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Abstract: The concept of an endpoint is a relatively new concept compared to the concept of a fixed
point. The aim of this paper is to perform a convergence analysis of M—iteration involving α—Reich–
Suzuki nonexpansive mappings. In this paper, we prove strong and ∆—convergence theorems in a
hyperbolic metric space. Thus, our results generalize and improve many existing results.
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1. Introduction

Due to its wide applications, fixed point theory is a very fast-growing research area
of nonlinear analysis. There are two main problems that arise in this active research
area. The first problem deals with the existence of fixed points with respect to different
nonlinear mappings, while the second problem concerns the convergence analysis of a fixed
point. To study the convergence analysis of a fixed point for single valued mapping, many
iteration processes have been developed, for example, Mann iteration [1], Ishikawa [2],
Halpern [3], Agarwal [4], Noor [5] and M—iteration [6] and some others. Sastry and
Babu [7] utilized the Mann and Ishikawa iteration process to approximate a fixed point of
multivalued mappings in a Hilbert space. Panyanak [8] extended the result of Sastry and
Babu [7] to the uniformly convex Banach space. One of the interesting research problems in
the fixed point theory of Banach spaces is to generalize the class of nonexpansive mappings.
It is worth mentioning here that convexity plays a very important part in metric fixed point
theory. Therefore, beyond the Banach space, there are interesting challenges to obtaining
similar results. Thus, hyperbolic metric spaces provide a natural platform to study metric
fixed point results.

Endpoint (also called a strict fixed point) of multivalued mapping is a restrictive
condition rather than a fixed point. If a multivalued mapping has a fixed point, then the
endpoint of that mapping may or may not exist. In 2003, Rus [9] proved some results
on endpoints. Several authors have studied the existence of an endpoint for multivalued
mapping in a Banach space, e.g., [10–17]. Very recently, Panyanak [18] utilized an Ishikawa
type iteration process to approximate endpoint of multivalued nonexpansive mapping.
In 2008, Suzuki introduced a class of mappings, which is a larger class of mappings than
the class of nonexpanive mappings. Many authors approximate the endpoint of Suzuki
nonexpansive mapping by using different iterations; see [6,19,20].

The aim of this paper is twofold and can be described as follows:
We perform a convergence analysis of M-iteration to the endpoint of a generalized

nonexpansive mapping (concretely, α—Reich–Suzuki nonexpansive mapping). We also
extend our domain from a linear to nonlinear domain viz:hyperbolic metric space.
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2. Preliminaries

Let (X, d) be a metric space and K be a nonempty subset of X. For x ∈ X, set

d(x, K) = inf{d(x, y) : y ∈ K},

here d(x, K) is known as distance from x to K. We shall denote the set of all nonempty and
compact subsets of K by C(K). Set

H(A, B) = max{sup
a∈A

d(a, B), sup
b∈B

d(b, A)},

for each A, B ∈ C(K), H(., .) is known as the Hausdorff metric on C(K).
A multivalued mapping T : K → C(K) is said to be nonexpansive mapping if

H(Tx, Ty) ≤ d(x, y),

for each x, y ∈ K.
A point p ∈ K is said to be fixed point of T : K → C(K) if p ∈ Tp and endpoint

or stationary point if Tp = p. The set of fixed points is denoted by FT and endpoints is
denoted by ET . T : K → C(K) is said to satisfy the endpoint condition if ET = FT .

Recently, in 2019, Pandey et al. [21] introduced a new mapping, namely α—Reich–
Suzuki nonexpansive mapping, which generalizes all previous mappings in the literature.
We present here a multivalued version of α—Reich–Suzuki nonexpansive mapping.

Definition 1. A mapping T defined on a nonempty subset K of hyperbolic metric space is said to
be multivalued α—Reich–Suzuki nonexpansive mapping if for all x, y ∈ K and α ∈ [0, 1),

1
2

d(x, Tx) ≤ d(x, y)⇒ H(Tx, Ty) ≤ max{P(x, y), Q(x, y)}

where
P(x, y) = αd(Tx, x) + αd(Ty, y) + (1− 2α)d(x, y)

and
Q(x, y) = αd(Tx, y) + αd(Ty, x) + (1− 2α)d(x, y).

