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Abstract: The usual measures of market risk are based on the axiom of positive homogeneity while
neglecting an important element of market information—liquidity. To analyze the effects of this
omission, in the present study, we define the behavior of prices and volume via stochastic processes
subordinated to the time elapsing between two consecutive transactions in the market. Using
simulated data and market data from companies of different sizes and capitalization levels, we
compare the results of measuring risk using prices compared to using both prices and volumes. The
results indicate that traditional measures of market risk behave inversely to the degree of liquidity
of the asset, thereby underestimating the risk of liquid assets and overestimating the risk of less
liquid assets.

Keywords: liquidity risk; volume; trade; intraday frequency

1. Introduction

Liquidity risk is an important field of research in finance, as evidenced by the large
number of papers published on this subject ([1–16]). However, the large timespan of these
publications indicates that this question does not yet have a single answer. Nevertheless,
while there is consensus in the literature on the factors to be considered (i.e., price, vol-
ume, and settlement time; see, among others [17–19]), this consensus disappears when
considering methodology.

In this context, our objective is to develop a methodology for estimating the market
risk of assets including liquidity risk, as several authors, such as those of [20], found that
assets more sensitive to liquidity offer higher average returns. Therefore, a market-risk
estimation model that accounts for liquidity risk must incorporate the defining elements
of liquidity risk ([17,21]), including the immediacy or execution time of a transaction,
the rigidity or cost of liquidating a small position, the depth or ability to trade at any
volume, and the resilience or speed with which prices return to their equilibrium values.

For this purpose, the authors of [22] defined risk in terms of the change in value
between two dates that are known but does not consider the period necessary to liquidate
a position. Moreover, the axioms of [22] have been questioned (for example, see the
work of [23], on the axiom of subadditivity). Thus, we focus on the axiom of positive
homogeneity since, as the authors of [22] indicate, the time to liquidate a position depends
on the volume of the position. However, is this relationship linear?

This issue was raised by the authors of [24], who introduced liquidity risk into the
risk estimation model and questioned the validity of the axioms of subadditivity and
positive homogeneity. These axioms required of the coherent risk measures assume that:
on the one hand, the risk of a set of assets is always less than or equal to the sum of the
individual risks (subadditivity), and on the other hand, the risk of a portfolio composed
of a number of M units of a single asset is always equal to M times the individual risk of
the asset (positive homogeneity). However, the authors of [25] had previously established
the relationship between the two properties. A relaxation of convex risk measures was

Mathematics 2021, 9, 1678. https://doi.org/10.3390/math9141678 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8255-9478
https://orcid.org/0000-0003-0396-369X
https://orcid.org/0000-0001-5867-6490
https://doi.org/10.3390/math9141678
https://doi.org/10.3390/math9141678
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9141678
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9141678?type=check_update&version=1


Mathematics 2021, 9, 1678 2 of 14

proposed as a possible solution for the nonlinear relationship between portfolio value and
portfolio size ([25–27]). Another solution ([24,28]) is to define a càdlàg and ládcàg structure
for a market depending on whether the position is short or long, thereby measuring the
risk based on ask and bid prices respectively. However, this proposal assumes that the
operations are immediate and that the volumes accompanying the buy and sell orders are
sufficient to provide liquidity to the market (in addition to orders with hidden volume;
see [29]). Consequently, any open positions are closed uniformly in time (with constant
time intervals).

Additionally, the authors of [30] determined that the volume traded is correlated with
all volatility measures, and the authors of [31] (p. 86) noted that the time horizon to measure
the market risk depends on the asset liquidity and the time needed to close the position
according to the volume traded regularly. Thus, market risk measures are subjective since
they set the time horizon as an arbitrary input, whereas in our proposal, the time horizon
is considered an output. Additionally, the authors of [32] observed limitations to adjusting
liquidity risk with spread (bid–ask difference). Our methodology is based on transactions
(trade execution prices and volume) that provide information that can later be used to
adjust the bid–ask price spreads and bid–ask volume, making this method applicable both
for markets with market-to-market behavior and for markets managed by order books by
adjusting to the real intraday behavior of the operations and not only to the opening and
closing prices. Moreover, by including volume as another variable, we consider the type of
trading—i.e., informed agents making large trades, while small trades are not affected by
bid–ask spreads. A review of these theories can be found in [33].

Liquidity risk has not ceased to be a hot research topic. So, Lam and Hue [34]
investigated whether stock liquidity risk changes during the global financial crisis of
2008–2009 in international equity markets and find that stocks with higher precrisis return
exposure to global market liquidity shocks experience larger price reductions during the
crisis period. Kyounghun and Kim [35] investigated the effect of liquidity on exchange-
traded fund tracking errors, returns, and volatility in the US and found that illiquid funds
have large tracking errors; this effect is more pronounced when underlying assets are
less liquid. Berger and Uffmann [36] use difference between bid and ask asset prices to
measure stock liquidity and find that liquidity-adjusted value at risk is not Gaussian, so
they forecast liquidity risk using the Cornish–Fisher approximation.

