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Abstract: In this paper, effective oscillation criteria for third-order delay differential equations of

the form,
(

r2(r1y′)′
)′
(t) + q(t)y(τ(t)) = 0 ensuring that any nonoscillatory solution tends to zero

asymptotically, are established. The results become sharp when applied to a Euler-type delay
differential equation and, to the best of our knowledge, improve all existing results from the literature.
Examples are provided to illustrate the importance of the main results.
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1. Introduction

In this article, we consider linear third-order delay differential equations of the form(
r2
(
r1y′

)′)′
(t) + q(t)y(τ(t)) = 0, t ≥ t0, (1)

where r1, r2, q, τ ∈ C(I ,R), I = [t0, ∞) ⊂ R, t0 > 0 is a fixed constant such that r1 > 0,
r2 > 0, q ≥ 0 does not vanish eventually, τ(t) ≤ t, and limt→∞ τ(t) = ∞.

For any solution y of (1), we denote the ith quasi-derivative of y as Liy, that is,

L0y = y, L1y = r1y′, L2y = r2
(
r1y′

)′, L3y =
(

r2
(
r1y′

)′)′ on I

and assume that ∫ ∞

t0

dt
ri(t)

= ∞, i = 1, 2. (2)

By a solution of Equation (1), we mean a nontrivial function y with the property
Liy ∈ C1([Ty, ∞),R) for i = 0, 1, 2 and a certain Ty ≥ t0, which satisfies (1) on [Ty, ∞). Our
attention is restricted to proper solutions of (1), which exist on some half-line [Ty, ∞) and
satisfy the condition

sup{|x(s)| : t ≤ s < ∞} > 0 for any t ≥ Ty.

The oscillatory nature of the solutions is understood in the usual way, that is, a proper
solution is termed oscillatory or nonoscillatory according to whether it does or does not
have infinitely many zeros.

Following classical results of Kondrat’ev and Kiguradze, see, e.g., [1], we say that
Equation (1) has property A if any solution y of (1) is either oscillatory or tends to zero as
t→ ∞. By a proper modification of the well-known result of Kiguradze [1] (Lemma 1), one
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can easily classify the possible nonoscillatory solutions of (1). As a matter of fact, assuming
(2) shows that (1) has only two types of nonoscillatory, positive solutions

y ∈ N0 ⇐⇒ y(t) > 0, L1y(t) < 0, L2y(t) > 0,

y ∈ N2 ⇐⇒ y(t) > 0, L1y(t) > 0, L2y(t) > 0,

for t large enough, see, e.g., [2] (Lemma 2) or [3] (Lemma 1). Solutions belonging to the
class N0 are called Kneser solutions. Clearly, (1) has property A if N2 = ∅ and any Kneser
solution of (1) tends to zero asymptotically.

The oscillation theory of third-order differential equations with variable coefficients
has been attracting considerable attention over the last decades, which is evidenced by
a large number of published studies in the area, most of which have been collected and
presented in the monographs [4,5].

In particular, various criteria for property A of (1) have been presented in the literature,
see [3,6–17] and the references cited therein. The methodology in these articles has been
mainly based on the use of the so-called Riccati technique or suitable comparison principles
with lower-order delay differential inequalities. In [3], the authors point out that the proofs
essentially use the estimates relating a solution y ∈ N2 of (1) with its first and second
quasi-derivatives and “despite the differences in the proofs of the cited works, the resulting criteria
have in common that their strength depends on the sharpness of these estimates”. Here, it is
worth noting that in order to test the strength of the oscillation criteria derived by different
methods, Euler-type differential equations are mostly used.

For our comparison purposes, let us consider a particular case of (1)—the third-order
Euler differential equation with proportional delay of the form(

tγ
(
tαy′(t)

)′)′
+ q0tα+γ−3y(τt) = 0, (3)

where τ ∈ (0, 1], q0 > 0, α < 1, and γ < 1. It is easy to verify by a direct substitution that (3)
has a nonoscillatory solution y = tµ belonging to the class N2, when µ ∈ (1− α, 2− α− γ)
is a root of the characteristic equation

c(µ) = q0,

where
c(µ) := µ(µ + α− 1)(2− µ− α− γ)τ−µ (4)

or equivalently, if
q0 ≤ max{c(µ) : 1− α < µ < 2− α− γ}. (5)

For a special case of (3) with α = γ = 0 and τ = 1, i.e., for the linear third-order Euler
differential equation

y′′′(t) +
q0

t3 y(t) = 0, (6)

condition (5) for the existence of a solution from the class N2 reduces to

q0 ≤ max{µ(µ− 1)(2− µ) : 1 < µ < 2} = 2
3
√

3
,

which is sharp in the sense that if

q0 >
2

3
√

3
,

then N2 = ∅.
We stress that there is no result so far in the literature on the property A of (1), which

would be sharp for (3). The main purpose of the paper is to positively answer this open
problem. Following the direction initiated in [3], we present new asymptotic properties
of solutions belonging to the class N2. Our approach differs from that applied in [3] and
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allows us to relax the assumption of the monotonicity of the delay function τ(t), which
is generally required in previous works. As a consequence, we establish efficient criteria
for detecting property A for Equation (1), which are unimprovable in the sense that they
give a necessary and sufficient condition for the delay Euler Equation (3) to have property
A. Our motivation comes from the recent papers [18–20], where a similar technique leads
to obtaining sharp oscillation results for second-order half-linear differential equations
with deviating arguments. Such an idea was successfully adopted for the third-order
Equation (1) with r1 = r2 = 1 in a recent work [21]. However, it turns out that the general
functions ri require a carefully modified the approach.

