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A. Local Inclusive Distance Vertex

Irregular Graphs. Mathematics 2021, 9,

1673. https://doi.org/10.3390/

math9141673

Academic Editors: Janez Žerovnik

and Darja Rupnik Poklukar

Received: 23 June 2021

Accepted: 13 July 2021

Published: 16 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia,
Kampus UI Depok, Depok 16424, Indonesia; denny@sci.ui.ac.id

2 Department of Applied Mathematics and Informatics, Technical University, 042 00 Košice, Slovakia;
martin.baca@tuke.sk (M.B.); andrea.fenovcikova@tuke.sk (A.S.-F.)

* Correspondence: kiki@sci.ui.ac.id
† These authors contributed equally to this work.

Abstract: Let G = (V, E) be a simple graph. A vertex labeling f : V(G)→ {1, 2, . . . , k} is defined to
be a local inclusive (respectively, non-inclusive) d-distance vertex irregular labeling of a graph G if
for any two adjacent vertices x, y ∈ V(G) their weights are distinct, where the weight of a vertex
x ∈ V(G) is the sum of all labels of vertices whose distance from x is at most d (respectively, at most
d but at least 1). The minimum k for which there exists a local inclusive (respectively, non-inclusive)
d-distance vertex irregular labeling of G is called the local inclusive (respectively, non-inclusive)
d-distance vertex irregularity strength of G. In this paper, we present several basic results on the local
inclusive d-distance vertex irregularity strength for d = 1 and determine the precise values of the
corresponding graph invariant for certain families of graphs.

Keywords: (inclusive) distance vertex irregular labeling; local (inclusive) distance vertex irregular
labeling

MSC: 05C15; 05C78

1. Introduction

All graphs considered in this paper are simple finite. We use V(G) for the vertex set
and E(G) for the edge set of a graph G. The neighborhood NG(x) of a vertex x ∈ V(G) is
the set of all vertices adjacent to x, which is a set of vertices whose distance from x is 1.
Otherwise, NG[x] denotes the set of all neighbors of a vertex x ∈ V(G) including x, which
is the set of vertices whose distance from x is at most 1. We are following the standard
notation and the terminology presented in [1].

The notion of the irregularity strength was introduced by Chartrand et al. in [2]. For a
given edge k-labeling α : E(G)→ {1, 2, . . . , k}, where k is a positive integer, the associated
weight of a vertex x ∈ V(G) is wα(x) = ∑y∈NG(x) α(xy). Such a labeling α is called irregular
if wα(x) 6= wα(y) for every pair x, y of vertices of G. The smallest integer k for which an
irregular labeling of G exists is known as the irregularity strength of G. This parameter has
attracted much attention, see [3–5].

Inspired by irregularity strength and distance magic labeling defined in [6] and inves-
tigated in [7], Slamin [8] introduced the concept of a distance vertex irregular labeling of
graphs. A distance vertex irregular labeling of a graph is a mapping β : V(G)→ {1, 2, . . . , k}
such that the set of vertex weights consists of distinct numbers, where the weight of a
vertex x ∈ V(G) under the labeling β is defined as wtβ(x) = ∑y∈NG(x) β(y). The minimum
k for which a graph G has a distance vertex irregular labeling is called the distance vertex
irregularity strength of G and is denoted by dis(G).

In [8], Slamin determined the exact value of the distance vertex irregularity strength
for complete graphs, paths, cycles and wheels, namely dis(Kn) = n, for n ≥ 3, dis(Pn) =
dn/2e, for n ≥ 4, dis(Cn) = d(n + 1)/2e, for n ≡ 0, 1, 2, 3 (mod 8) and dis(Wn) =
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d(n + 1)/2e, for n ≡ 0, 1, 2, 5 (mod 8). Completed results for cycles and wheels are
proved in [9].