In 1990, Reich and Shafrir [22] introduced hyperbolic metric space and studied an
iteration process for nonexpansive mappings in these spaces. In 2004, Kohlenbach [23]
introduced a more general hyperbolic metric space. In this paper, we use the definition of a
hyperbolic metric space given by Kohlenbach [23].

Definition 2. Let (X, d) be a metric space, then (X, d, W) will be the hyperbolic metric space if
the function W : X× X× [0, 1]→ X satisfying

(i) d(z, W(x, y, α)) ≤ (1− α)d(z, x) + αd(z, y),
(ii) d(W(x, y, α), W(x, y, β)) = |α− β|d(x, y),
(iii) W(x, y, α) = W(x, y, 1− α),
(iv) d(W(x, y, α), W(z, w, α)) ≤ (1− α)d(x, z) + αd(y, w)

for all x, y, z, w ∈ X and α, β ∈ [0, 1].

A linear example of a hyperbolic metric space is a Banach space, and nonlinear examples
are Hadamard manifolds, the Hilbert open unit ball equipped with the hyperbolic metric
(for more information concerning the Hilbert ball, see [24]) and the CAT(0) spaces.

The generalization of the definition of uniformly convex in metric space was first
given by Goebel et al. [25].



Mathematics 2021, 9, 1692 3 of 8

Definition 3. Let (X, d) be a hyperbolic metric space. We say that X is uniformly convex if for
any a ∈ X, for every r > 0, and for each ε > 0

δ(r, ε) = inf
{

1− 1
r

d
(

W(x, y,
1
2
), a
)

; d(x, a) ≤ r, d(y, a) ≤ r, d(x, y) ≥ rε

}
> 0. (1)

Definition 4. Let (X, d) be a uniformly convex hyperbolic space. For each r > 0 and ε ∈ (0, 2],
we define

ψ(r, ε) = inf{1
2

d2(a, z) +
1
2

d2(b, z)− d2(W(a, b,
1
2
), z)},

where the infimum is taken over each a, b, z ∈ X such that d(a, z) ≤ r, d(b, z) ≤ r and d(a, b) ≥ rε.
We say that (X, d) is 2-uniformly convex if

CX = inf{φ(r, ε)

r2ε2 : r ∈ (0, ∞), ε(0, 2]} > 0.

A uniformly convex Banach space and CAT(0) spaces as well as CAT(k) spaces
(k > 0 and diam (M) ≤ ((π/2− ε)/k1/2)) for some ε ∈ (0, π/2) are 2-uniformly convex
hyperbolic spaces.

Definition 5. Let X be a complete hyperbolic metric space and {xn} be a bounded sequence in X.
Then, the type function τ(., {xn}) : X → [0, ∞) is defined by

τ(x) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) is given by

r(X, {xn}) = inf{τ(x) : for x ∈ X}

and the asymptotic center A({xn}) of {xn} is defined as

A({xn}) = {x ∈ X : τ(x) = r({xn})}.

Definition 6. The sequence {xn} is called regular relative to K if r(K, {xn}) = r(K, {xni}) for
every subsequence {xni} of {xn}.

Lemma 1 ([26]). Every bounded sequence in hyperbolic metric space has a regular subsequence.

Definition 7. A bounded sequence {xn} in X is said to ∆—converge to x ∈ X if x is the unique
asymptotic center of every subsequence {un} of {xn}. We write xn ⇁ x ({xn} ∆—converges to x).

Definition 8. A mapping T : K → C(K) is said to satisfy condition (J) if there is a nondecreasing
function λ : [0, ∞)→ [0, ∞) with λ(0) = 0, λ(t) > 0 for t ∈ (0, ∞) such that

D(x, Tx) ≥ λ(d(x, E(T)))

for each x ∈ K.

