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Abstract: The main target of this research work is to model the output performance of adsorption
water desalination system (AWDS) in terms of switching and cycle time using artificial intelligence.
The output performance of the ADC system is expressed by the specific daily water production
(SDWP), the coefficient of performance (COP), and specific cooling power (SCP). A robust Adaptive
Network-based Fuzzy Inference System (ANFIS) model of SDWP, COP, and SCP was built using the
measured data. To demonstrate the superiority of the suggested ANFIS model, the model results
were compared with those achieved by Analysis of Variance (ANOVA) based on the maximum
coefficient of determination and minimum error between measured and estimated data in addition
to the mean square error (MSE). Applying ANOVA, the average coefficient-of-determination values
were 0.8872 and 0.8223, respectively, for training and testing. These values are increased to 1.0 and
0.9673, respectively, for training and testing thanks to ANFIS based modeling. In addition, ANFIS
modelling decreased the RMSE value of all datasets by 83% compared with ANOVA. In sum, the
main findings confirmed the superiority of ANFIS modeling of the output performance of adsorption
water desalination system compared with ANOVA.

Keywords: artificial intelligence; modelling based ANFIS; adsorption desalination

1. Introduction

It has become evident that the energy and water dilemmas are escalating day by
day to the point where they threaten the lives of many people and fuel conflicts between
societies [1]. And that the two problems have become so intertwined that they cannot be
separated, because if you want to save water, you must consume the scarce energy in the
first place. It is also noticeable that the areas that suffer from severe water shortages are
mostly desert areas and have untapped solar energy available [2]. Therefore, researchers
in this field should think about how to link the parties to this puzzle and use that wasted
energy to provide the required water, especially in light of the availability of seawater
and wells that are not suitable for drinking [3]. The researchers have improved in this
way and made a great effort until they presented many ideas that can be built upon
and developed. Among these ideas was the idea to use the phenomenon of adsorption
to desalinate water with solar energy or waste energy. This idea went through many
stages until prototypes were built and work was carried out to improve its performance
in several ways, including improving the properties of the used materials. One of these
methods is to improve the properties of the used materials, and also to improve the
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working cycle and try to make it work efficiently at lower temperatures, which was a great
challenge. The strength of adsorption desalination systems is that they are suitable for
being run with solar energy or waste energy, but they have a weak point, which is their low
productivity compared to widespread systems such as reverse osmosis systems (RO) [4].
Hence, researches were conducted theoretically and experimentally on improving and
promoting the system performance. Different ways of researches had been followed like
presenting new adsorbents and merging this technology with others like RO. Among these
research ways were attempts to improve the performance by controlling cycle time and
heating and cooling times.

Heat recovery has been presented by Ng et al. [5] between evaporator and condenser
to produce a SDWP of about 27 m3/ton per day of silica gel every day. Also, heat re-
covery between the adsorption beds has been examined by Ma et al. [6] reaching SDWP
4.69 m3/ton of silica gel and COP of 0.766. Four adsorption beds connected to two evap-
orators have been studied theoretically by Ali et al. [7]. SDWP of 8.84 m3/ton/day has
been reached in this study at a COP of 0.52 employing 95 ◦C driving temperature. At 80 ◦C
driving temperature, the AD cycle showed its ability to be work as shown by Olkis et al. [8]
experimentally where the studied AD system produced a SDWP of 10.9 m3/ton/day. The
effect of the temperatures of the condenser and the evaporator on the AD productivity
has been studied numerically by Youssef et al. [9] to optimize the system performance.
SDWP of 10 m3/ton/day has been recorded at a condenser temperature of 10 ◦C and an
evaporator temperature of 30 ◦C.

Using heat and mass recovery, the performance of a 2-bed AD system has been studied
by Amirfakhraei et al. [10]. The theoretical study showed that the cycle could reach a SDWP
of 9.58 m3/ton of silica gel daily by using heating and cooling temperatures of 95 ◦C and
30 ◦C, respectively. Zhang et al. [11] presented an experimental optimization study for an
AD system by operating conditions. Desalinated water of 191.3 kg/h has been reached at
a heating temperature of 80 ◦C. Another optimization study has been presented by Rezk
et al. [12] using a model optimization method to declare the optimal operating conditions
of solar-driven AD cycle. The optimal cycle could produce a SDWP of about 6.9 m3/ton
silica gel/day, a SCP of 191 W/kg, and a COP of 0.961.

