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Abstract: We present a survey of some results published recently by the authors regarding the fuzzy
aspects of finitely supported structures. Considering the notion of finite support, we introduce a new
degree of membership association between a crisp set and a finitely supported function modelling
a degree of membership for each element in the crisp set. We define and study the notions of invariant
set, invariant complete lattices, invariant monoids and invariant strong inductive sets. The finitely
supported (fuzzy) subgroups of an invariant group, as well as the L-fuzzy sets on an invariant set
(with L being an invariant complete lattice) form invariant complete lattices. We present some
fixed point results (particularly some extensions of the classical Tarski theorem, Bourbaki–Witt
theorem or Tarski–Kantorovitch theorem) for finitely supported self-functions defined on invariant
complete lattices and on invariant strong inductive sets; these results also provide new finiteness
properties of infinite fuzzy sets. We show that apparently, large sets do not contain uniformly
supported, infinite subsets, and so they are invariant strong inductive sets satisfying finiteness and
fixed-point properties.
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1. Introduction
1.1. General Aspects

Lotfi Zadeh published in 1965 his pioneering article[1] that has over 100,000 citations
today. The theory of fuzzy sets was introduced in Zermelo–Fraenkel set theory (ZF)
as a framework for studying the concepts of vagueness and uncertainty. Each element
of a fuzzy set has a certain degree of membership belonging to the real interval [0, 1].
Fuzzy aspects can be applied in various fields of mathematics and computer science such
as algebra, logic, analysis, operational research, control theory, decision theory, artificial
intelligence and expert systems [2].

We extended the classical approach of fuzzy theory to characterise fuzzy sets over
finitely supported structures. The finitely supported sets and structures are related to
permutation models from Zermelo–Fraenkel set theory with atoms (ZFA) and to admissible
sets (particularly to hereditary finite sets) described in [3]. They were originally introduced
by Fraenkel, Lindenbaum and Mostowski during the period 1922–1938 in order to prove
the independence of the axiom of choice and the other axioms in ZFA. The axioms of the
recently introduced Fraenkel–Mostowski set theory are precisely the axioms of ZFA set
theory together with an additional axiom for finite support. They are involved in the (hi-
erarchical) construction of finitely supported sets; hereditary finitely supported sets are
the sets constructed with respect to Fraenkel–Mostowski axioms over an infinite family
of basic elements called atoms.
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1.2. Motivation and Novelties

The motivation for studying finitely supported sets comes from the idea of dealing
in a discrete manner with infinite algebraic structures (hierarchically constructed from
atoms) by analysing their finite supports. Even thoughwe admit the existence of infinite
atomic sets for such a structure, we are focused only on a finite family of its elements
(namely, its ‘finite support’, a set which is able to characterise the entire structure).

The finitely supported structures can be described both in the ZF framework and
in the ZFA framework. We follow the approach presented in [4] as an alternative to
the Fraenkel–Mostowski set theory, and work over the classical ZF set theory. We define
invariant sets as ZF sets equipped with actions of the group of all permutations of a certain
fixed set A (formed by elements whose internal structure is ignored, called atoms) satisfying
a certain finite support requirement. The related requirement states that any element of an
invariant set is left unchanged under the effect of each permutation of A that fixes pointwise,
finitely,many atoms. Finitely supported sets are defined as finitely supported elements
in the powerset of an invariant set. Finitely supported structures are finitely supported
sets endowed with finitely supported internal laws (that are supported as functions, i.e.,
as subsets in a Cartesian product of invariant set); more details can be found in [5,6]. The
theory of finitely supported sets allows the computational study of structures which may
be infinite, but contain enough symmetries such that they can be concisely represented [6].

Finitely supported sets include ZF sets that are trivial invariant sets. However, translating
ZF results in the framework of finitely supported sets is not an easy task because the family
of finitely supported sets is not closed under subset constructions (there exist subsets of finitely
supported sets that fail to be finitely supported; for instance, the ZF infinite and coinfinite
subsets of the set A of all atoms). In order to prove results for the finitely supported sets, we
cannot use results from ZF without reformulating them with respect to the finite support
requirement. As a consequence, there exist results which are valid in ZF, but fail to be valid
for finitely supported sets (e.g., choice principles and Stone duality) [6].