Definition 9. A mapping T : K → C(K) is said to be semi-compact if for every sequence {xn} in
K such that

lim
n→∞

rxn(Txn) = 0,

there is a subsequence {xnj} of {xn} such that limj→∞ xnj = z for some z ∈ K.

We see that if K is compact, then every multivalued mapping T : K → C(K)
is semicompact.
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Definition 10. A sequence {xn} in X is called Fejer-monotone with respect to K if d(xn+1, p) ≤
d(xn, p), for each p ∈ K and n ∈ N.

Proposition 1 ([19]). Let K be a nonempty closed subset of complete 2-uniformly convex hyperbolic
metric space and {xn} be a Fejér monotone sequence with respect to K. Then, {xn} converges
strongly to a point of K if and only if limn→∞ d(xn, K) = 0.

Lemma 2 ([21]). Let T be a generalized α—Reich–Suzuki nonexpansive mapping on a nonempty
subset C of a hyperbolic space; then, for all x, y ∈ C

d(x, Ty) ≤ (
3 + α

1− α
)d(x, Tx) + d(x, y).

The proof of this lemma is simple, and it can be followed from the line of proof of
Theorem 3.1 of [20].

Lemma 3. Let K be a nonempty bounded closed convex subset of X and T : K → C(K) be a
multivalued α—Reich–Suzuki nonexpansive mapping. Then, T has an endpoint if and only if T has
the approximate endpoint property.

Lemma 4 ([27]). Let (X, d) be a 2-uniformly convex hyperbolic metric space then,

d2(W(x, y, α), z) ≤ (1− α)d2(x, z) + αd2(y, z)− 4CXα(1− α)d2(x, y),

for each α ∈ [0, 1] and x, y, z ∈ X.

Definition 11. Let K be a nonempty subset of a metric space (X, d) and x ∈ X. The radius of K
relative to x is defined by

rx := sup{d(x, y) : y ∈ K}.

The diameter of K is defined by

diam(K) := sup{d(x, y) : x, y ∈ K}.

The set K is said to be bounded if diam(E) < ∞.

Lemma 5 ([18]). For a multivalued mapping T : K → C(K), the following statements hold.

(a) d(x, Tx) = 0⇔ x is a fixed point of T.
(b) rx(Tx) = 0⇔ x is an endpoint of T.

Lemma 6. Let αn be a real sequence such that αn ∈ [0, 1] and ∑ αn(1− αn) = ∞. Let βn be the
sequence of nonnegative sequence of real numbers such that ∑ αn(1− αn)βn is bounded. Then, βn
has a subsequence, which converges to zero.

Proof. The proof is simple and can be proven easily.

Lemma 7 ([28]). Let X be a complete uniformly convex hyperbolic metric space and K be a closed
convex subset of X if {xn} is a bounded sequence in K, then the asymptotic center of {xn} is in K.

We present here a multivalued version of the M—iteration process in a hyperbolic
metric space, as follows: 

x0 ∈ C,
zn = W(xn, un, αn), un ∈ Txn
yn = vn, vn ∈ Tzn
xn+1 = wn, wn ∈ Tyn ∀n ∈ N.

(2)
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3. Main Result

Let us begin the section with the following useful lemma:

Lemma 8. Let K be a nonempty bounded closed convex subset of a complete uniformly convex
hyperbolic metric space X with a monotone modulus of uniform convexity and T : K → C(K)
be a multivalued α—Reich–Suzuki nonexpansive mapping. If {xn} is a sequence in K, then the
following holds:

xn
∆−→ x, d(xn, Txn)→ 0 and diam(Txn)→ 0 imply x ∈ ET .

Proof. From Lemma 7, we obtain that x ∈ K. For each n ∈ N, we can choose yn ∈ T(xn)
such that d(xn, yn) = d(xn, Txn). By passing through a subsequence, we may assume that
{xn} is regular relative to K. Let A(E, {xn}) = x and r = r(K, {xn}). In a similar way to
the proof of Lemma 3, we obtain that x ∈ E(T).

