC values obtained with both
models are similar to each other.

Table 4. Estimations of Lie parameters.

Lie Methods

Lie-OLS Lie-NLS

α2
−0.319
(−5.18)

−0.321
(2.58)

α3
−1.067
(3.16)

−0.321
(2.58)

β1
0.256
(1.89)

0.526
(4.80)

β2
−0.3048

(1.73)
−0.3048
(−2.56)

β3
0.474
(2.36)

−0.282
(14.96)

β4
−0.616
(3.209)

0.4616
(3.21)

β5
−0.282
(2.64)

0.4746
(1.97)

AIC −11.89 −11.65

R2 0.66 0.78

Log likelihood 52.828 79.651

ARCH 3.79 * 2.45

BP 9.48 * 2.99

Keenan 3.16 1.54

RESET 3.81 * 2.8
* ARCH test is Engle’s test for first order ARCH. BP is the Breusch–Pagan test for heteroscedasticity. Keenan test
and RESET test are tests for non-linearity.

It is interesting that Lie-OLS model passes RESET, BP, and ARCH tests with values
very close to the critical value. On the other hand, the statistical tests of the LieNLS model
gave more successful results than the statistical tests of the Lie-OLS model.

Next, the forecasting performances with the LieOLS and LieNLS models were analyzed.
LSTM was used to improve the forecasting performances of these models. In order to apply
the LSTM model, the dataset was partitioned into an in-sample training set and out-sample
test set corresponding to the time intervals between 2 January 1986–20 October 2019 and
21 October 2019–5 April 2021, respectively.

The configuration of our LSTM network is as follows:

• Input samples consist of sequence segments of 30 timesteps, each having 1 fea-
ture (price).

• Input layer is connected to an LSTM unit with 25 hidden neurons and a dropout value
of 0.20.

• LSTM output feeds a dense layer (output) with one neuron and linear activation function
• Training is performed in batches of 32 samples.

The model giving the lowest RMSE and MAE values is deemed the most success-
ful model.

4.1. In-Sample Forecast Results

Table 5 presents the results of the LSTM method integrated with the LieOLS model or
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the LieNLS model. As references for comparison, the results with the LieOLS and LieNLS
models (employing traditional regression techniques) are also presented.

Table 5. In-sample forecast results.

Traditional Lie Method Lie Deep Method

LieOLS LieNLS Lie-LSTMOLS Lie-LSTMNLS

MAE 0.08300 0.1640 0.007676 0.002671

RMSE 0.10223 0.2027 0.011423 0.006425

It can be observed from Table 5 that the Lie-LSTMNLS model gives more successful
results than the Lie-LSTMOLS model. More importantly, it is also seen that Lie-LSTMOLS
and Lie-LSTMNLS models give more successful results than the LieOLS and LieNLS models
used for reference.

4.2. Out-of-Sample Forecast Results

The RMSE and MAE values for LieOLS, LieNLS, Lie-LSTMOLS, and Lie-LSTMNLS
were obtained to explore their forecast accuracy for T+10 and T+20 workdays in Table 6.
The out-of-sample results indicate that Lie-LSTMNLS provides the highest out-of-sample
forecast accuracy.

Table 6. The out-of-sample performances of compared methods.

Traditional Lie Methods

LieOLS LieNLS

T+1 T+10 T+20 T+1 T+10 T+20

MAE 0.0495 0.051 0.058 0.076 0.078 0.083

RMSE 0.0633 0.066 0.069 0.088 0.092 0.095

Deep Neural Networks

Lie-LSTMOLS Lie-LSTMNLS

T+1 T+10 T+20 T+1 T+10 T+20

MAE 0.014085 0.014168 0.014636 0.002710 0.002174 0.001601

RMSE 0.028279 0.028653 0.029099 0.007710 0.008449 0.008548

4.3. Test for Forecast Accuracy

The Wilcoxon signed-rank and Diebold–Mariano (DM) tests were applied to test the
equivalence of forecast accuracy (null hypothesis H0).