In this context, we test our proposal using two sample data sets. First, we simulate
transactions with different frequencies and parameters for the stochastic processes of price
and volume. Then, we compare the estimates of liquidity risk and usual market risk
measures for high, medium, and low capitalization companies on Standard and Poor’s 500
(Apple, Delta Airlines, and Unum Group, respectively). The sample market data include
two frequencies: realized transaction dates and cumulative daily transactions.

The rest of the study is structured as follows: Section 2 proposes the methodology,
Section 3 provides the experimental and market data results, and Section 4 presents the
concluding remarks.

2. Materials and Method
2.1. Literature Review

First, we review empirical studies on the subject since our proposal requires knowl-
edge of the intraday behavior (transaction by transaction) of the variables considered,
including price, volume, and time intervals between trades.

A drawback when analyzing real operational or high-frequency data is the irregularity
of the time intervals in data observations, which, in a univariate case, requires temporal
interpolations using common statistical tools (see [37]). However, in a multivariate case,
there is an additional problem of asynchrony when observing the data, which generates
effects such as those outlined by the authors of [38], who noted that the correlation between
two assets decreased as the observation frequency was reduced. The authors of [39] deter-
mined that the time between trades is correlated with the introduction of new information
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in the market, making it more interesting to analyze the data for transaction times than
the data for a constant time interval (e.g., every 5 min, at close, etc.). Therefore, models
that feature constant intervals between trades, such as the model developed by the authors
of [40], are outside the scope of this study since the interval is a stochastic variable that
helps to define the risk of an asset.

In this way, the authors of [41] proposed the first econometric model for irregular
time intervals between market transactions, known as autoregressive conditional duration
(ACD), which allows one both to capture the conditional behavior and to use different
distributions for the shocks (exponential, gamma, Weibull, . . . ). The authors of [42] pro-
posed log-ACD models to ensure that the duration is strictly positive. The authors of [43]
proposed stochastic volatility of duration (SVD) models. The use of these models was also
extended to realized volatility modeling (e.g., [44]), a nonlinear model with two factors
for the mean and variance of the duration. Subsequently, the authors of [45] determined
that the waiting times between trades are random and positive by definition and observed
a possible correlation between the time interval of transactions and asset returns. The
authors of [46] found that the predictive ability of ACD models with different distributions
is greater than that of SVD models.

Since irregular time intervals show thick tails in the distribution of asset returns,
clustering, and long-term dependence (which, together with their irregularity makes the
usual statistical tests for autocorrelation and heteroscedasticity unreliable in the presence
of outliers), the authors of [47] studied these properties on a set of assets to determine
whether a fractal model can fit the duration of transactions better than the usual ACD
models with different probability distributions. Their results indicated that a model with a
stable distribution best fits the interval between transactions. Most recently, the authors
of [48] highlighted the complexity of contrasting and selecting an appropriate ACD model
using statistical contrasts. The authors of [49] used an econometric model (ARMA and
SETAR) to model intraday volume and divided the behavior of volume in two: on the one
hand, the usual daily behavior, and on the other hand, abnormal behavior. The authors
concluded that it is necessary to model price and volume jointly, but this factor was already
highlighted by the authors of [50], who defined the positive relationship between changes in
price and volume. The authors of [51] provided the first work that jointly modeled duration,
trade order size, and returns, obtaining a reduced econometric form that incorporates the
causal and feedback effects between these variables and, at the same time, captures the
arrival of new information by distinguishing between high and low frequency moments in
transactions. A conditional autoregressive model was used for duration and volume and
GARCH (generalized autoregressive conditional heteroskedasticity) was used for asset
returns. The authors of [52] proposed using duration models to estimate the intraday value
at risk. Further, using similar modeling, the authors of [53] found that market liquidity and
volume are important for explaining volatility dynamics but not vice versa, although the
time series analyzed corresponded to a regular five-minute interval and not to the interval
realized between trades. Lastly, the authors of [54] noted that liquidity risk is not a result of
the size of the market but of the diversity of the economic agents with different objectives
operating within that market, and that traditional measures of risk (such as value at risk)
suffer from contagion problems and amplify the results at critical moments.

The authors of [55] postulated the existence of a relationship between order flow
and adverse selection, which could imply that market makers unknowingly provide
liquidity at a loss. Therefore, the authors proposed a methodology to estimate the volume-
synchronized probability of informed trading (VPIN) that offers significant predictive
power for toxicity-induced volatility and skewness, as the authors noted that the time
series of observations at realized trading times are closer to a normal distribution and less
heteroskedastic than those uniformly constructed with constant time intervals.
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2.2. Model

One notable problem in the studies reviewed above is that the underlying stochastic
processes of the modeled variables were not defined, making it impossible to test their
ability to obtain risk-neutral valuations. Therefore, the variables are always of subjec-
tive probability.