Bong et al. [10] generalized the concept of a distance vertex irregular labeling to
inclusive and non-inclusive d-distance vertex irregular labelings. The difference between
inclusive and non-inclusive labeling depends on the way whether the vertex label is
included in the vertex weight or not. The symbol d represents how far the neighborhood
is considered. Thus, an inclusive (respectively, non-inclusive) d-distance vertex irregular
labeling of a graph G is a mapping β such that the set of vertex weights consists of distinct
numbers, where the weight of a vertex x ∈ V(G) is the sum of all labels of vertices whose
distance from x is at most d (respectively, at most d but at least 1). The minimum k for which
there exists an inclusive (respectively, non-inclusive) d-distance vertex irregular labeling
of a graph G is called the inclusive (respectively, non-inclusive) d-distance vertex irregularity
strength of G. The non-inclusive 1-distance vertex irregularity strength of a graph G is
using Slamin’s [8] terminology known as the distance vertex irregularity strength of G,
denoted by dis(G). For the inclusive 1-distance vertex irregularity strength, we will use
notation idis(G).

In [10] is determined the inclusive 1-distance vertex irregularity strength for paths
Pn, n ≡ 0 (mod 3), stars, double stars S(m, n) with m ≤ n, a lower bound for caterpillars,
cycles, and wheels. In [11] is established a lower bound of the inclusive 1-distance vertex
irregularity strength for any graph and determined the exact value of this parameter for
several families of graphs, namely for complete and complete bipartite graphs, paths,
cycles, fans, and wheels. More results on triangular ladder and path for d ≥ 1 has been
proved in [12,13].

Motivated by a distance vertex labeling [8], an irregular labeling [2] and a recent paper
on a local antimagic labeling [14], we introduce in this paper the concept of local inclusive
and local non-inclusive d-distance vertex irregular labelings.

A vertex labeling f : V(G)→ {1, 2, . . . , k} is defined to be a local inclusive (respectively,
non-inclusive) d-distance vertex irregular labeling of a graph G if for any two adjacent vertices
x, y ∈ V(G) their weights are distinct, where the weight of a vertex x ∈ V(G) is the sum of
all labels of vertices whose distance from x is at most d (respectively, at most d but at least
1). The minimum k for which there exists a local inclusive (respectively, non-inclusive) d-
distance vertex irregular labeling of G is called the local inclusive (respectively, non-inclusive)
d-distance vertex irregularity strength of G and denoted by lidisd(G) (respectively, ldisd(G)).
If there is no such labeling for the graph G then the value of lidisd(G) is defined as ∞. In
the case when d = 1 the index d can be omitted, thus lidis1(G) = lidis(G) (respectively,
ldis1(G) = ldis(G)). In this paper, we only discuss the case for inclusive labeling with
d = 1. Note that the concept of a local non-inclusive distance vertex irregular labeling has
been introduced earlier in [15] with a different name. For more information about labeled
graphs see [16].

In this paper, we present several basic results and some estimations on the local
inclusive 1-distance vertex irregularity strength and determine the precise values of the
corresponding graph invariant for several families of graphs.

2. Basic Properties

In the following observations, we give several basic properties of lidis(G). The first
observation gives a relation between the local inclusive distance vertex irregularity strength,
lidis(G), and the inclusive distance vertex irregularity strength, idis(G). The second and
third observations give the requirement for giving the label of two vertices which have a
common neighbor.

Observation 1. For a graph G, it holds that lidis(G) ≤ idis(G).

Observation 2. If there exists an edge uv in a graph G such that NG(u)− {v} = NG(v)− {u},
then for any local non-inclusive distance vertex irregular labeling f of a graph G holds f (u) 6= f (v).
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Observation 3. If there exists an edge uv in a graph G such that NG(u)− {v} = NG(v)− {u},
then lidis(G) = ∞.

The next theorem gives a sufficient and necessary condition for lidis(G) < ∞. Note
that the graph G is not necessarily connected.

Theorem 1. For a graph G, it holds that lidis(G) = ∞ if and only if there exists an edge
uv ∈ E(G) such that NG[u] = NG[v].

Proof. If there exists an edge uv ∈ E(G) such that NG[u] = NG[v], then immediately
follows Observation 3 and we obtain lidis(G) = ∞. On the other hand, if lidis(G) = ∞
then there exist at least two vertices u and v in G that have the same weight under any
vertex labeling. It is only happened if NG[u] = NG[v].