Based on the above, it becomes clear to us that many efforts are being made to improve
and raise the performance of the adsorption desalination systems; however, these efforts
must be continued. It is worth mentioning here that there is something that can be added
in this area if the operating cycle is well examined and modeled to extract the highest
possible productivity without changing the construction or the content of the system, only
by reaching the best-operating conditions. The model has been presented here employing
artificial intelligence (AI) based on an experimental dataset to save money, effort, and time.
Artificial intelligence tools conquered many fields of applications. Systems modeling is one
of these fields [13,14]. The choice of the AI modeling tool depends mainly on the nature of
the application and the available dataset. Fuzzy Logic (FL) and Artificial Neural Networks
(ANN) are two popular and efficient AI techniques. Therefore, the main target of this
research work is to model the output performance of adsorption water desalination system
(AWDS) in terms of switching and cycle time using an Adaptive Network-based Fuzzy
Inference System (ANFIS). The output performance of the SADC system is expressed by the
specific daily water production (SDWP), the coefficient of performance (COP) and specific
cooling power (SCP). A robust ANFIS model of SDWP, COP, and SCP was built using the
measured data. To demonstrate the superiority of the suggested ANFIS model, the model
results were compared with those achieved by Analysis of Variance (ANOVA) based on
the maximum coefficient of determination and minimum error between measured and
estimated data. AVOVA has been used in several applications such as a bioelectrochemical
desalination process [15], biodesalination of Seawater [16] and desalination by reverse
osmosis [17]. Therefore, it has been used as a benchmark for the problem under study.

The rest of the paper is organized as follows. Section 2 briefly presents the experi-
mental work. The proposed methodology is explained in Section 3. Section 4 presents the
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discussion of the obtained results. Finally, the main finding and future work are outlined
in Section 5.

2. Experimental Work

An adsorption water desalination system has been built of two adsorption beds
containing metal-organic framework MOF (CPO-27(Ni)). The system has a condenser and
evaporator as shown in Figure 1. The system works in a semi-continuous mode where
Bed1 and Bed 2 work interchangeably. When Bed1 is in adsorption mode, Bed2 is in the
desorption mode. During the adsorption mode, the bed is cooled down by using cold water
and during the desorption mode, the bed has been heated up using hot water. This system
has been presented elsewhere and it is still under review. The condenser and the evaporator
are connected to perform internal heat recovery which improves the performance of the
system by raising the produced desalinated water. The operating conditions such as driving
temperature, cooling temperature, switching time, and cycle time have been studied.

Figure 1. Schematic diagram of the adsorption water desalination system.

3. Methodology

In this work, both ANOVA and ANFIS are considered. ANOVA is nominated in many
experimental applications [15–17]. ANOVA mathematically quantifies the relationship
between the output and inputs based on linear regression. The significance of every factor
is considered based on its significant value, p-value. For input to be significant, its p-value
must be lower than 5%.

ANFIS is featured with the advantages of FL and ANN. Modeling by ANFIS involves
three phases. The first phase consists of fuzzifying the values of the input signals. This is
performed by mapping the crisp values, through their corresponding membership func-
tions (MFs), to fuzzy values. This phase is called fuzzification. These MFs can take either
Gaussian or triangular shapes, depending on the application. The fuzzified inputs are
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logically processed to obtain the fuzzy output according to the pre-set fuzzy rules [14,18].
The second phase is the fuzzy inference system. In this phase, the fuzzy output is then
passed to the defuzzification in order to return the output to its crisp values. There are two
common methods of fuzzification: center of gravity and weighted average. Unlike mathe-
matical modeling, which formulates the relation between the inputs and the corresponding
output as a mathematical equation, fuzzy modeling describes this relationship via a set
of IF (premise) THEN (consequence) rules. These rules are generally created based on
experimental datasets. An example of a fuzzy rule statement, for a two-input single-output
system, simply takes the form:

IF a is MFa and b is MFb, THEN c is MFc,

where MFa and MFb denote the fuzzy membership functions of the two inputs a and b,
respectively, and MFc is the fuzzy membership function of the output c.