The organization of the paper is as follows. In Section 2, we introduce the basic
notations and assumptions. In Section 3, we state the main results of the paper. In particular,
we present a single condition criteria for property A of (1) in case when the functions r1
and r2 are of the same type (see Definition 1 and condition (15) below). In Section 4, we
illustrate the importance of the main results by means of a couple of examples.

2. Preliminaries

In this section, we will introduce a set of assumptions and notation used in the paper.
To start with, we define

Ri(t) =
∫ t

t0

ds
ri(s)

, i = 1, 2,

R12(t) =
∫ t

t0

R2(s)
r1(s)

ds,

and

λ∗ := lim inf
t→∞

R12(t)
R12(τ(t))

,

β∗ := lim inf
t→∞

R2(t)R12(τ(t))q(t)r2(t),

k∗ := lim inf
t→∞

Rβ∗
2 (t)

∫ t
t0

R1−β∗
2 (s)
r1(s)

ds

R12(t)
for β∗ ∈ (0, 1).

(7)

As the limit inferior triple λ∗, β∗, and k∗ is defined on an extended range of real
R ∪ {∞}, in our proofs, we will rather make use of real constants λ ≤ λ∗, β ≤ β∗ and
k ≤ k∗ defined by (C)λ, (C)β, and (C)k, respectively, for the particular cases that can occur
depending on the delay function τ.

(C)λ Since R12 is increasing and τ(t) ≤ t, clearly λ∗ ≥ 1. Then, for

(a) λ = 1 if λ∗ = 1;
(b) any λ ∈ (1, λ∗) if λ∗ ∈ (1, ∞);
(c) any λ ∈ (1, ∞) arbitrarily large if λ∗ = ∞,

there exists tλ ≥ t0 such that

R12(t)
R12(τ(t))

≥ λ, t ≥ tλ. (8)

(C)β For any β ∈ (0, β∗), there exists tβ ≥ t0 such that

R2(t)R12(τ(t))q(t)r2(t) ≥ β, t ≥ tβ. (9)

(C)k For β∗ ∈ (0, 1), it follows from the increasing nature of R2 that k∗ ≥ 1. Then, for

(a) k = 1 if k∗ = 1;
(b) any k ∈ (1, k∗) if k∗ ∈ (1, ∞);
(c) any k ∈ (1, ∞) arbitrarily large if k∗ = ∞,
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there exists tk ≥ t0, such that

Rβ
2 (t)

∫ t
t0

R1−β
2 (s)
r1(s)

ds

R12(t)
≥ k, t ≥ tk. (10)

For our purposes, we also need to define, for β∗ ∈ (0, 1), λ∗ ∈ [1, ∞), k∗ ∈ [1, ∞) the
following sequence {βn}n=0 (as far as it exists):

β0 = β∗,

βn =
β0kn−1λ

1−1/kn−1
∗

(1− βn−1)
, n ∈ N,

(11)

where kn satisfies

kn = lim inf
t→∞

Rβn
2 (t)

∫ t
t0

R1−βn
2 (s)
r1(s)

ds

R12(t)
, n ∈ N0. (12)

Clearly, βn+1 exists if βi < 1 and ki ∈ [1, ∞) for i = 0, 1, . . . , n. In such a case, we have

β1

β0
=

k0λ1−1/k0∗
1− β0

> 1

and

k1 = lim inf
t→∞

Rβ0
2 (t)

∫ t
t0

R
1−β0
2 (s)
r1(s)

ds

R12(t)
= lim inf

t→∞

Rβ1
2 (t)

∫ t
t0

R
1−β0−(β1−β0)
2 (s)

r1(s)
ds

R12(t)

≥ lim inf
t→∞

Rβ0
2 (t)

∫ t
t0

R
1−β0
2 (s)
r1(s)

ds

R12(t)
= k0,

i.e.,
k1 ≥ k0.

By induction on n, it is easy to show that

βn+1

βn
= `n > 1, (13)

where

`0 :=
k0λ1−1/k0∗

1− β0
,

`n :=
knλ

1/kn−1−1/kn
∗ (1− βn−1)

kn−1(1− βn)
, n ∈ N

(14)

with
kn ≥ kn−1.

It is useful to note that there are two situations when the impact of the delay would
not influence the value of βn in the sequence (11): λ∗ = 1 or ki = 1, i = 0, 1, . . . , n. Below,
we point out that the second one cannot occur in a particular case, when coefficients r1 and
r2 are of the same type, e.g., either ri = eait or ri = tai and likewise. With this aim, we use a
concept of asymptotically similar functions.
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Definition 1. We say that the functions f and g are asymptotically similar ( f ∼ g) if there exists
a positive constant ` such that

lim
t→∞

f (t)
g(t)

= `.