To avoid this subjectivity, we employ marked point processes, which are used for
modeling the intervals between events since these processes are the components that carry
information on the temporal locations of the stochastic variables. Poisson processes con-
stitute the beginning of these processes, so the number of events that take place between
two moments in time can be considered to follow a Poisson process. Therefore, the in-
terval between events follows an exponential distribution, while the sum of a number of
exponential and independent random variables follows an Erlang distribution.

The above refers to Lévy processes, within which there are processes that fit the
transaction-by-transaction modeling of financial markets. This subclass is known as sub-
ordinated Brownian motion processes ([56,57]). These processes are characterized by the
use of a standard Brownian process, such as the process commonly used to model asset
returns, plus another independent gamma process that models the time at which an event
takes place. Thus, if such an event (trade) takes place, then the (subordinate) Brownian
process intervenes in modeling of the asset price. This combination, among others, leads
the underlying probability to assume a Laplace distribution. For example, [58,59] applied
this combination to the Black–Scholes–Merton model for pricing options, and the authors
of [60] showed that these processes are similar to those of Heston and Cox–Ingersoll–Ross.

In our theoretical model, time is the only real, continuous, and absolute unit of
measurement, which we define as t. Then, we define the return of an asset (r) with price P
as a stochastic process where Si = ln(Pi):

ri = dSi = (µS −
1
2
· σ2

S) · dti + σS · dWi (1)

where dW is a Wiener process such that dWi =
√

dti · εS,i, εS,i ∼ N(0, 1) and
√

dti =√
ti − ti−1. Here, N is cumulative standard normal distribution. Usually, in finance,

ti − ti−1 = dt (i.e., a constant) and it is assumed that ti − ti−1 → 0. However, if this interval
is not constant, it reveals an important characteristic of the market liquidity for each asset.

An advantage of this model is that it can be adjusted for stochastic volatility as
dσi = σS ·

√
dti. This is equivalent to expressing the model as a variation of the Wiener

process: dWi = Wi −Wi−1 ∼ N(0, ti − ti−1). Thus, volatility depends on the duration or
interval between trades, as noted by the authors of [39,60].

In this context, the authors of [61] found that the distribution of the waiting time
between transactions for BUND futures traded on LIFFE follow a Mittag-Leffler function
with parameters close to 0.96. However, when this parameter is close to 1, this function is
equivalent to an exponential distribution. Thus, the underlying behavior is a truncated
Lévy process where the waiting time (τ) follows a negative exponential distribution, which

implies that τ =
exp(− t

λ )
λ , where λ is the average time between consecutive transactions.

However, since the volume (log-volume) must be modeled together with the asset re-
turn to estimate liquidity risk, the joint behavior represents a bivariate Laplace distribution.

Thus, following [61,62],[
dSi
dVi

]
=

[
µS
µV

]
· dti +

[
σ2

S σS,V
σS,V σ2

V

]
·
√

dti ·
[

εS,i
εV,i

]
(2)

and the matrix form is Y = µµµ · dti +ΩΩΩ
1
2 ·
√

dti · εεε, where the cumulated distribution is:

f (Y) =
|Ω|− 1

2

4 · π · Γ( 3
2 )
· e−
√

(Y−µµµ)′·Ω−1 ·(Y−µµµ) (3)
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2.3. Methodology

Following [63,64], and considering the model proposed above, we are confronted with
two problems:

• We need to estimate the stopping time, i.e., how much time is necessary (t∗) to
liquidate the position (V0) on the analyzed asset. Thus, if AVt∗ is the cumulative
volume traded between the current instant and the stopping time, we need to resolve:
t∗ = in f {t > 0 | AVt∗ > V0}.

• For the previously estimated time horizon, we must estimate the risk or potential loss
for a given confidence level (α). Thus, to ensure that the estimate complies with the
properties of a consistent measure, we use the conditional value at risk (CVaR):

VaRα = X0 · {exp[µ + σ · 2− 1
2 · ln(2 · α)]− 1}

CVaRα =
α

1− α
·
∫ −∞

VaRα

x · f (x) =
(1− α) · ( X0−VaRα

X0
)− [exp(µ)− 2σ·2−0.5

]

α · (σ · 2− 1
2 − 1)

(4)

where µ and σ are, respectively, the drift and volatility of the stochastic process for
asset returns, and X0 is the current value of the portfolio.

Since there is no closed form to jointly perform the two estimates above, it is necessary
to use numerical methods for the resolution of both. In this case, we could use either
a Monte Carlo simulation, to generate prices and volumes, or a historical simulation,
using past prices and volumes. While the former method assumes the joint probability
distribution of the variations in both variables, in the latter, the behavior is implicit in the
observed data.