4. Results and Discussion
4.1. Modelling Based ANOVA

Tables 1–3 present the ANOVA results for modeling COP, SCP, and SDWP, respectively.
Considering Table 1, for the first output response, the Model F-value of 60.33 implies the
model is significant. There is only a 0.01% chance that an F-value this large could occur
due to noise. The p-values less than 0.05 indicate model terms are significant. In this
case A, A2 are significant model terms. Values greater than 0.1 indicate the model terms
are not significant. The following relation in terms of actual factors can be used to make
predictions about the first output response.

XCOP = −0.15017 + 0.00249A + 0.00071B + 9.132 × 10−07 A × B − 2.336 × 10−06 A2 − 0.000018B2 (1)

Table 1. ANOVA table for first output response (COP).

Source Sum of Squares df Mean Square F-Value p-Value

Model 0.0706 5 0.0141 60.33 <0.0001 significant
A 0.0558 1 0.0558 238.62 <0.0001
B 0.0005 1 0.0005 1.98 0.1932

AB 0.0000 1 0.0000 0.1686 0.6910
A2 0.0253 1 0.0253 108.04 <0.0001
B2 0.0001 1 0.0001 0.2279 0.6445

Residual 0.0021 9 0.0002
Cor Total 0.0727 14

Table 2. ANOVA table for second output response (SCP).

Source Sum of Squares df Mean Square F-Value p-Value

Model 6463.77 5 1292.75 12.94 0.0007 significant
A 524.94 1 524.94 5.25 0.0476
B 735.63 1 735.63 7.36 0.0239

AB 65.40 1 65.40 0.6546 0.4393
A2 4458.14 1 4458.14 44.62 <0.0001
B2 6.53 1 6.53 0.0654 0.8039

Residual 899.16 9 99.91
Cor Total 7362.93 14
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Table 3. ANOVA table for third output response (SDWP).

Source Sum of Squares df Mean Square F-Value p-Value

Model 42.93 5 8.59 25.35 <0.0001 significant
A 15.84 1 15.84 46.76 <0.0001
B 0.9132 1 0.9132 2.70 0.1350

AB 0.0012 1 0.0012 0.0035 0.9543
A2 18.49 1 18.49 54.59 <0.0001
B2 0.0106 1 0.0106 0.0314 0.8632

Residual 3.05 9 0.3388
Cor Total 45.98 14

Regarding the second output response, the AVOVA data shown in Table 2, the Model
F-value of 12.94 indicates the model is significant. There is only a 0.07% chance that an
F-value this large could occur due to noise. The p-values less than 0.05 show model terms
are significant. In this case, A, B, A2 are significant model terms. Values greater than 0.1000
indicate the model terms are not significant. The next relation in terms of actual factors can
be used to make predictions about the second output response.

XSCP = 70.54652 + 0.894124A − 0.641050B − 0.001176A × B − 0.000981A2 + 0.006222B2 (2)

Regarding the third output response, the AVOVA data shown in Table 3, the Model
F-value of 25.35 indicates the model is significant. There is only a 0.01% chance that an
F-value this large could occur due to noise. The p-values less than 0.05 indicate model
terms are significant. In this case A, A2 are significant model terms. Values greater than 0.1
indicate the model terms are not significant. The next relation in terms of actual factors can
be used to make predictions about the second output response.

XSDWP = 0.054238 + 0.049419A − 0.001139B + 4.98791 × 10−06 A × B − 0.000063A2 − 0.000251B2 (3)

The statical analysis of different ANOVA models are presented in Table 4. For COP
model, the predicted R2 of 0.9399 is in reasonable agreement with the adjusted R2 of 0.9549;
i.e., the difference is less than 0.2. The value of RMSE is 0.6552. The adequate precision
measures the signal to noise ratio. It compares the range of the predicted values at the
design points to the average prediction error. Ratios greater than 4 indicate adequate model
discrimination [19]. For COP model, the ratio of 20.228 indicates an adequate signal. This
model can be used to navigate the design space.