Lemma 9. Let X be a complete 2-uniformly convex hyperbolic metric space and K be nonempty
closed convex subset of X. Assume that T:K → C(K) is a multivalued α—Reich–Suzuki nonexpan-
sive mapping with ET 6= ∅. Let {xn} be the sequence of M-iteration defined by (2) with αn ∈ [0, 1].
Then, limn→∞ d(xn, p) exists for every p ∈ ET .

Proof. Let p ∈ ET , then

d(xn+1, p) = d(wn, p) = H(Tyn, Tp) ≤ d(yn, p) = H(Tzn, Tp)

≤ d(zn, p) = d(W(xn, un, αn), p)

≤ αnd(xn, p) + (1− αn)d(un, p)

= αnd(xn, p) + (1− αn)H(Txn, Tp)

≤ αnd(xn, p) + (1− αn)d(xn, p)

= d(xn, p)

for n ∈ N. Hence, d(xn, p) is a nonincreasing sequence, which implies limn→∞ d(xn, p)
exist for every p ∈ ET .

Theorem 1. Let X be a complete 2-uniformly convex hyperbolic metric space and K be a nonempty
closed convex subset of X. Assume that T:K → C(K) is a multivalued α—Reich–Suzuki nonexpan-
sive mapping with ET 6= ∅. Let {xn} be the sequence of M-iteration defined by (2) with αn ∈ [0, 1].
Then, {xn} ∆—converges to a endpoint of T.

Proof. Fix q ∈ E(T). Then, by Lemma 4,

d2(zn, p) = d2(W(xn, un, αn), p)

≤ (1− αn)d2(xn, p) + αnd2(un, p)− 4CXαn(1− αn)d2(xn, un)

≤ (1− αn)d2(xn, p) + αn H2(Txn, Tp)− 4CXαn(1− αn)d2(xn, un)

≤ (1− αn)d2(xn, p) + αnd2(xn, p)− 4CXαn(1− αn)d2(xn, un)

≤ d2(xn, p)− 4CXαn(1− αn)d2(xn, un)

for n ∈ N. Thus,

d2(yn, p) = H2(Tzn, Tp) ≤ d2(zn, p)

d2(xn+1, p) = d2(wn, p) = H2(Tyn, Tp) ≤ d2(yn, p)

≤ d2(zn, p) ≤ d2(xn, p)− 4CXαn(1− αn)d2(xn, un)

4CXαn(1− αn)d2(xn, un) ≤ d2(xn, p)− d2(xn+1, p).
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Since CM > 0, it follows that

∞

∑
n=1

αn(1− αn)d2(xn, un) < ∞.

Thus, limn→∞ d2(xn, un) = 0, and hence,

lim
n→∞

rxn(xn, Txn) = lim
n→∞

d(xn, un) = 0.

By Lemma 9, d(xn, p) converges for all p ∈ ET .
To show {xn} ∆—converges to an endpoint of T, it is sufficient to show that {xn} has

a unique asymptotic center in ET . For this, we suppose that there are subsequence in {xni}
and {xnj} of {xn} with A(xni ) = x1 and A(xnj) = x2.

Since diam(Txni ) = 0, it follows that x1 ∈ ET . Similarly, we can get x2 ∈ ET . Now,
to prove x1 = x2.

On contrary, suppose that x1 6= x2.

lim
n→∞

d(xn, x1) = lim
i→∞

d(xni , x1) < lim
i→∞

d(xni , x2)

= lim
n→∞

d(xn, x2) = lim
j→∞

d(xnj , x2)

< lim
j→∞

d(xnj , x1) = lim
n→∞

d(xn, x1)

which is a contradiction. Hence, xn
∆−→ x ∈ ET .

Theorem 2. Let X be a complete 2-uniformly convex hyperbolic metric space and K be a nonempty
closed convex subset of X. Assume that T : K → C(K) is a multivalued α—Reich–Suzuki
nonexpansive mapping with ET 6= ∅. Let {xn} be the sequence of M-iteration defined by (2) with
αn ∈ [0, 1]. If T is semicompact, then {xn} converges strongly to an endpoint of T.