Before simulating the values, we have to determine the time horizon. While in
traditional risk estimation methods (VaR and CVaR), the time horizon is an input, in our
method, the time horizon is the first output since it determines, for the chosen confidence
level, the maximum number of consecutive transactions that must be liquidated to close
the position. Therefore, based on the estimation date, the assumption is that the investor
decides to liquidate his or her portfolio as soon as possible. For this reason, the transactions
are made continuously over time (summation), and there is no selection based on the best
or worst price. Then, the objective can be expressed as

Port f = Vmean · exp[(µV −
1
2
· σ2

V) · HT + σV · HT
1
2 · α−1] (5)

where Port f is the portfolio to be closed (long or short); Vmean is the mean volume per
trade; α−1 is the value of the inverse of the probability distribution at the confidence level
for which the risk is estimated; µV and σV are the drift and diffusion of the volume’s
stochastic process, respectively; and HT provides the maximum time horizon need to settle
the portfolio at α confidence level. We then obtain

(µV −
1
2
· σ2

V) · HT + σV · HT
1
2 · α−1 − ln(

Port f
Vmean

) = 0 (6)

Changing the variable of
√

HT = x results in the following second-degree equation:

(µV −
1
2
· σ2

V) · x2 + (σV · α−1) · x− ln(
Port f
Vmean

) = 0 (7)

The positive solution for this second-degree equation is

HT = x2 =
−(σV · α−1) +

√
(σV · α−1)2 + 4 · (µV − 1

2 · σ2
V) · ln(

Port f
Vmean

)

2 · µV − σ2
V

(8)

Thus, if µτ is the mean of the interval between trades, then the maximum number of
transactions to settle the portfolio is N = HT

µτ
, which we round up to the nearest integer.

The subsequent simulation involves the following steps:

1. If λ = 1
µτ

is the expected rate of occurrences for a transaction, we simulate the calendar
of trades while considering weekends and holidays (days θ) as follows:

ti = di + hi =


ti−1 + [− 1

λ · ln(1− ui)] if di /∈ θ and ho 6 hi 6 hc
zi + hi else if di ∈ θ and ho 6 hi 6 hc

(di + 1) + [ho + (hi − hc)] else if (di + 1) /∈ θ and ho > hi or hi > hc

(9)
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where t0 is the estimation date (with the format dd : mm : yy and hh : mm : ss; u is a
random uniform number; ho and hc are the times (with the format hh : mm : ss) that
the market opens and closes, respectively; ti is the simulated date for i = 1, . . . , N,
which is broken down into date (di) and time (hi); and zi is the next day after di that
does not belong to the set of days θ.

2. For each simulated date ti, we generate a transaction:

Vi = Vi−1 · exp[(µV −
1
2
· σ2

V) · (ti − ti−1) + σV ·
√

ti − ti−1 · εV,i ]

Pi = Pi−1 · exp(µS −
1
2
· σ2

S) · (ti − ti−1) + σS ·
√

ti − ti−1 · [ρV,S · εV,i +
√

1− ρ2
V,S · εS,i ]

(10)

whereρV,S is the correlation between asset returns and relative volume changes,
and εS,i and εV,i are independent standard normal random numbers. Thus, Xi = Pi ·Vi
is the value of each simulated transaction at time ti, while the current value of the
portfolio is X0 = P0 · Port f .

3. Then, we repeat the two previous steps M times (the simulation number).

Finally, from the simulated trades, we can estimate the following:

• VaRα = (Pα − P0) · Port f is the usual value at risk at the α confidence level, where Pα

is the price that corresponds to the α-percentile of the set of M simulated prices at the
K time horizon, which is estimated under the assumption that all trades are closed for
the same volume (the average initial volume or Vmean) such that K is the rounded-up
integer number resulting from Port f

Vmean
. VaR is independent from the volume variable

(positive homogeneity).
• CVaRα = (CPα− P0) · Port f is the usual conditional value at risk at α confidence level,

where CPα is the average of the simulated prices in K lower than Pα. This estimate
also does not consider the volume.

• LaRα = Xα − X0 is the liquidity at risk at α confidence level, where Xα is the transac-
tion value that corresponds to the α-percentile of the set of M simulated trades at the
HT time horizon and subject to V0 = ∑J

j=1 Vj, where J is the number of transactions

required to close the position, and τ = t0 + ∑J
j=1 tj is the stopping time needed to

settle the portfolio. LaRα is a measure of the market plus liquidity risks and considers
volume.

• CLaRα = CXα − X0 the conditional liquidity at risk at α confidence level, where CLα

is the average of the simulated trades in HT lower than Xα, and τ̄ is the average
stopping time of these extreme values.

The above procedure is flexible, as it can not only be implemented through Monte
Carlo simulations but also applied through historical simulations using a database of
realized market trades, in which case, the behavior of the variables is implicit in the data
without having to assume any probability distribution.

2.4. Data

To assess our proposed method, we apply it to two samples: one simulated (or
experimental) and the other composed of real market data.