Our main purpose is to analyse whether a non-atomic ZF result can be adequately
reformulated by replacing ‘non-atomic ZF element/set/structure’ with ‘atomic, finitely sup-
ported element/set/structure’. A proof of a result in the framework of finitely supported
structures should involve only finitely supported constructions even in the intermediate
steps. The meta-theoretical techniques for the translation of a result from non-atomic struc-
tures to finitely supported atomic structures are based on a refinement of the finite support
principle from [4], presented in [6] and called the ‘S-finite support principle’ claiming
that ‘for any finite set S ⊆ A, anything that is definable under the rules in higher-order
logic from S-supported structures by involving only S-supported constructions is also
S-supported’. The formal use of this principle implies a hierarchical construction of the
support of a structure by employing, step-by-step, the supports of the substructures of a
related structure.

Here, we present an overview of results dealing with fuzzy aspects of finitely sup-
ported structures (fss). Essentially, by employing the notion of ‘finite support’, we extend
the fuzzy aspects from a finite framework to a (finitely supported) infinite one. Using
specific proof techniques that are extensively presented in [5,6], we obtain new algebraic
properties of the fuzzy sets over fss, including some that cannot be obtained in ZF set
theory. We introduce a new (infinite) fss degree of membership association, and connect
it to the notions of invariant monoids and invariant complete lattices. We also show that
the family of finitely supported (fuzzy) subgroups of an invariant group forms an invariant
complete lattice, and that the family of finitely supported fuzzy normal subgroups forms
an invariant modular lattice. We present some fixed point theorems for finitely supported
structures that are preserving the validity the classical fixed point theorems, but also some
fixed point properties of the finitely supported algebraic structures without corresponding
results in ZF set theory. As applications of the fixed point theorems, we present some
examples of finitely supported ordered structures for which these results can be used; in
particular, properties of L-fuzzy and T-fuzzy sets defined in the framework of finitely
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supported structures, where L is an invariant complete lattice and T is an invariant strong
inductive set.

2. Finitely Supported Sets: Preliminaries

We consider a fixed infinite ZF set A without involving any internal structure for its
elements. As usual, a transposition is a function (x y) : A → A defined by (x y)(x) = y,
(x y)(y) = x and (x y)(z) = z for z 6= x, y. The permutations of A are bijections of A
generated by finitely composing many transpositions, i.e., bijections of A leaving unchanged
all but the finiteelements of A. The set of all permutations of A is denoted by SA. We proved
in [5] that any finitely supported bijection of A should be necessarily a permutation of A, i.e.,
it should be expressed as a finite composition of transpositions. Thus, the notions ‘bijection
of A’ and ‘permutation of A’ coincide in finitely supported structures.

Definition 1. Let X be a ZF set.

1. An SA-action on X is a group action of SA on X. An SA-set is a pair (X, ·), where X is a ZF
set and · : SA × X → X is an SA-action on X.

2. Let (X, ·) be an SA-set. We say that S ⊂ A supports x (or x is S-supported) if for each
π ∈ Fix(S) we have π · x = x, where Fix(S) = {π |π(a) = a for all a ∈ S}. An element
which is supported by a finite subset of atoms is called finitely supported.

3. Let (X, ·) be an SA-set. We say that set X is an invariant set whenever for each x ∈ X there
is a finite set Sx ⊂ A supporting x.

4. Let X be an SA-set, and x ∈ X. If there is a finite set supporting x, then a least finite set
supp(x) supporting x [5], defined as the intersection of all sets supporting x, which is called
the support of x. An empty supported element is equivariant; z ∈ X is equivariant if and
only if π · z = z for all π ∈ SA.