Proof. In view of ∑∞
n=1 αn(1− αn)d2(xn, un) < ∞. By Lemma 6, there exist subsequence,

namely {xnt} and {unt} of {xn} and {un}, respectively such that limt→∞ d2(xnt , unt) = 0.
Hence, limn→∞ rxt(xnt , Txnt) = limn→∞ d(xnt , unt) = 0.
By the semicompact of the mapping T, one can find a stronger convergent sequence

{xnt} of {xn} with the strong limit, i.e., x. We shall prove that x ∈ ET .

d(x, Tx) ≤ d(x, xnt) + d(xnt , T(x))

≤ d(x, xnt) + (
3 + α

1− α
)d(xnt , Txnt) + d(xnt , x)

→ 0

as t→ ∞. Furthermore,
H(Txnt , Tx) ≤ d(xnt , z)→ 0.

Now, we let v ∈ Tx and choose ynt ∈ Txnt such that d(v, ynt) = d(v, Txnt).
Thus,

d(z, v) ≤ d(z, xnt) + d(xnt , ynt) + d(ynt , v)

= d(z, xnt) + d(xnt , ynt) + d(Txnt , v)

≤ d(z, xnt) + D(xnt , Txnt) + H(Txnt , Fx)

→ 0 as n→ ∞.

Hence, v = x for all v ∈ Tx, that is x = Tx.
Therefore, x ∈ ET .
By Lemma 9, limn→∞ d(xn, x) exist. Hence x is the strong limit of {xn}.
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Theorem 3. Let X be a complete 2-uniformly convex hyperbolic metric space and K be nonempty
closed convex subset of X. Assume that T:K → C(K) be a multivalued α—Reich–Suzuki non-
expansive mapping with ET 6= ∅. Let {xn} be the sequence of M-iteration defined by (2) with
αn ∈ [0, 1]. If T satisfies condition (J), then {xn} converges strongly to an element of ET .

Proof. Using the proof of Theorem 1, we get

lim
n→∞

rxn(xn, Txn) = lim
n→∞

d(xn, un) = 0.

Since T satisfies condition (J), we have

lim
n→∞

d(xn, ET) = 0.

In the view of Lemma 9, {xn} is Fejer-monotone with respect to ET . It now follows
from Proposition 1, {xn} converges strongly to an element of ET .

4. Example

Let X be a set of real numbers and K = [0, 15]. Define a multivalued mapping
T:K → C(K) by

T(x) =

{
0, if x 6= 10
[11, 15], if x = 10

Clearly, we can see that T is a multivalued α—Reich–Suzuki nonexpansive mapping
with ET = {0}.

We finish our paper with the following open problem:
Open Problem: Can we construct a multivalued α—Reich–Suzuki nonexpansive in a

higher dimension?

5. Conclusions

We proved the convergence of the M—iteration process to the endpoint of the multi-
valued α—Reich–Suzuki nonexpansive for a hyperbolic metric space. We worked on the
hyperbolic metric space as an underlying space, which is a nonlinear space and contained
the class of the Banach space property. Thus, our results not only generalized the class of
mappings but also extended the class of underlying space. Our Theorem 1 generalized the
Theorem 1 of Abdeljawad et al. [29], Theorem 13 of Ulaah et al. [30], and Theorem 3.2 of
Ullah et al. [31]. Theorem 2 generalized Theorem 2 of Abdeljawad et al. [29], Theorem 16
of Ullah et al. [30], Theorem 3.5 of Ullah et al. [31], and Theorem 2.2 of Ullah et al. [32]. Our
Theorem 3 generalized Theorem 3 of Abdeljawad et al. [29], Theorem 18 of Ulaah et al. [30],
Theorem 3.6 of Ullah et al. [31] and Theorem 2.3 of Ullah et al. [32].
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