The experimental study is composed of Monte Carlo samples with 10,000 data each
(shown in Table 1). The frequency between trades is expressed in seconds, while the rest of
the parameters are annualized. Additionally, we assume that P0 = 10, and Port f = 2000;
thus, X0 = 20, 000 is the current value of the portfolio. Here, the estimated date (t0) is
1 March 2021, at 9:00:00; the market opening time (ho) is 9:00:00; and the market closing
time (hc) is 17:00:00 (we have arbitrarily chosen this initial date to obtain results in terms
of dates, the results would not change if we took another one, and expressed in terms of
trading hours as it is usually the standard in organized stock markets).
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Table 1. Parameters of the simulated experiment.

Sample Mean
Volume

Mean Time
Between
Trades

Drift of
Return

Volatility of
Return

Drift of
Volume

Volatility of
Volume

Return-
Volume

Correlation

Analysis of frequency of trades

A-1 100 6 2% 30% 5% 15% 0.25
A-2 100 600 2% 30% 5% 15% 0.25

Analysis of asset return stochastic process

B-1 100 60 −2% 30% 5% 15% 0.25
B-2 100 60 0% 30% 5% 15% 0.25
B-3 100 60 2% 15% 5% 15% 0.25
B-4 100 60 2% 60% 5% 15% 0.25

Analysis of volume stochastic process

C-1 100 60 2% 30% −5% 15% 0.25
C-2 100 60 2% 30% 10% 15% 0.25
C-3 100 60 2% 30% 5% 10% 0.25
C-4 100 60 2% 30% 5% 20% 0.25

Analysis of correlation between asset return and volume

D-1 100 60 2% 30% 5% 15% −1
D-2 100 60 2% 30% 5% 15% 0
D-3 100 60 2% 30% 5% 15% 1

Analysis of mean traded volume

E-1 10 60 2% 30% 5% 15% 0.25
E-2 500 60 2% 30% 5% 15% 0.25

Table 2 shows parameters for estimating risk using market data obtained from
Bloomberg. The frequency of exponential distribution for the time interval between two
consecutive transactions is the percentile-weighted mean of the observed frequencies.
The drifts, volatilities, and correlation are estimated by the maximum log-likelihood of the
bivariate Laplace distribution, as defined above.

Table 2. Parameters of the market data.

PARAMETER APPLE INC. DELTA AIRLINES UNUM GROUP

Actual frequenc of trades

Sample starting date 4 January 2021 9:00:00 4 January 2021 9:00:00 4 January 2021 9:00:00
Sample end date 14 January 2021 17:00:00 14 January 2021 17:00:00 14 January 2021 17:00:00
Estimation date 14 January 2021 17:00:00 14 January 2021 17:00:00 14 January 2021 17:00:00
Frequency (in seconds) 2 9 14
Mean volume per trade 12,780 6015 2600
Return drift (annualized) −1.0957% 2.0677% 1.8486%
Return volatility (annualized) 31.8948% 35.2143% 37.3500%
Volume drift (annualized) −3.6741% 4.9677% 2.5962%
Volume volatility (annualized) 48.9372% 26.2540% 23.9887%
Return-volume correlation −15.5060% 9.9310% 4.3344%
Volume portfolio (10 times mean
volume) 127,800 60,150 26,000

Price portfolio (close price for end
date) 130.89 40.50 24.47

Portfolio value 16,727,742.00 2,436,075.00 636,220.00
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Table 2. Cont.

PARAMETER APPLE INC. DELTA AIRLINES UNUM GROUP

Daily frequency of data

Sample starting date 4 January 2016 4 January 2016 4 January 2016
Sample end date 14 January 2021 14 January 2021 14 January 2021
Estimation date 14 January 2021 14 January 2021 14 January 2021
Frequency (in days) 1 1 1
Mean volume per day 105,023,880 7,237,440 1,550,970
Return drift (annualized) 1.2665% −0.8816% -0.1460%
Return volatility (annualized) 30.1389% 38.0454% 43.4220%
Volume drift (annualized) −6.6119% −1.0947% −0.7529%
Volume volatility (annualized) 32.5111% 27.4625% 26.3893%
Return-volume correlation −7.6741% 2.0909% −3.9102%
Volume portfolio (2 times mean
volume) 210,047,760 14,474,880 3,101,940

Price portfolio (close price for end
date) 130.89 40.50 24.47

Portfolio value 27,493,151,306.40 586,232,640.00 75,904,471.80

3. Empirical Results
3.1. Experimental Analysis

Table 3 shows the results of the analysis.

Table 3. Results of risk estimates from simulated data.