As a special case of (1), we will consider the case when

r1R1 ∼ r2R2. (15)

Lemma 1. Assume (15). Then, for any c ∈ (0, 1),

R12(t) ≥
c

1 + `
R1(t)R2(t) (16)

eventually.

Proof. It follows from (15) that for any ε > 0, we have

r1(t)R1(t)
r2(t)R2(t)

< `+ ε (17)

eventually. Integrating the identity

(R1R2)
′(t) =

1
r1(t)

R2(t) +
1

r2(t)
R1(t)

from t0 to t and using (17), we obtain

R1(t)R2(t)− R1(t0)R2(t0) = R12(t) +
∫ t

t0

1
r2(s)

R1(s)ds < (1 + `+ ε)R12(t).

By virtue of (2), we conclude that (16) holds.

Now, we give an interesting property of the sequence {βn} under the similarity
assumption (15).

Lemma 2. Let (15) hold, β∗ > 0 and βi < 1, i = 0, 1, . . . , n. Then,

kn ≥
βn`

1 + `
+ 1 > 1, n ∈ N0.

Proof. Using l’Hôspital’s rule, it is easily seen that

kn = lim inf
t→∞

Rβn
2 (t)

∫ t
t0

R1−βn
2 (s)
r1(s)

ds

R12(t)

≥ lim inf
t→∞

βnRβn−1
2 (t) 1

r2(t)

∫ t
t0

R1−βn
2 (s)
r1(s)

ds + Rβn
2 (t) R1−βn

2 (t)
r1(t)

R2(t)
r1(t)

= βn lim inf
t→∞

r1(t)
r2(t)

∫ t
t0

R1−βn
2 (s)
r1(s)

ds

R2−βn
2 (t)

+ 1.

(18)

Taking into account the fact that R2 is increasing and (16) holds, we have, for any c ∈ (0, 1),

r1(t)
r2(t)

∫ t
t0

R1−βn
2 (s)
r1(s)

ds

R2−βn
2 (t)

≥ r1(t)
r2(t)

R12(t)
R2

2(t)
≥ c

`

1 + `
> 0.
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The proof is complete.

Corollary 1. Let r1 = r2, β∗ > 0 and βi < 1, i = 0, 1, . . . , n. Then,

kn =
2

2− βn
> 1, n ∈ N0.

Proof. It is simple to compute the limit (18) when r1 = r2; hence, we omit the details.

For the sake of convenience, we assume here that all functional inequalities hold
eventually, that is, they are satisfied for all t that are large enough. As usual and without
loss of generality, we can assume from now on that nonoscillatory solutions of (1) are
eventually positive.

3. Main Results
3.1. Nonexistence of Solutions from the Class N2

In this section, we give a series of lemmas about the asymptotic properties of solutions
belonging to the class N2, which will play a crucial role in proving our main oscillation
results stated in Section 3.3.

Lemma 3. Assume β∗ > 0 and let y be an eventually positive solution of (1) belonging to the
class N2. Then, for a t that is sufficiently large:

(i) limt→∞ L2y(t) = limt→∞ L1y(t)/R2(t) = limt→∞ y(t)/R12(t) = 0;
(ii) L1y > R2L2y and L1y/R2 is decreasing;
(iii) y > (R12/R2)L1y and y/R12 is decreasing.

Proof. Let y ∈ N2 and choose t1 ≥ t0 such that y(τ(t)) > 0 and β satisfies (9) for t ≥ t1.
(i) Since L2y is a positive decreasing function, clearly

lim
t→∞

L2y(t) = ξ ≥ 0.

If ξ > 0, then L2y(t) ≥ ξ > 0 and so for any ε ∈ (0, 1), we have

y(t) ≥ ξ
∫ t

t1

1
r1(u)

∫ u

t1

1
r2(s)

dsdu ≥ ξ̃R12(t), ξ̃ := εξ.

Using this in (1), we have

L3y(t) ≥ q(t)y(τ(t)) ≥ ξ̃R12(τ(t))q(t).

Integrating from t1 to t, we obtain

L2y(t) ≥ ξ̃
∫ t

t1

R12(τ(t))q(s)ds ≥ βξ̃
∫ t

t1

1
r2(s)R2(s)

ds = βξ̃ ln
R2(t)
R2(t1)

→ ∞ as t→ ∞,

which is a contradiction. Hence, ξ = 0. Applying l’Hôspital’s rule, we see that (i) holds.
(ii) Again, using the fact that L2y is positive and decreasing, it follows that

L1y(t) = L1y(t1) +
∫ t

t1

1
r2(s)

L2y(s)ds

≥ L1y(t1) + L2y(t)
∫ t

t1

1
r2(s)

d s

= L1y(t1) + L2y(t)R2(t)− L2y(t)
∫ t1

t0

1
r2(s)

ds.
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In view of (i), there is a t2 > t1, such that

L1y(t1) > L2y(t)
∫ t1

t0

1
r2(s)

ds, t ≥ t2.