Let (X, ·) and (Y, �) be SA-sets. According to [6], the set A of atoms is an invariant
set with the SA-action · : SA × A → A defined by π · a := π(a) for all π ∈ SA and a ∈ A.
Moreover, supp(a) = {a} for each a ∈ A. If π ∈ SA and x ∈ X is finitely supported,
then π · x is finitely supported and supp(π · x) = {π(u) | u ∈ supp(x)} := π(supp(x)).
The Cartesian product X × Y is an SA-set with the SA-action ⊗ defined by π ⊗ (x, y) =
(π · x, π � y) for all π ∈ SA and all x ∈ X, y ∈ Y. For (X, ·) and (Y, �) invariant sets,
(X × Y,⊗) is also an invariant set. The powerset ℘(X) = {Z | Z ⊆ X} is an SA-set with
the SA-action ? : SA × ℘(X)→ ℘(X) defined by π ? Z := {π · z | z ∈ Z} for all π ∈ SA and
Z ⊆ X. For an invariant set (X, ·), ℘ f s(X) denotes the set formed from those subsets of X
that are finitely supported in the sense of Definition 1(2) as elements in ℘(X) with respect to
the action ?; (℘ f s(X), ?|℘ f s(X)) is also an invariant set, where ?|℘ f s(X) represents the action
? restricted to ℘ f s(X). Non-atomic sets are trivially invariant, i.e., they are equipped with
the action (π, x) 7→ x.

A subset Z of an invariant set (X, ·) is called finitely supported if and only if Z ∈ ℘ f s(X),
i.e., if and only if Z is finitely supported as an element of the SA-set ℘(X) with respect to
the action ? defined on ℘(X). A subset Z of X is uniformly supported if all of its elements are
supported by the same finite set of atoms (elements of A). Certainly, a finite subset of an
invariant set should be uniformly supported (by the union of the supports of its elements),
but there may exist invariant sets that do not contain uniformly supported, infinite subsets,
as we will prove below.

Let us notice that not any subset of an invariant set is finitely supported. For instance,
if X ⊂ A and X is finite, then it is finitely supported with supp(X) = X. If Y ⊆ A and Y is
cofinite (i.e., its complement is finite), then it is finitely supported with supp(Y) = A \Y.
Whenever Z ⊆ A is neither finite nor cofinite, then Z is not finitely supported. It is
proven that a subset of A is finitely supported if and only if it is either finite or cofinite [7].
Moreover, if π is a permutation of A and X is a subset of an SA-set Y, then π ? X = X if
and only if π ? X ⊆ X, considering ? defined on ℘(Y). As a consequence of the previous
definitions, a subset Z of an invariant set (X, ·) is supported by a finite set S ⊆ A if and only
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if π ? Z ⊆ Z for all π ∈ Fix(S), i.e., if and only if π · z ∈ Z for all z ∈ Z and π ∈ Fix(S) (this
happens because permutations of atoms are of a finite order). If X is an invariant set, its
finite powerset ℘ f in(X) (namely, the set of all finite subsets of X) and its cofinite powerset
℘co f in(X) (namely, the set of all cofinite subsets of X) are equivariant subsets of ℘ f s(X),
meaning that they are themselves invariant sets having the restrictions of the action ?
on ℘ f s(X). In [6], we proved that supp(X) = ∪

x∈X
supp(x) whenever X is a uniformly

supported subset of an invariant set.
As functions are specific relations (i.e., subsets of a Cartesian product of two sets),

for two invariant sets (X, ·) and (Y, �), Z, a finitely supported subset of X, and T, a finitely
supported subset of Y, we say that a function f : Z → T is finitely supported if f ∈
℘ f s(X × Y). Note that YX is an SA-set with the SA-action ?̃ : SA × YX → YX defined
by (π?̃ f )(x) = π � ( f (π−1 · x)) for all π ∈ SA, f ∈ YX and x ∈ X. A function f : X → Y is
finitely supported (in the sense of the above definition) if and only if it is finitely supported
with respect to the permutation action ?̃. The set of all finitely supported functions from Z
to T is denoted by TZ

f s. As an immediate characterisation, a function f : Z → T is supported
by a finite set S ⊆ A if and only if for all x ∈ Z and all π ∈ Fix(S) we have π · x ∈ Z,
π � f (x) ∈ T and f (π · x) = π � f (x).