Panel A. Estimates at 95% Confidence Level

Sample VaR CVaR LaR CLaR Date HT J τ

Analysis of frequency of trades

A-1 −325.18 −415.17 −172.00 −216.66 1 March 2021 9:02:16 AM 158 22 131
A-2 −3229.63 −4460.40 −1966.35 −2789.44 1 March 2021 12:44:36 PM 158 21 12,998

Analysis of asset return stochastic process

B-1 −1178.29 −1648.50 −809.29 −938.71 1 March 2021 9:22:08 AM 158 22 1281
B-2 −1130.21 −1201.99 −618.83 −770.66 1 March 2021 9:22:34 AM 158 22 1306
B-3 −592.91 −709.12 −351.97 −454.92 1 March 2021 9:23:09 AM 158 22 1340
B-4 −2552.59 −3369.88 −1349.14 −1981.71 1 March 2021 9:22:21 AM 158 22 1293

Analysis of volume stochastic process

C-1 −1380.05 −1687.69 −794.25 −943.00 1 March 2021 9:22:51 AM 87 24 1322
C-2 −1014.45 −1262.85 −610.79 −801.08 1 March 2021 9:22:50 AM 55 20 1321
C-3 −1240.03 −1643.47 −867.39 −962.19 1 March 2021 9:22:06 AM 104 22 1279
C-4 −1233.11 −1548.76 −676.80 −872.97 1 March 2021 9:22:50 AM 285 22 1321

Analysis of correlation between asset return and volume

D-1 −1173.60 −1749.87 −752.68 −1043.66 1 March 2021 9:22:27 AM 158 22 1299
D-2 −1123.94 −1445.58 −662.24 −848.14 1 March 2021 9:22:14 AM 158 22 1287
D-3 −1159.07 −1331.89 −536.03 −625.63 1 March 2021 9:21:55 AM 158 22 1268

Analysis of mean traded volume

E-1 −4216.43 −4520.77 −2081.05 −2792.59 1 March 2021 12:48:35 370 201 13,228
E-2 −370.51 −604.67 −321.35 −451.82 1 March 2021 9:04:31 AM 100 5 261
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Table 3. Cont.

Panel B. Estimates at 99% Confidence Level

Sample VaR CVaR LaR CLaR Date HT J τ

Analysis of frequency of trades

A-1 −481.73 −488.65 −261.75 −349.02 1 March 2021 9:02:16 AM 207 22 131
A-2 −4784.40 −5349.18 −3075.94 −4418.85 1 March 2021 12:46:43 PM 207 20 13,120

Analysis of asset return stochastic process

B-1 −1584.90 −1593.06 −1153.50 −1442.15 1 March 2021 9:22:43 AM 207 22 1315
B-2 −1322.97 −1605.33 −847.80 −918.31 1 March 2021 9:22:52 207 22 1323
B-3 −631.04 −714.71 −463.37 −502.17 1 March 2021 9:23:52 207 22 1381
B-4 −2721.92 −2740.19 −1779.98 −2124.03 1 March 2021 9:23:28 AM 207 22 1358

Analysis of volume stochastic process

C-1 −1582.34 −1621.79 −987.04 −1099.43 1 March 2021 9:22:58 109 24 1329
C-2 −1206.69 −1259.35 −714.22 −985.93 1 March 2021 9:23:02 66 20 1333
C-3 −1556.34 −1709.61 −882.59 −1061.50 1 March 2021 9:22:33 AM 125 22 1305
C-4 −1527.92 −1765.04 −926.99 −1268.52 1 March 2021 9:23:03 417 22 1334

Analysis of correlation between asset return and volume

D-1 −1534.20 −1655.17 −979.34 −1077.27 1 March 2021 9:22:39 AM 207 22 1311
D-2 −1173.26 −1407.83 −823.56 −943.23 1 March 2021 9:22:34 207 22 1306
D-3 −1435.65 −1436.35 −818.23 −1033.51 1 March 2021 9:22:08 AM 207 22 1281

Analysis of mean traded volume

E-1 −4480.17 −4691.48 −2764.77 −2856.21 1 March 2021 12:54:01 582 198 13,543
E-2 −646.06 −673.93 −410.50 −523.52 1 March 2021 9:04:43 AM 144 5 273

Note: The the first four columns are the risk measures, i.e., value at risk (VaR), conditional value at risk (CVaR), LaR (liquidity at risk)
and conditional liquidity at risk (CLaR) at 95% and 99% confidence level. Date is the average date on which the position is completely
closed (with format dd : mm : yyhh : mm : ss). HT is the maximum number of transactions to close our position. J is the average number of
simulated trades required to settle the portfolio and τ is the average time elapsed from inception (decision to close the position) until the
portfolio is settled or difference in seconds between Date and the inception date.

The first relevant observation is that traditional risk measures (VaR and CVaR) that
do not consider the volume and frequency of transactions overestimate risk compared to
those that do consider those factors (LaR and CLaR).

The average volume per trade of each asset is also a key factor in determining the time
and number of transactions required to settle a portfolio, so this factor should be considered
both when estimating transaction costs and in the event of supply–demand contracting.

Furthermore, the higher the correlation (both positive and negative) is between the
asset return and changes in traded volume, the higher the risk becomes, i.e., the risk
is minimized as both variables become more independent (zero correlation). This indi-
cates the possible existence of an implicit factor for asset pricing related to volume (see,
among others, [17–19]).

Finally, regarding the parameters of the stochastic processes defined for the asset
return and volume changes, the return volatility and volume drift show the greatest effect
on risk, i.e., the higher the volatility is and the more negative the drift becomes, the higher
the estimated risk will be.