Immediately from the previous theorem we obtain the following result.

Corollary 1. If there exist two distinct vertices u, v in G such that degG(u) = degG(v) =
|V(G)| − 1, then lidis(G) = ∞.

Thus, for complete graphs we obtain

Corollary 2. Let n be a positive integer. Then

lidis(Kn) =

{
1, if n = 1,
∞, if n ≥ 2.

Now, we present a sufficient and necessary condition for lidis(G) = 1.

Theorem 2. Let G be a graph. Then lidis(G) = 1 if and only if for every edge uv ∈ E(G),
deg(u) 6= deg(v).

Proof. Consider a labeling that assigns number 1 to every vertex of a graph G. Under this
labeling, the weight of any vertex v in G is wt(v) = degG(v) + 1. Thus, adjacent vertices
can have distinct weights if and only if they have distinct degrees.

The chromatic number of a graph G, denoted by χ(G), is the smallest number of
colors needed to color the vertices of G so that no two adjacent vertices share the same
color, see [1]. The following result gives a trivial lower bound for the number of distinct
induced vertex weights under any local inclusive distance vertex irregular labeling of a
graph G.

Theorem 3. For a graph G, the number of distinct induced vertex weights under any local inclusive
distance vertex irregular labeling is at least χ(G).

3. Local Inclusive Distance Vertex Irregularity Strength for Several Families of Graphs

In this section, we provide the exact values of local inclusive distance vertex irregu-
larity strengths of some standard graphs such as paths, cycles, complete bipartite graphs,
complete multipartite graphs, and caterpillars. We also give results on several products of
graphs, such as corona graphs, union graphs, and join product graphs.

Theorem 4. Let Cn be a cycle on n vertices n ≥ 3. Then

lidis(Cn) =


∞, if n = 3,
2, if n is even,
3, if n is odd, n ≥ 5.
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Proof. Let V(Cn) = {vi : i = 1, 2, . . . , n} be the vertex set and let E(Cn) = {vivi+1 :
i = 1, 2, . . . , n− 1} ∪ {v1vn} be the edge set of a cycle Cn. The lower bound for the local
inclusive distance vertex irregularity strength of Cn follows from Theorem 3 as

χ(Cn) =

{
3, if n is odd,
2, if n is even.

As C3 is isomorphic to K3 we use Corollary 2 in this case.
For n even, we label the vertices of Cn as follows

f (vi) =

{
1, if i is odd,
2, if i is even.

Then, for the vertex weights we obtain

wt f (vi) =

{
5, if i is odd,
4, if i is even.

Thus, for n even we obtain lidis(Cn) = 2.
For n = 5, we label the vertices such that f (v1) = f (v2) = 1, f (v3) = 3 and f (v4) =

f (v5) = 2. Then, wt f (v1) = 4, wt f (v2) = wt f (v5) = 5, wt f (v3) = 6 and wt f (v4) = 7. Thus,
lidis(C5) = 3.

For n odd, n ≥ 7, the vertices are labeled in the following way

f (vi) =


1, if i is odd, 1 ≤ i ≤ n− 4,
2, if i is even, 2 ≤ i ≤ n− 3,
3, if i = n− 2, n− 1, n.

The weights of vertices are

wt f (vi) =



6, if i = 1, n− 3,
5, if i is odd, 3 ≤ i ≤ n− 4,
4, if i is even, 2 ≤ i ≤ n− 5,
8, if i = n− 2,
9, if i = n− 1,
7, if i = n.

As adjacent vertices have distinct weights we obtain lidis(Cn) = 3 for n odd. The
above explanation concludes the proof.

Corollary 3. Let Pn be a path on n vertices n ≥ 2. Then

lidis(Pn) =

{
∞, if n = 2,
2, if n ≥ 3.

Proof. Let V(Pn) = {vi : i = 1, 2, . . . , n} be the vertex set and let E(Pn) = {vivi+1 : i =
1, 2, . . . , n− 1} be the edge set of a path Pn. The result for n = 2 follows from Corollary 2.