An invariant, partially ordered set (invariant poset) is an invariant set (P, ·,v) equipped
with an equivariant partial order relation v on P. A finitely supported, partially ordered set is
a finitely supported subset Q of an invariant set together with a finitely supported partial
order relation. An invariant complete lattice is an invariant partially ordered set (L, ·,v)
such that every finitely supported subset X ⊆ L has a least upper bound with respect to
the order relation v. It is proven [6] that in an invariant complete lattice, every finitely
supported subset X ⊆ L has a greatest upper bound with respect to the order relation
v . A finitely supported complete lattice is a finitely supported subset L of an invariant set,
equipped with a finitely supported order v such that every finitely supported subset of L
has a least upper bound with respect to v.

In both [5,6], several examples of invariant/finitely supported partially ordered sets
are presented. For example, if X is an invariant/finitely supported set, then (℘ f s(X), ?,⊆)
is an invariant/finitely supported complete lattice. Here, we focus on the fuzzy theory
over invariant sets, mainly presenting the results of [6–10].

3. Fuzziness over Invariant Sets

Let us consider a set U called the universal set (or the universe of discourse). Recall
that a crisp set Z in the universe of discourse U can be described by mentioning all of its
members or by specifying the properties that have to be be satisfied by its members. The
theory of fuzzy sets is a generalisation of this classical view: a fuzzy set is represented
by a subset Z of the universal set U which has associated a related membership function
generalising the characteristic function from the classical set theory. More exactly, the mem-
bership function associated to Z could take any values in the interval [0,1] (modelling a
certain degree of membership), while the classical characteristic function of Z can only
take two values: 0 (for non-membership) and 1 (for membership). Fuzzy sets over infinite
invariant sets were introduced and studied first in [8], and then extended in [9].

Definition 2. A fuzzy set over the invariant set (U, ·) is a finitely supported subset Z of (U, ·)
together with a finitely supported membership function µZ : U → [0, 1].

We say simply that (Z, µZ) is a fuzzy set over (U, ·). In our approach, a fuzzy set
over the invariant set U is a (finitely supported) element in the invariant set (℘ f s(U)×
[0, 1]Uf s,⊗). It is easy to see that in such a Cartesian pair, there is no precise fss association
between the crisp finitely supported subset of U and the related finitely supported function
belonging to [0, 1]Uf s. Therefore, we allow more than one finitely supported membership
function to be associated with the same finitely supported subset of U.
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We decided to not yet define such an fss association because it is not necessary
to assume the existence of an explicit finitely supported relation on ℘ f s(U) and [0, 1]Uf s
for proving the properties of fuzzy sets for fss. On the other hand, the case when certain
fss relations are defined between ℘ f s(U) and [0, 1]Uf s is analysed later in Section 4.

In the theory of fuzzy sets in ZF, we have two useful notions: α-cut and fuzzy support.
For fss, an α-cut of a fuzzy set (Z, µZ) over the invariant set (U, ·) is a crisp set Zα

containing all the elements in U with membership values greater than or equal to α, i.e.,
Zα = {z ∈ U | µZ(z) ≥ α}.

Proposition 1. Any α-cut Zα of a fuzzy set (Z, µZ) over the invariant set (U, ·) is a finitely
supported subset of U with the property that supp(Zα) ⊆ supp(µZ).

Definition 3. The fuzzy support of a fuzzy set (Z, µZ) over the invariant set (U, ·) (also called
the algebraic support of µZ) is a crisp set FZS(Z, µZ) containing all the elements in U with
membership values greater than 0, i.e., FZS(Z, µZ) = {z ∈ U | µZ(z) > 0}.

We prove (similar to Proposition 1) that the fuzzy support FZS(Z, µZ) of a fuzzy set
(Z, µZ) over the invariant set (U, ·) is a finitely supported subset of U with the property that
supp(FZS(Z, µZ)) ⊆ supp(µZ). Moreover, in the particular case when the fuzzy support
FZS(Z, µZ) is finite, we have the following result that presents a relationship between
the (fuzzy) support and the atomic support of a fuzzy set.

Proposition 2. Considering the fuzzy set (Z, µZ) over the invariant set (U, ·), if FZS(Z, µZ)
is finite, then supp(FZS(Z, µZ)) = supp(µZ). Particularly, if (Z, µZ) is a fuzzy set over
the invariant set A of atoms and FZS(Z, µZ) is finite, then we have FZS(Z, µZ) = supp(µZ).