Table 4. Statical analysis of the ANOVA model.

First ANOVA Model of COP Second ANOVA Model of SCP

Std. Dev. 0.0153 R2 0.9710 Std. Dev. 10.00 R2 0.8779

MSE 0.4293 Adjusted R2 0.9549 MSE 213.93 Adjusted R2 0.8100

C.V.% 3.56 Predicted R2 0.9399 C.V.% 4.67 Predicted R2 0.6760

RMSE 0.6552 Adeq Precision 20.2281 RMSE 14.6263 Adeq Precision 11.6747

Third ANOVA model of SDWP

Std. Dev. 0.582 R2 0.9337

MSE 7.88 Adjusted R2 0.8969

C.V.% 7.38 Predicted R2 0.8512

RMSE 2.8071 Adeq
Precision 13.8258

For SCP, the predicted R2 of 0.6760 is in reasonable agreement with the adjusted R2

of 0.8100. The value of RMSE is 14.6263. Also, the adequate precision (11.675) is greater
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than 4 is desirable that indicates an adequate signal. This model can be used to navigate
the design space. Finally, for SDWP, the predicted R2 of 0.8512 is in reasonable agreement
with the adjusted R2 of 0.8969. The value of RMSE is 2.8071. The signal to noise of 13.826
indicates an adequate signal. This model can be used to navigate the design space. In sum,
the average value of RMSE for the three models is 8.607.

Figure 2 illustrates the 3-D surface plots for the three output response models. The
red-filled circles show the response values above the predicted values, and the pink-filled
circles show the values below the predicted one. The yellow curvature lines show the high
output performances. As demonstrated in Figure 3, the actual values are the measured
response, and the predicted response is determined by using the approximate function
values to evaluate the model. Most of the results of both models are close to the diagonal,
indicating an excellent correlation between the expected and the actual values.

Figure 2. 3-D response surface plots for output responses (a) COP; (b) SCP, and (c) SDWP.
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Figure 3. Comparison of the predicted values of output response (a) COP; (b) SCP, and (c) SDWP.

4.2. Modelling Based ANFIS

Based on the experimental dataset, a model based ANFIS has been created to simulate
the output performance of AWDS in terms of switching and cycle time. Three ANFIS
models respectively for COP, SCP, and SDWP are created. The experimental dataset (15 ex-
periments) was divided into two parts with a ratio of 70:30 for the training (10 experiments)
and testing (5 experiments) stages. In the current model modeling, the Takagi-Sugeno
ANFIS is adopted because of its ability to track the nonlinear data precisely. Also, the
subtractive clustering method has been applied to build the fuzzy rules. The number of
fuzzy rules is 9, 9, and 10, respectively, for COP, SCP, and SDWP. The minimum, maximum,
and Wavg were used for the implication, aggregation, and defuzzification methods, respec-
tively. Additionally, the inputs’ MFs were chosen as the Gaussian shape for the fuzzification
procedure, and only 10 epochs were found to be enough for the training. The MSE, RMSE,
and the coefficient of determination (R2) between the measured data and estimated data are
used to evaluate the accuracy of the ANFIS model. The statistical assessment of the ANFIS
models of COP, SCP, and SDWP is presented in Table 5. Applying ANOVA, the average
coefficient-of-determination values were 0.8872 and 0.8223, respectively, for training and
testing. These values are increased to 1.0 and 0.9673, respectively, for training and testing
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thanks to ANFIS based modeling. In addition, RMSE values using ANFIS were 0.00117,
2.5201 and 1.46 respectively, for training, testing and all datasets. Compared with ANOVA,
the average RMSE value based on all datasets is decreased from 8.607 (ANOVA) to 1.46
by using ANFIS. This means ANFIS modelling decreased the RMSE of all datasets by 83%
compared with ANOVA.

Table 5. Statistical assessment of the ANFIS models of COP, SCP, and SDWP.