Thus,
L1y(t) > L2y(t)R2(t), t ≥ t2

and consequently, (
L1y
R2

)′
(t) =

L2y(t)R2(t)− L1y(t)
R2

2(t)r2(t)
< 0, t ≥ t2,

which proves (ii).
(iii) In view of the fact that L1y/R2 is a decreasing function tending to zero, we have

y(t) = y(t2) +
∫ t

t2

R2(s)
r1(s)

L1y(s)
R2(s)

ds ≥ y(t2) +
L1y(t)
R2(t)

∫ t

t1

R2(s)
r1(s)

d s

= y(t2) +
L1y(t)
R2(t)

R12(t)−
L1y(t)
R2(t)

∫ t2

t0

R2(s)
r1(s)

ds >
L1y(t)
R2(t)

R12(t)

for t ≥ t3 for some t3 > t2. Therefore,(
y

R12

)′
(t) =

L1y(t)R12(t)− y(t)R2(t)
R2

12(t)r1(t)
< 0, t ≥ t3,

which proves (iii). The proof is complete.

The next lemma provides some additional properties of solutions from the class N2.

Lemma 4. Assume β∗ > 0 and let y be an eventually positive solution of (1) belonging to N2.
Then, for k defined by (10) and for a t that is sufficiently large:

(a0) (1− β∗)L1y > R2L2y and L1y/R1−β∗
2 decrease;

(b0) limt→∞ L1y(t)/R1−β∗
2 (t) = 0;

(c0) y > k(R12/R2)L1y and y/R1/k
12 decreases.

Proof. Let y ∈ N2 with y(τ(t)) > 0 satisfy the conclusion of Lemma 3 for t ≥ t1 ≥ t0 and
choose fixed but arbitrarily large β ∈ (β∗/(1 + β∗), β∗) and k ≤ k∗ satisfying (9) and (10),
respectively, for t ≥ t1.

Since
β

1− β
> β∗,

there exist constants c1 ∈ (0, 1) and c2 > 0 such that

c1β

1− β
> β∗ + c2. (19)

(a0) Define the function

z(t) := L1y(t)− R2(t)L2y(t), (20)
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which is clearly positive by (ii). Differentiating z and using (1) and (9), we see that

z′(t) = (L1y(t)− R2(t)L2y(t))′

= −R2(t)L3y(t)

= R2(t)q(t)y(τ(t))

≥ β
y(τ(t))

r2(t)R12(τ(t))
.

(21)

By virtue of (iii), we have

z′(t) ≥ β
y(t)

r2(t)R12(t)
≥ β

L1y(t)
r2(t)R2(t)

for t ≥ t2 for some t2 ≥ t1. Integrating from t2 to t and using the fact that L1y/R2 is
decreasing and tends to zero asymptotically (see (i) and (ii)), there exists t3 ≥ t2 such that

z(t) ≥ z(t2) + β
∫ t

t2

L1y(s)
r2(s)R2(s)

ds ≥ z(t2) + β
L1y(t)
R2(t)

∫ t

t2

1
r2(s)

ds

= z(t2) + βL1y(t)− β
L1y(t)
R2(t)

∫ t2

t0

1
r2(s)

ds > βL1y(t), t ≥ t3.
(22)

Then,
(1− β)L1y(t) > R2(t)L2y(t)

and (
L1y

R1−β
2

)′
(t) =

L2y(t)R2(t)− (1− β)L1y(t)R2(t)

R2−β
2 (t)r2(t)

< 0, t ≥ t3. (23)

It follows directly from (23) and the fact that L1y is increasing that β < 1. Using this
in (22) and taking (19) into account, we find that there is t4 ≥ t3 such that

z(t) ≥ β
∫ t

t3

L1y(s)
r2(s)R2(s)

ds

≥ β
L1y(t)

R1−β
2 (t)

∫ t

t3

1

r2(s)Rβ
2 (s)

d s

≥ β

1− β

L1y(t)

R1−β
2 (t)

(
R1−β

2 (t)− R1−β
2 (t3)

)
≥ c1β

1− β
L1y(t)

> (β∗ + c2)L1y(t), t ≥ t4,

which implies
(1− β∗)L1y(t) > (1− β∗ − c2)L1y(t) > R2(t)L2y(t)

and (
L1y

R1−β∗−c2
2

)′
(t) < 0. (24)

The conclusion of this is in the following.
(b0) Clearly, (24) also implies that L1y/R1−β∗

2 → 0 as t→ ∞, since otherwise

L1y(t)

R1−β∗−c2
2 (t)

=
L1y(t)

R1−β∗
2 (t)

Rc2
2 (t)→ ∞ as t→ ∞, (25)

which is a contradiction.
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(c0) Using the fact that by (a0) and (b0), L1y/R1−β∗
2 is a decreasing function tending

to zero, we have

y(t) = y(t4) +
∫ t

t4

R1−β∗
2 (s)
r1(s)

L1y(s)

R1−β∗
2 (s)

d s

≥ y(t4) +
L1y(t)

R1−β∗
2 (t)

∫ t

t4

R1−β∗
2 (s)
r1(s)

ds

= y(t4) +
L1y(t)

R1−β∗
2 (t)

∫ t

t0

R1−β∗
2 (s)
r1(s)

ds− L1y(t)

R1−β∗
2 (t)

∫ t4

t0

R1−β∗
2 (s)
r1(s)

d s

>
L1y(t)

R1−β∗
2 (t)

∫ t

t0

R1−β∗
2 (s)
r1(s)

ds

≥ k
R12(t)
R2(t)

L1y(t), t ≥ t5 > t4.