More generally, finitely supported functions from the set of atoms A to a non-atomic
ZF set Z (e.g., Z can be the unit interval [0,1] have the following property which allows to
connect our notion of support with the classical notion of algebraic support.

Theorem 1. Let (Z, �) be an infinite non-atomic ZF set and f : A→ Z a function.

1. If f is finitely supported, then there is z0 ∈ Z such that {a ∈ A | f (a) 6= z0} is finite.
2. If there is z0 ∈ Z such that {a ∈ A | f (a) 6= z0} is finite, then f is finitely supported and

supp( f ) = {a ∈ A | f (a) 6= z0}.

For the fuzzy sets over invariant sets, we define operations similarly to those in ZF.

Lemma 1. Let (X, µX) and (Y, µY) be fuzzy sets over the invariant set (U, ·).
1. Then X ∪Y is finitely supported, and the function x 7→ max[µX(x), µY(x)] defined on U is

also finitely supported.
2. Then X ∩ Y is finitely supported and, furthermore, the function x 7→ min[µX(x), µY(x)]

defined on U is also finitely supported.
3. Both the complementary of X (denoted by CX) and the function x 7→ 1− µX(x) defined on U

are finitely supported.

According to Lemma 1, the following definition is valid for fss.

Definition 4. Let (X, µX) and (Y, µY) be two fuzzy sets over the invariant set (U, ·).
1. The union of two fuzzy sets X and Y is a fuzzy set over the invariant set U given by the finitely

supported subset X ∪Y of U with the finitely supported membership function µX∪Y : U →
[0, 1] defined by µX∪Y(x) = max[µX(x), µY(x)] for all x ∈ U.

2. The intersection of two fuzzy sets X and Y is a fuzzy set over the invariant set U given
by the finitely supported subset X ∩Y of U with the finitely supported membership function
µX∩Y : U → [0, 1] defined by µX∩Y(x) = min[µX(x), µY(x)] for all x ∈ U.
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3. The complement of a fuzzy set X is a fuzzy set over the invariant set U given by the finitely
supported subset CX of U together with the finitely supported membership function µCX :
U → [0, 1] defined by µCX (x) = 1− µX(x) for all x ∈ U.

Proposition 3. Let (X, µX) and (Y, µY) be fuzzy sets over the invariant set (U, ·). Then, we have
the following relations:

1. C(X,µX)∩(Y,µY)
= C(X,µX)

∪ C(Y,µY)
;

2. C(X,µX)∪(Y,µY)
= C(X,µX)

∩ C(Y,µY)
.

Lemma 2. Let F = (Zi, µZi )i∈I be a family of fuzzy sets over the invariant set (U, ·) which
is finitely supported as a subset of (℘ f s(U) × [0, 1]Uf s,⊗). Then, ∪

i∈I
Zi is finitely supported

by supp(F ), and the function z 7→ ∨
i∈I
{µZi (z) | i ∈ I} defined on U is finitely supported

by supp(F ), where ∨ represents the notation for supremum (least upper bound).

Lemma 3. Let F = (Zi, µZi )i∈I be a family of fuzzy sets over the invariant set (U, ·) which
is finitely supported as a subset of (℘ f s(U) × [0, 1]Uf s,⊗). Then, ∩

i∈I
Zi is finitely supported

by supp(F ), and the function z 7→ ∧
i∈I
{µZi (z) | i ∈ I} defined on U is also finitely supported

by supp(F ), where ∧ represents the notation for infimum (greatest lower bound).

Due to Lemmas 2 and 3, the next definition is also valid for finitely supported structures.

Definition 5. Let F = (Zi, µZi )i∈I be a family of fuzzy sets over the invariant set (U, ·) which is
finitely supported as a subset of (℘ f s(U)× [0, 1]Uf s,⊗).

1. The arbitrary union of the fuzzy sets (Zi, µZi )i∈I is a fuzzy set over the invariant set U
represented by the finitely supported subset ∪

i∈I
Zi of U together with the finitely supported

function µ ∪
i∈I

Zi : U → [0, 1] defined by µ ∪
i∈I

Zi (z) = ∨i∈I
{µZi (z) | i ∈ I}.