For n ≥ 3, according to Theorem 3, the lidis(Pn) should be more than one. Using the
vertex labels for n even as in Theorem 4 and the corresponding vertex weights are

wt f (vi) =


3, if i = 1, n,
4, if i is even, i 6= n,
5, if i is odd, i 6= 1 and i 6= n.
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Thus, lidis(Pn) = 2.

The following result deals with complete multipartite graphs.

Theorem 5. Let Kn1,n2,...,nm be a complete multipartite graph, ni ≥ 1, i = 1, 2, . . . , m, m ≥ 2. Then,

lidis(Kn1,n2,...,nm) =


∞, if 1 = n1 = n2,
1, if n1 < n2 < · · · < nm,
m, if 2 ≤ n1 = n2 = · · · = nm.

Proof. Let us denote the vertices in the independent set Vi, i = 1, 2, . . . , m of a complete
multipartite graph Kn1,n2,...,nm by symbols v1

i , v2
i , . . . , vni

i .
If 1 = n1 = n2, then the vertices v1

1 and v1
2 have the same degrees

deg(v1
1) = deg(v1

2) =
m

∑
j=3

nj + 1 = |V(Kn1,n2,...,nm)| − 1

and thus, by Corollary 1 we obtain lidis(Kn1,n2,...,nm) = ∞.
If n1 < n2 < · · · < nm, then all adjacent vertices have distinct degrees. More precisely,

the degree of a vertex vj
i , i = 1, 2, . . . , m, j = 1, 2, . . . , ni is deg(vj

i) = ∑m
j=1 nj − ni + 1. Thus,

by Theorem 2, we obtain lidis(Kn1,n2,...,nm) = 1.
If 2 ≤ n1 = n2 = · · · = nm = n consider a vertex labeling f of Kn1,n2,...,nm defined

such that
f (vj

i) = i

for i = 1, 2, . . . , m, j = 1, 2, . . . , n and the corresponding vertex weights are

wt f (v
j
i) =

nm(m+1)
2 − (n− 1)i.

Thus, all adjacent vertices have distinct weights. Thus, lidis(Kn1,n2,...,nm) ≤ m. Using
mathematical induction, it is not complicated to show that lidis(Kn1,n2,...,nm) ≥ m. This
concludes the proof.

The following corollary gives the exact value of the studied parameter for complete
bipartite graphs.

Corollary 4. Let Km,n, 1 ≤ m ≤ n, be a complete bipartite graph. Then

lidis(Km,n) =


∞, if m = n = 1,
2, if m = n ≥ 2,
1, if m 6= n.

The corona product of G and H is the graph G� H obtained by taking one copy of G,
called the center graph along with |V(G)| copies of H, called the outer graph, and making
the ith vertex of G adjacent to every vertex of the ith copy of H, where 1 ≤ i ≤ |V(G)|. For
arbitrary graphs G, we can prove the following result.

Theorem 6. Let r be a positive integer. Then, for r ≥ 2 holds

lidis(G� Kr) ≤ lidis(G).

Moreover, if G is a graph with no component of order 1 then also lidis(G� K1) ≤ lidis(G).
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Proof. If lidis(G) = ∞ then by Theorem 1 there exists at least one edge uv ∈ E(G) such
that NG[u] = NG[v]. However, as for r ≥ 2 or for r = 1 if G has no component of order 1,
in G� Kr all vertices have distinct closed neighborhood and thus lidis(G� Kr) < ∞.

Now, consider that lidis(G) < ∞ and let f be a local inclusive distance vertex irregular
labeling of G. We define a labeling g of G� Kr such that

g(v) = f (v), if v ∈ V(G),

g(v) =1, if degG�Kr
(v) = 1.

For the vertex weights, we obtain

wtg(v) =wt f (v) + r, if v ∈ V(G),

wtg(v) =1 + f (u), if degG�Kr
(v) = 1 and uv ∈ E(G� Kr).

Evidently, for r ≥ 2 or for r = 1 if G has no component of order 1, i.e., degG(v) ≥ 1 for
every v ∈ V(G), we obtain that under the labeling g the vertex weights of adjacent vertices
are different.