Therefore, (
y

R1/k
12

)′
(t) =

kL1y(t)R12(t)− y(t)R2(t)
kR1/k+1

12 (t)r1(t)
< 0, t ≥ t5.

The proof is complete.

Corollary 2. Assume β∗ ≥ 1. Then, N2 = ∅.

Proof. This follows directly from (a0) and the fact that L2y is positive.

Corollary 3. Assume β∗ > 0 and λ∗ = ∞. Then, N2 = ∅.

Proof. Let y ∈ N2 with y(τ(t)) > 0 satisfy conclusions of Lemma 4 for t ≥ t1 for some
t1 ≥ t0 and choose fixed but arbitrarily large β ≤ β∗, k ≤ k∗ and λ ≤ λ∗, satisfying (9), (10)
and (8), respectively, for t ≥ t1. Using (c0) and the definition of λ in (21), we have

z′(t) ≥ β
y(τ(t))

r2(t)R1/k
12 (τ(t))R1−1/k

12 (τ(t))

≥ β
y(t)

R1/k
12 (t)

1

r2(t)R1−1/k
12 (τ(t))

≥ βk
R1−1/k

12 (t)

R1−1/k
12 (τ(t))

1
R2(t)r2(t)

L1y(t)

≥ βkλ1−1/k 1
R2(t)r2(t)

L1y(t).

Integrating the latter inequality from t2 to t and using that L1y/R2 as a decreasing
function tending to zero, we obtain

z(t) > βkλ1−1/kL1y(t), t > t2, (26)

i.e., (
1− βkλ1−1/k

)
L1y(t) > R2(t)L2y(t), t ≥ t2 > t1.

Since λ can be arbitrarily large, we can set λ > (1/kβ)k/(k−1), which contradicts the
positivity of L2y. The proof is complete.
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Corollary 4. Assume β∗ > 0 and k∗ = ∞. Then, N2 = ∅.

Proof. Using the fact that k can be arbitrarily large, the proof follows the lines of Corollary 3,
and so we omit it.

In what follows, we can assume without loss of generality that β∗, k∗, λ∗ are well
defined, and β∗ ∈ (0, 1), k∗ ∈ [1, ∞), and λ∗ ∈ [1, ∞). Now, we will show how the results
from Lemma 4 can be improved iteratively.

Lemma 5. Assume β∗ > 0 and let y be an eventually positive solution of (1) belonging to
N2. Then, for any n ∈ N0, βn and kn defined by (11) and (12), respectively, and for a t that is
sufficiently large:

(an) (1− βn)L1y > R2L2y and L1y/R1−βn
2 decrease;

(bn) limt→∞ L1y(t)/R1−βn
2 (t) = 0;

(cn) y > εnkn(R12/R2)L1y and y/R1/(εnkn)
12 is decreasing for any εn ∈ (0, 1).

Proof. Let y ∈ N2 with y(τ(t)) > 0 satisfy the conclusion of Lemma 3 for t ≥ t1 ≥ t0 and
choose fixed but arbitrarily large β ≤ β∗ and k ≤ k∗, satisfying (9) and (10), respectively,
for t ≥ t1. We will proceed by induction on n. For n = 0, the conclusion follows from
Lemma 4 with ε0 = k/k∗. Next, assume that (an)–(cn) hold for n ≥ 1 for t ≥ tn ≥ t1. We
need to show that they each hold for n + 1.

(an+1) Using (cn) in (21), we obtain

z′(t) ≥ β
y(τ(t))

r2(t)R1/(εnkn)
12 (τ(t))R1−1/(εnkn)

12 (τ(t))

≥ β
y(t)

R1/(εnkn)
12 (t)

1
r2(t)R1−1/(εnkn)(τ(t))

≥ βεnkn
R1−kn/εn

12 (t)
R1−kn/εn(τ(t))

1
R2(t)r2(t)

L1y(t)

≥ βεnknλ1−1/(εnkn) 1
R2(t)r2(t)

L1y(t).

Integrating the above inequality from tn to t and using (an) and (bn),

z(t) = z(tn) + βεnknλ1−1/(εnkn)
∫ t

tn

L1y(s)
R2(s)r2(s)

ds

≥ z(tn) + βεnknλ1−1/(εnkn) L1y(t)

R1−βn
2

∫ t

tn

1

Rβn
2 (s)r2(s)

ds

≥ z(tn) +
βεnknλ1−1/(εnkn)

1− βn

L1y(t)

R1−βn
2 (t)

(
R1−βn

2 (t)− R1−βn
2 (tn)

)
>

βεnknλ1−1/(εnkn)

1− βn
L1y(t) = µβn+1L1y(t), t ≥ t′n ≥ tn,

(27)

where

µ :=
β

β∗
εn

λ1−1/(knεn)

λ1−1/kn∗
∈ (0, 1)

and
lim

λ→λ∗
εn→1
β→β∗

µ = 1.
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Choose µ such that

µ >
1

1− βn + βn+1
=

1
1 + βn(`n − 1)

, (28)

where `n satisfies (14). Then,

µβn+1

1− µβn+1
>

βn+1

(1 + βn(`n − 1))(1− `n βn
(1+βn(`n−1)) )

=
βn+1

1− βn

and there exist two constants c1 ∈ (0, 1) and c2 > 0 such that

c1
µβn+1(1− βn)

1− µβn+1
> βn+1 + c2.