In Tables 7 and 8, the p values of calculated DM and Wilcoxon test statistics are 0.00,
and both of them are significant at the 1% significance level. The H0 hypothesis of these
tests assume the models have the same level of accuracy. For most cases, since the p-value
is <0.05, H0 hypothesis is rejected. For both tests, the p-value is >0.05 only for the RMSE
comparison of the LieOLS and LieNLS models. Hence, these two models are comparable in
terms of RMSE performance.

Table 7. p-values for the Wilcoxon signed-rank tests.

LieOLS LieNLS Lie-LSTMOLS Lie-LSTMNLS

LieOLS -

LieNLS 0.41 -

Lie-LSTMOLS 0.00 0.00 -

Lie-LSTMNLS 0.00 0.00 0.00 -
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Table 8. p-values for the Diebold–Mariano tests.

LieOLS LieNLS Lie-LSTMOLS Lie-LSTMNLS

LieOLS -

LieNLS 0.32 -

Lie-LSTMOLS 0.00 0.00 -

Lie-LSTMNLS 0.00 0.00 0.00 -

5. Discussion and Conclusions

We have proposed hybrid models for analyzing the short-term model of the oil during
the period from 2 January 1986 to 5 April 2021. In our basic model, the Lie group SO(3) is a
differential manifold, and it can be identified with unit sphere S2. We have additionally
integrated this model with LSTM to test it.

The previous works by [8,9] differ significantly from the current work since [8] only
discussed the mean reverting tendency of oil price, and the model by [9] depends on a two-
factor model for pricing financial and real assets contingent on the price of oil. Specifically,
it estimates the parameters of joint stochastic processes modelling oil-contingent claim and
futures contract based on spot prices and net convenience yield and uses this model to
value futures contracts. On the other hand, our work develops the short-term model and
solves it with the hybrid model of Lie method and LSTM network. Although Lie algebras
have been used in interest rate models in many works in the literature, the current work is
the first to use Lie algebras for oil price modelling. When the time series for oil prices are
considered, it is seen that their distributions have positive skewness. Even though some
other methods might be tried out to perform analyses on these processes, this problem can
be readily addressed with our proposed Lie model. This can be attributed to the modelling
of the oil price on the S2 manifold using matrix representations and differential operators in
our suggested LieOLS and LieNLS models. Then, we maintain that carrying out a modelling
with the Lie-LSTM methods obtains good forecasting results.

LieOLS-LSTM and LieNLS-LSTM methods facilitate the numerical computations for
stochastic differential equations on differentiable manifolds. By employing SO(3) group
structure, the oil prices that have a positive skewness and high JB and kurtosis can be
described in a geometric way. Moreover, by jointly using the Lie and LSTM methods, it be-
comes possible to increase forecasting performance by representing the complex structure.

As stated in Park et al. [15] for interest rate, the Lie group models in the current
work show that the closed form formulas can only be an exception rather than the rule
for oil price prediction, and therefore one should resort to numerical approaches for
such prediction. Additionally, while the previous works ([15,16] for bond pricing) have
employed either OLS or NLS methods to estimate the model parameters, the current
work investigated which of these methods works best with the Lie method. Each of these
combinations, LieOLS and LieNLS, were integrated with the LSTM network to get a hybrid
model with improved forecasting performance. Specifically, in price forecasting 10 and
20 days into the future, the models incorporating LSTM yielded smaller RMSE and MAE
values. According to Wilcoxon signed-rank and Diebold–Mariano tests, Lie-LSTMNLS
model turned out to be the most successful one in terms of forecasting performance among
the four models considered.

In this study, we showed that the analysis of the short-term model of the spot price
of oil by using the Lie method is important. The model that we propose can also be used
to analyze the relationship between futures and spot prices of many commodities other
than oil.
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