Moreover, we can prove that the parameter lidis(G�Kr) is finite except the case when
G� Kr contains a component isomorphic to K2.

Theorem 7. Let r be a positive integer. Then,

lidis(G� Kr) ≤ |V(G)|

except the case when r = 1 and the graph G contains a component of order 1.

Proof. Let us denote the vertices of a graph G by symbols v1, v2, . . . , v|V(G)| such that for
every i = 1, 2, . . . , |V(G)| − 1 holds

degG(vi) ≤ degG(vi+1)

and let vj
i , j = 1, 2, . . . , r be the vertices of degree 1 adjacent to vi, i = 1, 2, . . . , |V(G)|, in

G� Kr. Now, we define a labeling f that assigns 1 to every vertex of G. Thus, for every
i = 1, 2, . . . , |V(G)|

wt f (vi) = degG(vi) + 1.

We extend the labeling f of the graph G to the labeling g of the graph G� Kr in the
following way

g(vi) = f (vi), if i = 1, 2, . . . , |V(G)|,

g(vj
i) =i, if i = 1, 2, . . . , |V(G)|, j = 1, 2, . . . , r.

The induced vertex weights are

wtg(vi) =degG(vi) + 1 + ri, if i = 1, 2, . . . , |V(G)|,

wtg(v
j
i) =1 + i, if i = 1, 2, . . . , |V(G)|, j = 1, 2, . . . , r.

For r ≥ 2 and for r = 1 if the graph G has no component of order 1, i.e., deg(vi) ≥ 1
for every i = 1, 2, . . . , |V(G)|, we obtain that all adjacent vertices have distinct weights.

Note that the upper bound in the previous theorem is tight, since lidis(Kn � K1) = n.
Immediately, from Theorem 2, we have the following result

Theorem 8. For r ≥ 2 it holds lidis(G� Kr) = 1 if and only if lidis(G) = 1.
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Moreover, when G has no component of order 1 then lidis(G � K1) = 1 if and only if
lidis(G) = 1.

Now, we present results for corona product of paths, cycles, and complete graphs
with totally disconnected graph Kr, r ≥ 1. Combining Theorems 3 and 6, we obtain

Theorem 9. Let Pn be a path on n vertices n ≥ 2 and let r be a positive integer. Then

lidis(Pn � Kr) = 2.

Theorem 10. Let Cn be a cycle on n vertices n ≥ 3 and let r be a positive integer. Then

lidis(Cn � Kr) =

{
3, if n = 3 and r = 1,
2, otherwise.

Proof. Let

V(Cn � Kr) = {vi : i = 1, 2, . . . , n} ∪ {vj
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r}

be the vertex set and let

E(Cn � Kr) ={vivi+1 : i = 1, 2, . . . , n− 1} ∪ {v1vn}

∪ {viv
j
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r}

be the edge set of Cn � Kr.
For even n the result follows from Theorems 4 and 6. For n = 3 and r = 1 consider

the labeling illustrated on Figure 1.

1

1 1

1

2 3

Figure 1. A local inclusive distance vertex irregular labeling of C3 � K1.

For odd n and (n, r) 6= (3, 1), we define a vertex labeling f of Cn � Kr such that

f (vi) =

{
2, for i = 1,
1, for i = 2, 3, . . . , n,

f (vj
i) =

{
2, for i = 2, 4, . . . , n− 1, n and j = 1,
1, otherwise.

The weights of vertices of degree r + 2 are

wt f (vi) =


r + 3, for i = 3, 5, . . . , n− 2,
r + 4, for i = 1, 4, 6, . . . , n− 1,
r + 5, for i = 2, n.

As the weights of vertices of degree one are either 2 or 3, we obtain that adjacent
vertices have distinct weights.
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Theorem 11. Let n, r be positive integers. Then

lidis(Kn � Kr) =

{
∞, if n = 1, r = 1,

1 +
⌈

n−1
r

⌉
, otherwise.

Proof. As the graph K1 � K1 is isomorphic to the complete graph K2 we use Corollary 2 in
this case.