In view of the definition (20) of z, we see that

(1− µβn+1)L1y(t) > L2y(t)R2(t)

and (
L1y

R1−µβn+1
2

)′
(t) < 0, t ≥ t′n.

Using the above monotonicity in (27), we find that there exists t′′n ≥ t′n that is suffi-
ciently large such that

z(t) = z(tn) + βεnknλ1−1/(εnkn)
∫ t

tn

L1y(s)
R2(s)r2(s)

d s

≥ βεnknλ1−1/(εnkn)

1− µβn+1

L1y(t)

R1−µβn+1
2 (t)

(
R1−µβn+1

2 (t)− R1−µβn+1
2 (tn)

)
≥ c1βεnknλ1−1/(εnkn)

1− µβn+1
L1y(t)

= c1µβn+1
1− βn

1− µβn+1
L1y(t)

> (βn+1 + c2)L1y(t), t ≥ t′′n .

Then,
(1− βn+1 − c2)L1y(t) > R2(t)L2y(t) (29)

and (
L1y

R1−βn+1−c2
2

)′
(t) < 0, (30)

from which the conclusion follows.
(bn+1) Clearly, (30) also implies that L1y/R1−βn+1

2 → 0 as t→ ∞, since otherwise

L1y(t)

R1−βn+1−c2
2 (t)

=
L1y(t)

R1−βn+1
2 (t)

Rc2
2 (t)→ ∞ as t→ ∞, (31)

which is a contradiction.
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(cn+1) Using that by (an+1) and (bn+1), L1y/R1−βn+1
2 is a decreasing function tending

to zero, we have, for any εn+1 ∈ (0, 1),

y(t) = y(t′′n) +
∫ t

t′′n

R1−βn+1
2 (s)

r1(s)
L1y(s)

R1−βn+1
2 (s)

d s

≥ y(t′′n) +
L1y(t)

R1−βn+1
2 (t)

∫ t

t′′n

R1−βn+1
2 (s)

r1(s)
ds

= y(t′′n) +
L1y(t)

R1−βn+1
2 (t)

∫ t

t0

R1−βn+1
2 (s)

r1(s)
ds− L1y(t)

R1−βn+1
2 (t)

∫ t′′n

t0

R1−βn+1
2 (s)

r1(s)
d s

>
L1y(t)

R1−βn+1
2 (t)

∫ t

t0

R1−βn+1
2 (s)

r1(s)
ds ≥ εn+1kn+1

R12(t)
R2(t)

L1y(t), t ≥ tn+1 ≥ t′′n .

and (
y

R1/εn+1kn+1
12

)′
(t) =

εn+1kn+1L1y(t)R1/εn+1kn+1
12 (t)− y(t)R1/εn+1kn+1−1

12 (t)R2(t)

εn+1kn+1R2/εn+1kn+1
12 (t)r1(t)

=
εn+1kn+1L1y(t)R12(t)− y(t)R2(t)

R1/εn+1kn+1+1
12 (t)r1(t)

< 0.

The proof is complete.

Corollary 5. Assume that βi < 1 for i = 0, 1, . . . , n− 1 and βn ≥ 1. Then, N2 = ∅.

In view of the above corollary and (13), the sequence {βn} defined by (11) is increasing
and bounded from the above, i.e., there exists a limit

lim
n→∞

βn = β f ∈ (0, 1)

satisfying the equation

β f =
β∗k f λ

1−1/k f
∗

1− β f
, (32)

where

k f = lim inf
t→∞

R
β f
2 (t)

∫ t
t0

R
1−β f
2 (s)
r1(s)

ds

R12(t)
.

Then, the following crucial result on the nonexistence ofN2-type solutions is immediate.

Lemma 6. Assume λ∗ < ∞ and (32) does not possess a root on (0, 1). Then, N2 = ∅.

Corollary 6. Assume λ∗ < ∞. If

β∗ > max

 β f (1− β f )λ
1/k f−1
∗

k f
: 0 < β f < 1

. (33)

then N2 = ∅.
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3.2. Convergence to Zero of Kneser Solutions

In this section, we state some results ensuring that any Kneser solution converges to
zero asymptotically. We start by pointing out the useful fact that∫ ∞

t0

q(s)ds < ∞ (34)

is necessary for the existence of an unbounded nonoscillatory solution. For the reader’s
convenience, we state its one-line proof.

Lemma 7. Assume ∫ ∞

t0

q(s)ds = ∞. (35)

Then, (1) has property A.

Proof. Assume, on the contrary, that y is a nonvanishing, nonoscillatory, positive solution
of (1), i.e., y(t) ≥ ξ > 0 for t ≥ t1. Then, the integration of (1) from t2 to t yields

L2y(t) = L2y(t2)−
∫ t

t2

q(s)y(τ(s))ds ≤ L2y(t2)− ξ
∫ t

t2

q(s)ds→ −∞ as t→ ∞, (36)

which contradicts the positivity of L2y.