3.2. Market Data Analysis

Table 4 shows the results from the Monte Carlo simulation used to test the robustness
of the proposed methodology against different simulation methods, while Table 5 presents
the results from the historical simulation.
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Table 4. Results of risk estimates from market data using Monte Carlo simulation.

Panel A. Estimates at 95% confidence level for intraday frequency

Sample VaR CVaR LaR CLaR Date HT J τ (seconds)

APPLE INC. −6,161,909.71 −7,049,036.31 −6,163,558.89 −7,079,273.72 15 January 2021
9:00:26 52 7 55,581

DELTA AIR-
LINES −985,777.67 −1,265,648.24 −977,106.18 −1,266,234.94 15 January 2021

9:01:43 1088 9 55,655

UNUM
GROUP −271,217.92 −325,082.68 −262,776.53 −316,292.54 15 January 2021

9:03:38 18,03117 55,766

Panel B. Estimates at 99% confidence level for intraday frequency

Sample VaR CVaR LaR CLaR Date HT J τ (seconds)

APPLE INC. −7,483,117.10 −8,314,083.83 −7,488,432.34 −8,333,880.59 15 January 2021
9:00:35 80 9 55,589

DELTA AIR-
LINES −1,281,657.34 −1,570,164.24 −1,283,202.30 −1,563,025.45 15 January 2021

9:02:01 1903 11 55,672

UNUM
GROUP −336,316.27 −406,912.45 −305,435.80 −387,736.54 15 January 2021

9:03:56 2698 20 55,783

Panel C. Estimates at 95% confidence level for day frequency

Sample VaR CVaR LaR CLaR Date HT J τ (days)

APPLE INC. −839,281,685.64 −967,169,191.64 −839,124,583.08 −967,743,505.43 17 January 2021 4 3 3
DELTA AIR-
LINES −20,972,916.44 −25,083,778.60 −20,981,520.87 −25,076,318.46 17 January 2021 11 3 3

UNUM
GROUP −3,509,331.94 −3,826,387.04 −3,106,038.69 −3,426,567.00 17 January 2021 14 3 3

Panel D. Estimates at 99% confidence level for day frequency

Sample VaR CVaR LaR CLaR Date HT J τ (days)

APPLE INC, −1,211,066,412.43 −1,621,318,882.63 −1,210,153,905.43 −1,623,647,161.30 17 January 2021 5 3 3
DELTA AIR-
LINES −29,936,445.83 −31,004,865.15 −29,922,226.31 −31,000,321.05 17 January 2021 16 3 3

UNUM
GROUP −4,187,368.19 −5,026,596.65 −3,585,905.00 −4,328,398.64 17 January 2021 19 3 3

Panel E. Estimates at one-day time horizon and daily frequency

Sample VaR-95% CVaR-95% VaR-99% CVaR-99%

APPLE INC. −807,424,136.42 −946,934,368.82 −1,170,253,154.23 −1,383,438,198.87
DELTA AIR-
LINES −19,812,600.92 −23,882,691.83 −26,010,954.19 −30,790,777.95

UNUM
GROUP −3,378,698.26 −3,653,816.55 −4,130,903.12 −4,278,845.95

For the actual frequency between trades (Panel A and B), Table 4 shows that the
closing position time, the maximum number of transactions potentially needed to close the
position, and the average number of transactions needed to close the position increase as
the liquidity of assets decreases. In addition, the usual measures of market risk (VaR and
CVaR) present potential losses inversely proportional to the liquidity of the asset, i.e., they
underestimate the risk of liquid assets and overestimate the risk of less liquid assets. These
results hold for both confidence levels.

The results of the daily-frequency trading hypothesis (Table 4 Panels C and D) show
that the market risk measures (VaR and CVaR) are always higher than, or similar to,
the liquidity measures (LaR and CLaR). Thus, unlike for the intraday frequency, these
results do not depend on the liquidity of the asset. Finally, the market risk estimates for a
one-day time horizon (Table 4 Panel E) underestimate the risk for estimates at the same
frequency with respect to those that consider the volume traded. This empirical evidence
indicates that setting the time horizon for measuring market risk independently of the
liquidity of the asset (time to liquidate the position) implicitly implies an estimation error,
which, in any case, is an overestimate, but which in the case of illiquid assets (with an
average position closing time of more than one day) could lead to significant underestimates
of risk.
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Table 5. Results of risk estimates from market data using historical simulation.