Let (n, r) 6= (1, 1). Let the vertex set and the edge set of Kn � Kr be the following

V(Kn � Kr) ={vi, vj
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r},

E(Kn � Kr) ={vivj : i = 1, 2, . . . , n− 1; j = i + 1, i + 2, . . . , n}

∪ {viv
j
i : i = 1, 2, . . . , n; j = 1, 2, . . . , r}.

We define a vertex labeling f of Kn � Kr such that

f (vi) =1 +
⌈

n−1
r

⌉
, if i = 1, 2, . . . , n,

f (vj
i) =

1 +
⌈

i−1
r

⌉
, if i = 1, 2, . . . , n, j = 1, 2, . . . , Ai,

1 +
⌊

i−1
r

⌋
, if i = 1, 2, . . . , n, j = Ai + 1, Ai + 2, . . . , r,

where for every i = 1, 2, . . . , n the parameter Ai, 1 ≤ Ai ≤ r, is defined such that

i− 1 ≡ Ai (mod r).

For the vertex weights, we obtain

wt f (vi) =n(1 +
⌈

n−1
r

⌉
) + r + i− 1, if i = 1, 2, . . . , n,

wt f (v
j
i) =


⌈

n−1
r

⌉
+ 2 +

⌈
i−1

r

⌉
, if i = 1, 2, . . . , n, j = 1, 2, . . . , Ai,⌈

n−1
r

⌉
+ 2 +

⌊
i−1

r

⌋
, if i = 1, 2, . . . , n, j = Ai + 1, Ai + 2, . . . , r.

Evidently adjacent vertices have distinct weights. Thus, as the maximal vertex label is
1 + d(n− 1)/re, the proof is completed.

A caterpillar is a graph derived from a path by hanging any number of leaves from
the vertices of the path. We denote the caterpillar as Sn1,n2,...,nr , where the vertex set is
V(Sn1,n2,...,nr ) = {ci : 1 ≤ i ≤ r} ∪⋃r

i=1{u
j
i : 1 ≤ j ≤ ni}, and the edge set is E(Sn1,n2,...nr ) =

{cici+1 : 1 ≤ i ≤ r− 1} ∪⋃r
i=1{ciu

j
i : 1 ≤ j ≤ ni}.

Theorem 12. For every caterpillar Sn1,n2,...,nr with at least 3 vertices holds lidis(Sn1,n2,...,nr ) ≤ 2.

Proof. For a regular caterpillar, thus the case n1 = n2 = . . . = nr = n, using Theorem 9,
we obtain that lidis(Sn,n,...,n) = 2.

For the other cases, label the vertices of a caterpillar Sn1,n2,...,nr using the following
algorithm.

Step 1: Label all vertices with 1.
Then the weights of vertices ci, i = 1, 2, . . . , r are deg(ci) and all vertices of degree 1
have weight 2.

Step 2: Find the smallest index s, 2 ≤ s ≤ r− 1, such that wt(cs+1) = wt(cs).
Step 3: If such number does not exist, it means that adjacent vertices have distinct degrees

and thus lidis(Sn1,n2,...,nr ) = 1. We are done.



Mathematics 2021, 9, 1673 9 of 12

Step 4: If such number exists either relabel a leaf of adjacent to cs+1 (if a leaf exists) from 1
to 2 or relabel the vertex cs+2 from 1 to 2. Then wt(cs+1) = wt(cs) + 1.
Note that this relabeling will not have an effect on weights of vertices ci for every
i ≤ s.

Step 5: Find the smallest index t, s + 1 ≤ t ≤ r− 1, such that wt(ct+1) = wt(ct).
Step 6: If such number does not exist, it means that adjacent vertices have distinct degrees

and thus lidis(Sn1,n2,...,nr ) = 2. We are finished.
Step 7: If such number exists either relabel a leaf of adjacent to ct+1 (if a leaf exists) from 1

to 2 or relabel the vertex ct+2 from 1 to 2. Then wt(cs+1) = wt(ct) + 1.
Step 8: Return to Step 5.

After a finite number of steps, the algorithm stops and the weights of the vertices are
always different from the weights of their neighbors.