Hence, we will assume (34). Next, we will distinguish between two cases:∫ ∞

t0

1
r2(u)

∫ ∞

u
q(s)ds du = ∞ (37)

and ∫ ∞

t0

1
r2(u)

∫ ∞

u
q(s)ds du < ∞. (38)

Lemma 8. Assume either (37) or∫ ∞

t0

1
r1(t)

∫ ∞

t

1
r2(s)

∫ ∞

s
q(u)dudsdt = ∞. (39)

If y is a Kneser solution of (1), then limt→∞ y(t) = 0.

Proof. Use y(t) ∈ N0 and choose t1 ≥ t0 such that y(τ(t)) > 0 on [t1, ∞). Clearly, there
exists a finite number ξ such that limt→∞ y(t) = ξ ≥ 0. Assume that ξ > 0. Then, there
exists t2 ≥ t1 such that y(τ(t)) ≥ ξ for t ≥ t2.

If (37) holds, then by integrating (1) from t to ∞, we obtain

L2y(t) ≥
∫ ∞

t
q(s)y(τ(s))ds ≥ ξ

∫ ∞

t
q(s)ds,

that is,

(L1y(t))′ ≥ ξ

r2(t)

∫ ∞

t
q(s)ds. (40)

Integrating (40) from t2 to t, we obtain

−L1y(t) ≤ −L1y(t2)−
∫ t

t2

ξ

r2(u)

∫ ∞

u
q(s)ds du→ −∞ as t→ ∞,

which contradicts the positivity of −L1y.
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If (39) holds, then integration of (40) from t to ∞ gives

−y′(t) ≥ ξ

r1(t)

∫ ∞

t

1
r2(u)

∫ ∞

t
q(s)ds du

and, consequently,

y(t) ≤ y(t2)−
∫ t

t2

ξ

r1(x)

∫ ∞

x

1
r2(u)

∫ ∞

t
q(s)ds du dx → ∞ as t→ ∞, (41)

which contradicts the positivity of y. The proof is complete.

Using the positivity of β∗ which we always require in our results for the nonexistence
of N2-type solutions, it is possible to simplify condition (39) or even omit it when r1 and r2
are of the same type. We will use this knowledge to formulate a single-condition criterion
for property A of (1) in Section 3.3.

Lemma 9. Use (38) and assume r1R1 ∼ r2R2 and β∗ > 0. Then, (39) holds.

Proof. By interchanging the order of integration, we rewrite (39) as follows:∫ ∞

t0

1
r1(t)

∫ ∞

t

1
r2(s)

∫ ∞

s
q(u)dudsdt

=
∫ ∞

t0

1
r1(s)

∫ ∞

s
q(u)(R2(u)− R2(s))dud s

=
∫ ∞

t0

1
r1(s)

∫ ∞

s
q(u)R2(u)duds−

∫ ∞

t0

R2(s)
r1(s)

∫ ∞

s
q(u)dud s

=
∫ ∞

t0

q(s)R2(s)R1(s)ds−
∫ ∞

t0

q(s)R12(s)ds.

Using λ and β, satisfying (8) and (9), for t ≥ t1 ≥ t0, we obtain∫ ∞

t0

1
r1(t)

∫ ∞

t

1
r2(s)

∫ ∞

s
q(u)dudsdt

≥ β
∫ ∞

t1

R2(s)R1(s)− R12(s)
r2(s)R2(s)R12(τ(s))

ds

= βλ
∫ ∞

t1

(
R1(s)

r2(s)R12(s)
− 1

r2(s)R2(s)

)
d s

=
∫ ∞

t1

1
r2(s)R2(s)

(
R1(s)R2(s)

R12(s)
− 1
)

ds.

On the other hand, by using l’Hôspital’s rule,

lim inf
t→∞

R1(t)R2(t)
R12(t)

≥ lim inf
t→∞

1
r1(t)

R2(t) + 1
r2(t)

R1(t)
R2(t)
r1(t)

= 1 + lim inf
t→∞

r1(t)R1(t)
r2(t)R2(t)

= 1 + `.

Therefore,∫ ∞

t1

1
r1(t)

∫ ∞

t

1
r2(s)

∫ ∞

s
q(u)dudsdt ≥

∫ ∞

t1

`ds
r2(s)R2(s)

= ` lim
t→∞

ln
(

R(t)
R(t1)

)
→ ∞ as t→ ∞.

In view of Lemma 8, the conclusion follows directly.
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Corollary 7. Let (38) and assume r1R1 ∼ r2R2 and β∗ > 0. If y is a Kneser solution of (1), then
limt→∞ y(t) = 0.

3.3. Property A of (1)

Combining the results from previous two sections, we are prepared to state the main
results of this paper in three cases: for general functions r1 and r2, for the same-type
functions r1 and r2 satisfying (15), and for the same functions r1 = r2, respectively.

Theorem 1. Assume β∗ > 0, λ∗ = ∞, and either (37) or (39) holds. Then, (1) has property A.

Theorem 2. Assume λ∗ < ∞, (33), and either (37) or (39) holds. Then (1) has property A.