MSE RMSE Coefficient of Determination (R2)

Train Test All Train Test All Train Test All

First fuzzy model of COP

2.71 × 10−10 0.0002 0.0001 0 0.0154 0.0089 1 0.9751 0.9867

Second fuzzy model of SCP

1.14 × 10−5 49.0493 16.3498 0.0034 7.0035 4.0435 1 0.9916 0.9791

Third fuzzy model of SDWP

5.29 × 10−9 0.2934 0.0978 0.0001 0.5416 0.3127 1 0.9352 0.9712

Average

3.80 × 10−6 1.64 × 101 5.480 0.000117 2.52 1.46 1 0.967 0.979

Figure 4 demonstrates the fuzzification phase in establishing an ANFIS model, in
which the ANFIS model has two inputs (switching and cycle time) and one output for each
model. The 3-D surface plot of the three output responses with varying input is shown in
Figure 5. Whereas Figure 6. illustrates the input and the output membership functions of
the fuzzy system for COP, SCP, and SDWP.

Figure 4. Inputs and outputs of ANFIS model (a) COP; (b) SCP, and (c) SDWP.
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Figure 5. 3-D surface plot of output performance changing values related to input parameters (a) COP; (b) SCP, and
(c) SDWP.

The main goal of this research and this technique is that we can study many cases and
study the effect of changing many factors at the same time, which saves a lot of time and
effort. It would be difficult to study these factors together in a laboratory, so this study
explores what we can do and summarizes many practical experiments to bring us to the
best-operating conditions as shown in Figure 5. The figure shows the effect of cycle time
and switching time on the performance parameters of the systems which are COP, SCP, and
SDWP. The COP could be reached up to 0.5 by increasing the cycle time were changing the
switching time has a marginally effect on the COP. By longing the cycle time more amount
of pure water is generated which raises the COP.

The effect of changing cycle time is very clear when dealing with SDWP as shown in
Figure 5c. Increasing half-cycle time up to 300 s has a good impact on the SDWP however
behind this limit, the SDWP shows a drop. This indicates that however, the desalinated
water amount may increase by increasing cycle time, the benefits of this are dissipated
because of the decrease in the number of cycles that can be performed per day with the
increase in cycle time.
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Figure 6. Inputs membership functions of the fuzzy system (a) COP; (b) SCP, and (c) SDWP.

A significant measure to assess the model’s prediction precision is to plot these pre-
dictions versus their corresponding targets. Consequently, Figure 7 presents the accuracy
plots of COP, SCP, and SDWP models. Considering Figure 7, it is clear that for COP, SCP,
and SDWP models, the training and the testing predictions are distributed closer to the
one hundred percent accuracy line that matches with the obtained high values of the R2.
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Figure 7. Comparison of the training and testing data (a) COP; (b) SCP, and (c) SDWP.

5. Conclusions

Based on the measured data of adsorption water desalination system (AWDS), an
accurate model has been created to simulate the specific daily water production (SDWP), the
coefficient of performance (COP), and specific cooling power (SCP) in terms of switching
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and cycle time. Adaptive Network-based Fuzzy Inference System (ANFIS) is selected to
do this job because it is the beneficial product of the combination between fuzzy logic
and artificial neural networks. For comparison purposes, an ANOVA model was also
created. Applying ANOVA, the average coefficient-of-determination values were 0.8872
and 0.8223, respectively, for training and testing. These values are increased to 1.0 and
0.9673, respectively, for training and testing thanks to ANFIS based modeling. In addition,
RMSE values using ANFIS were 0.00117, 2.5201 and 1.46 respectively, for training, testing
and all data. Compared with ANOVA, the average RMSE value based on all datasets is
decreased from 8.607 (ANOVA) to 1.46 by using ANFIS. This means ANFIS modelling
decreased the RMSE of all datasets by 83% compared with ANOVA. In sum, the main
findings confirmed the superiority of ANFIS modeling of the output performance of
AWDS compared with ANOVA. In future work, modern optimization algorithms will be
integrated with ANFIS modeling to identify the best operating parameters AWDS.
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