A similar algorithm can be used to obtain a result for closed caterpillars, which are
graphs where the removal of all pendant vertices gives a cycle. We denote the closed
caterpillar as CSn1,n2,...,nr , where the vertex set is V(CSn1,n2,...,nr ) = {ci : 1 ≤ i ≤ r} ∪⋃r

i=1{u
j
i : 1 ≤ j ≤ ni}, and the edge set is E(CSn1,n2,...nr ) = {cici+1 : 1 ≤ i ≤ r − 1} ∪

{c1cr} ∪
⋃r

i=1{ciu
j
i : 1 ≤ j ≤ ni}.

Theorem 13. For closed caterpillar CSn1,n2,...,nr holds

lidis(CSn1,n2,...,nr ) =


∞, if r = 3 and {n1, n2, n3} = {n, 0, 0}, where n ≥ 0,
3, if r = 3 and (n1, n2, n3) = (1, 1, 1),
3, if r = 3 + 6k, k ≥ 1 and {n1, n2, . . . , nr} = {1, 0, . . . , 0},
≤ 2, otherwise.

The proof of the next result for the disjoint union of graphs, follows from the fact that
there are no edges between the distinct components.

Theorem 14. Let Gi, i = 1, 2, . . . , m be arbitrary graphs. Then

lidis

(
m⋃

i=1

Gi

)
= max{lidis(Gi) : i = 1, 2, . . . , m}.

Immediately from the previous theorem, we obtain the following result.

Corollary 5. Let n be a non-negative integer and let G be a graph. Then, lidis(G ∪ nK1) =
lidis(G).

The join G⊕ H of the disjoint graphs G and H is the graph G ∪ H together with all the
edges joining vertices of V(G) and vertices of V(H). Let ∆(G) denote the maximal degree
of the graph G.

Theorem 15. For any graph G holds

lidis(G⊕ K1) =

{
∞, if ∆(G) = |V(G)| − 1,
lidis(G), if ∆(G) < |V(G)| − 1.

Proof. Let w be the vertex of K1. In a graph G⊕ K1 the vertex w is adjacent to all vertices
in G we immediately get that lidis(G⊕ K1) ≥ lidis(G).

If ∆(G) = |V(G)| − 1 then in G⊕ K1 there are at least two vertices of degree |V(G)| =
|V(G⊕ K1)| − 1 and thus by Corollary 1 we have lidis(G⊕ K1) = ∞.
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Let ∆(G) < |V(G)| − 1. If lidis(G) = ∞ then by Theorem 1 there exists at least two
vertices, say u and v in G such that NG[u] = NG[v]. However, these vertices have the same
closed neighborhood also in the graph G⊕ K1 as

NG⊕K1 [u] = NG[u] ∪ {w} = NG[v] ∪ {w} = NG⊕K1 [v].

However, this implies that

lidis(G⊕ K1) = ∞ = lidis(G).

Now, consider that lidis(G) < ∞ and let f be a corresponding local inclusive distance
vertex irregular graph of G. We define a labeling g of G⊕ K1 in the following way

g(v) =

{
1, if v = w,
f (v), if v ∈ V(G).

The induced vertex weights are

wtg(v) =

 ∑
u∈V(G)

f (u) + 1, if v = w,

wt f (v) + 1, if v ∈ V(G).

As ∆(G) < |V(G)| − 1 we get that for any vertex v ∈ V(G) is

wt f (v) = ∑
u∈NG(v)

f (u) < ∑
u∈V(G)

f (u).

Thus, all adjacent vertices have distinct weights. This means that g is a local inclusive
distance vertex irregular labeling of G⊕ K1. As vertex w is adjacent to every vertex in G
we get lidis(G⊕ K1) = lidis(G) in this case. This concludes the proof.

The graph in the previous theorem is not necessarily connected.

Theorem 16. Let Gi, i = 1, 2, . . . , m, m ≥ 2 be arbitrary graphs. Then

lidis

((
m⋃

i=1

Gi

)
⊕ K1

)
= max{lidis(Gi) : i = 1, 2, . . . , m}.

Proof. The proof follows from Theorems 14 and 15.