Theorem 3. Assume r1R1 ∼ r2R2. If β∗ > 0 and λ∗ = ∞, then (1) has property A.

Theorem 4. Assume r1R1 ∼ r2R2. If λ∗ < ∞ and (33) hold, then (1) has property A.

Theorem 5. Assume r1 = r2. If β∗ > 0 and λ∗ = ∞, then (1) has property A.

Theorem 6. Assume r1 = r2. If λ∗ < ∞ and

β∗ > max

 β f (1− β f )(2− β f )λ
β f /2
∗

2
: 0 < β f < 1

, (42)

then (1) has property A.

4. Examples and Discussion

We illustrate the worth of the obtained results on the examples. Firstly and most
importantly, we show that that condition (5) is necessary and sufficient for property A of
the Euler equation (3).

Example 1. Let us consider the Euler Equation (3). Clearly, (15) holds and from straightforward
computation, we see that

λ∗ = τγ+α−2,

β∗ =
q0τ2−γ−α

(1− γ)2(2− γ− α)
,

k f =
(2− γ− α)

2− β f (1− γ)− γ− α
.

Consequently, condition (33), which in view of Theorem 4 ensures that (3) has property A,
reduces to

q0 > max
{

β f (1− β f )(2− β f (1− γ)− γ− α)(1− γ)2τ−(2−β f (1−γ)−γ−α) : 0 < β f < 1
}

. (43)

If we set
µ = 2− β f (1− γ)− γ− α,

then (43) becomes
q0 > max{c(µ) : 1− α < µ < 2− α− γ}, (44)

where c(µ) is defined by (4). Hence, condition (5) is not only sufficient, but also necessary for the
existence of an N2-type solution and so (43) is sharp for (3) to have property A.

For example, set α = γ = 0 and τ = 0.35. By virtue of (44), we conclude that (5) has
property A, if

q0 > 2.1327,
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which is depicted in Figure 1—see the orange line. We can also observe from Figure 1 (see the green
line) that if

q0 < max{c(µ) : µ < 0} ' 2.944,

then (5) has a couple of Kneser solutions tending to zero asymptotically.

-4 -2 2
μ

-1

1

2

3

c(μ )

Figure 1. Graph of c(µ) for α = γ = 0 and τ = 0.35.

The remaining open problem stated below in Remark 2 is to prove a general criterion for the
nonexistence of Kneser solutions of (1), which would reduce to

q0 > max{c(µ) : µ < 0}

when applied to the Euler equation (5).

Next, we consider the situation when r1 and r2 are not of same type.

Example 2. Consider the third-order delay differential equation(
e−ty′′(t)

)′
+ q(t)y(τt) = 0, τ ∈ (0, 1), t > 1. (45)

It is easy to verify that

r1(t) = 1, r2 = e−t, R1(t) ∼ t, R2(t) ∼ et, R12 ∼ et.

Then,

λ∗ = lim inf
t→∞

R12(t)
R12(τt)

= lim inf
t→∞

e(1−τ)t = ∞

and
β∗ = lim inf

t→∞
R2(t)R12(τ(t))q(t)r2(t) = lim inf

t→∞
q(t)eτt > 0. (46)

Clearly, a positive β∗ implies that the integral (37) is divergent, i.e.,∫ ∞

1
es
∫ ∞

s
q(u)du ds =

∫ ∞

1
q(s)(es − e)ds = ∞.

Hence, if (46) holds, all assumptions of Theorem 1 are satisfied and Equation (45) has prop-
erty A.

Finally, we illustrate the case with non-proportional delay argument.

Example 3. Consider the third-order delay differential equation

y′′′(t) +
1
t2 y(t− 2 ln t) = 0, t > t− 2 ln t > 1. (47)
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It is easy to verify that

r1(t) = r2(t) = 1, R1(t) ∼ t, R2(t) ∼ t, R12 ∼
t2

2
,

λ∗ = lim inf
t→∞

R12(t)
R12(τ(t))

= lim inf
t→∞

t2

(t− 2 ln t)2 = 1,

and
β∗ = lim inf

t→∞
R2(t)R12(τ(t))q(t)r2(t) = ∞.

Hence, all assumptions of Theorem 6 are satisfied and Equation (47) has property A, that is,
any nonoscillatory solution tends to zero asymptotically. One such solution is y(t) = e−t.

Remark 1. In the paper, we suggested new oscillation criteria for property A of a class of general
third-order delay differential equations by employing a novel iterative technique. In a particular
case when the functions ri are of the same type, a single condition guarantees property A of
(1), see Theorems 3 and 4. We stress that our criteria remove a restrictive condition that τ(t) is a
nondecreasing function, they are also applicable in the ordinary case τ(t) = t and, most importantly,
they are sharp when applied to general third-order delay Euler-type differential equations, see
Example 1.

Remark 2. It is well-known, see, e.g. [3], that the delay argument can cause the oscillation of
all solutions of (1). However, the problem of obtaining conditions for the nonexistence of Kneser
solutions of (1) which would be sharp for the Euler equation (3) is nontrivial and we leave this
question open for future research. How to extend the sharp results of the paper to the class of neutral
third-order differential equations also remains open at the moment.
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