Panel A. Estimates at 95% confidence level for intraday frequency

Sample VaR CVaR LaR CLaR Date J τ (seconds)

APPLE INC. −1,388,794.89 −3,567,795.65 −1,389,171.20 −3,567,475.08 15 January 2021 9:00:22 7 55,577
DELTA AIR-
LINES −109,261.36 −744,572.45 −109,351.45 −744,560.77 15 January 2021 9:01:37 10 55,649

UNUM
GROUP −23,622.33 −301,265.42 −225,178.53 −292,514.47 15 January 2021 9:02:55 18 55,724

Panel B. Estimates at 99% confidence level for intraday frequency

Sample VaR CVaR LaR CLaR Date J τ (seconds)

APPLE INC. −2,487,173.09 −9,287,960.58 −2,486,522.82 −9,287,721.96 15 January 2021 9:00:29 8 55,584
DELTA AIR-
LINES −132,410.43 −1,624,811.56 −129,876.96 −1,624,542.38 15 January 2021 9:01:53 12 55,665

UNUM
GROUP −322,015.00 −389,527.35 −296,324.24 −378,514.68 15 January 2021 9:03:05 21 55,734

Panel C. Estimates at 95% confidence level for day frequency

Sample VaR CVaR LaR CLaR Date J τ (days)

APPLE INC. −731,586,701.89 −1,248,013,855.78 −1,088,192,119.21 −1,451,141,897.27 18 January 2021 2 4
DELTA AIR-
LINES −21,351,747.20 −38,415,903.53 −22,351,747.20 −39,329,236.64 18 January 2021 2 4

UNUM
GROUP −3,076,746.14 −5,715,735.12 −3,249,126.20 −3,724,135.84 18 January 2021 2 4

Panel D. Estimates at 99% confidence level for day frequency

Sample VaR CVaR LaR CLaR Date J τ (days)

APPLE INC. −1,563,992,239.69 −2,268,723,332.23 −1,259,753,717.07 −1,874,843,380.59 18 January 2021 2 4
DELTA AIR-
LINES −43,904,788.29 −72,745,239.66 −45,904,788.29 −80,886,862.97 18 January 2021 2 4

UNUM
GROUP −6,713,059.24 −9,249,145.43 −4,713,059.24 −8,494,388.91 18 January 2021 2 4

Panel E. Estimates at 1-day time horizon and daily frequency

Sample VaR-95% CVaR-95% VaR-99% CVaR-99%

APPLE INC. −739,422,466.03 −1,230,334,494.57 −1,479,372,950.46 −2,102,168,316.77
DELTA AIR-
LINES −20,530,454.63 −37,306,585.06 −43,753,682.07 −70,732,940.63

UNUM
GROUP −2,954,982.12 −5,306,595.79 −6,124,557.30 −9,098,428.82

Table 5 shows that, when the risk is estimated using historical simulation, the results
provided in Table 4 for the Monte Carlo simulation are repeated, which highlights the
greater robustness of the proposed method for measuring liquidity risk compared to
other simulation methods. Moreover, for intraday frequency, the estimates of potential
losses using historical simulation are lower than those from using Monte Carlo simulation,
while for daily frequency, the estimates using historical simulation are higher. This result
demonstrates the greater flexibility of the Monte Carlo simulation method in analyzing
high-frequency data.

4. Conclusions

As discussed above, there is considerable financial literature on liquidity risk and
its implications in asset pricing. However, traditional measures of market risk do not
incorporate the liquidity factor in their estimates since such measures are based on the
axiom of positive homogeneity. For example, the authors of [54] found empirical evidence
for problems in traditional measures of market risk (value at risk and conditional value at
risk) when facing changes in market liquidity.

On the other hand, econometric and financial studies have developed time-series
models to explain the time intervals between events and transactions, known as conditional
duration models (the pioneering work was [41]). However, these studies do not handle
the underlying stochastic models needed to derive the risk-neutral values of financial
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instruments. As a consequence, this study presents a joint stochastic model for asset returns
and volume variations that is also subordinate to the stochastic process for modeling the
time intervals between trades.

As the subordinate process does not have a closed form, a numerical methodology
(simulation) was proposed to obtain the stopping time and potential loss when liquidating
the portfolio (liquidity at risk). This methodology was applied to a simulated series and to
market data at different frequencies (the intraday real operations and daily closing) of assets
with different sizes and levels of capitalization (Apple, Delta Airlines, and Unum Group).

The present results support the findings in [54] since the estimates of traditional
measures of market risk show an inverse relationship with the degree of the liquidity
of assets. We also found that the average volume per trade, the time interval between
transactions, and the parameters of the stochastic process of volume (drift and volatility)
have a high impact on the risk estimates. In addition, unlike traditional risk measures,
the results of our proposed method provide the transaction costs of closing a position,
as the results of our method determine the maximum and average number of transactions
needed to settle a portfolio.

Our results are relevant for investors and portfolio managers with a certain degree of
asset concentration (position size), as well as for high-frequency investors since the usual
measures of market risk, which do not include the volume factor, also underestimate the
risk for one-day time horizons. Our results and the proposed methodology are interesting
for other economic agents that manage assets with different levels of liquidity and can help
them to make decisions on these assets including the liquidity factor.

Future research lines should focus on the application of this methodology on modeling
multivariate liquidity. They could also include other stochastic variables such as volatility.
Finally, it would be interesting to contrast whether the time for settlement an asset could
be an explanatory variable in multifactor asset pricing models.
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