A wheel Wn with n spokes is isomorphic to the graph Cn ⊕ K1. A fan graph Fn is
isomorphic to the graph Pn ⊕ K1, while a generalized fan graph is isomorphic to the graph
kPn ⊕ K1. The following results are immediate corollaries of the previous theorems.

Corollary 6. Let Wn be a wheel on n + 1 vertices n ≥ 3. Then

lidis(Wn) =


∞, if n = 3,
2, if n is even,
3, if n is odd, n ≥ 5.

Corollary 7. Let Fn be a fan on n + 1 vertices n ≥ 2. Then

lidis(Fn) =

{
∞, if n = 2,
2, if n ≥ 3.
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Corollary 8. Let kPn ⊕ K1 be a generalized fan graph, k, n ≥ 2. Then

lidis(kPn ⊕ K1) = 2.

If lidis(G) = ∞ then by Theorem 1 there exist at least two vertices, say u and v
in G such that they have the same closed neighborhood NG[u] = NG[v]. Thus, we
immediately get

NG⊕Kr
[u] =NG[u] ∪ {wi : i = 1, 2, . . . , r}

=NG[v] ∪ {wi : i = 1, 2, . . . , r} = NG⊕Kr
[v],

where wi, i = 1, 2, . . . , r, are the vertices of Kr. Thus, lidis(G⊕ Kr) = ∞ for every positive
integer r. Now we will deal with the case when lidis(G) < ∞ and r ≥ 2.

Theorem 17. Let r ≥ 2 be a positive integer and let G be not isomorphic to a totally disconnected
graph. If lidis(G) < ∞ and r ≥ |V(G)| · lidis(G) then lidis(G⊕ Kr) = lidis(G).

Proof. Let us denote the vertices Kr by the symbols wi, i = 1, 2, . . . , r and let r ≥ 2.
Thus, V(G ⊕ Kr) = V(G) ∪ {wi : i = 1, 2, . . . , r}. In a graph G ⊕ Kr all the vertices wi,
i = 1, 2, . . . , r are adjacent to all vertices in G thus we immediately get that lidis(G⊕ Kr) ≥
lidis(G).

Let lidis(G) < ∞ and let f be a corresponding local inclusive distance vertex irregular
labeling of G. We define a labeling g of G⊕ Kr in the following way

g(v) =

{
1, if v = wi, i = 1, 2, . . . , r,
f (v), if v ∈ V(G).

Then, the vertex weights are

wtg(v) =

 ∑
u∈V(G)

f (u) + 1, if v = wi, i = 1, 2, . . . , r,

wt f (v) + r, if v ∈ V(G).

Evidently, under the labeling g, all adjacent vertices in V(G) have distinct weights. We
need also to prove that no vertex in V(G) has the same weight as in V(Kr). Consider that

r ≥ |V(G)| · lidis(G).

As G is not isomorphic to a totally disconnected graph then for the weight of any
vertex v in V(G) we have

wtg(v) =wt f (v) + r ≥ 1 + |V(G)| · lidis(G) > 1 + ∑
u∈V(G)

f (u) = wtg(wi)

for every i = 1, 2, . . . , r. Thus, g is a local inclusive distance vertex irregular graph of G⊕Kr
and hence lidis(G⊕ Kr) ≤ lidis(G).

Note that for small r the previous theorem is not necessarily true. Consider the graph
G illustrated on Figure 2, evidently lidis(G) = 1. However, lidis(G⊕ K3) = 2.

1

1 1 11

1

Figure 2. A local inclusive distance vertex irregular labeling of a graph G.
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4. Conclusions

In this paper, we introduced the local inclusive distance vertex irregularity strength of
graphs and gave some basic results and also some constructions of the feasible labelings
for several families of graphs. We still have some open problems and conjecture as follows:

Problem 1. Find lidis(Kn1,n2,...,nm) for general case, which is for the case n1 ≤ n2 ≤ · · · ≤ nm,
where m > 2.

Problem 2. Characterize graphs for which lidis(G� Kr) = lidis(G).

Conjecture 1. For arbitrary tree T with T 6= K2, lidis(T) = 1 or 2.
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