2. The arbitrary intersection of the family of fuzzy sets (Zi, µZi )i∈I is a fuzzy set over the in-
variant set U represented by the finitely supported subset ∩

i∈I
Zi of U together with the finitely

supported function µ ∩
i∈I

Zi : U → [0, 1] defined by µ ∩
i∈I

Zi (z) = ∧i∈I
{µZi (z) | i ∈ I}.

According to the extension principle in the classical theory of fuzzy sets, the domain
of a function to be extended from crisp points in the universe U to fuzzy sets in U is
allowed. More precisely, let f : U → V be a function from a crisp set U to a crisp set V.
Suppose that we have a given fuzzy set Z in U, and want to determine a fuzzy set Y in V
induced by f (i.e., Y = f (Z)). In general, the membership function for Y is defined by

µY(y) = ∨
z∈ f−1(y)

µZ(z), where y ∈ V and f−1(y) = {z ∈ U | f (z) = y}.

Theorem 2. Let (U, ·) and (V, �) be two invariant sets, and consider a finitely supported function
f : U → V. If (Z, µZ) is a fuzzy set over the invariant set (U, ·); then, Y = f (Z) is a fuzzy set
over the invariant set (V, �) with the finitely supported membership function µY : V → [0, 1]
defined as follows:

µY(y) =

{
∨

z∈ f−1(y)
µZ(z) for y ∈ V, f−1(y) 6= ∅

0 for y ∈ V, f−1(y) = ∅
.

Moreover, we have supp(Y) ⊆ supp( f )∪ supp(Z), and supp(µY) ⊆ supp( f )∪ supp(µZ).

Theorem 3. Let (U1, ·1), . . . , (Un, ·n) and (V, �) be invariant sets, and a finitely supported
function f : U1 × . . .×Un → V. If (Zi, µZi ) is a fuzzy set over the invariant set (Ui, ·i) for all
i ∈ {1, . . . n}, then Y = f (Z1 × . . . × Zn) is a fuzzy set over the invariant set (V, �) with
the finitely supported membership function µY : V → [0, 1] defined as follows:
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µY(y) = ∨
y= f (z1,...,zn)

[min(µZ1(z1), . . . , µZn(zn))]

for y ∈ V and f−1(y) 6= ∅ ;
µY(y) = 0 for y ∈ V and f−1(y) = ∅.

Moreover, we have that supp(Y) ⊆ supp( f )∪ supp(Z1)∪ . . .∪ supp(Zn), and supp(µY) ⊆
supp( f ) ∪ supp(µZ1) ∪ . . . ∪ supp(µZn).

4. Degree of Membership Association for Invariant Sets

A fuzzy set is an element of the invariant set (℘ f s(U)× [0, 1]Uf s, �). In such a Carte-
sian pair, we have not yet required the existence of an fss association between the crisp
finitely supported subset of U and the related finitely supported function in [0, 1]Uf s; such
a firm fss association should itself preserve the finite support requirement, and for the
previous results, such a condition was not mandatory. We now analyse the case when such
an relationship between ℘ f s(U) and [0, 1]Uf s is defined.

Definition 6. Let us consider the invariant set (U, ·). A fss degree of membership association
over U is an equivariant binary relation R on ℘ f s(U) and [0, 1]Uf s, i.e., an equivariant (i.e., empty

supported) subset R of ℘ f s(U)× [0, 1]Uf s.

Lemma 4. Let Y be a finitely supported subset of an invariant set (U, ·), and χY be the character-
istic function on Y, i.e.,

χY(y)
de f
=

{
1 for y ∈ Y
0 for y ∈ U \Y

.

Then χY : U → [0, 1] is a finitely supported function for any Y ∈ ℘ f s(U), and the function
Z 7→ χZ defined on ℘ f s(U) is equivariant.

Let algsup( f )
de f
= {z ∈ U | f (z) > 0} be the algebraic support of f , where (U, ·) is

an invariant set and f : U → [0, 1] a finitely supported function.

Lemma 5. The algebraic support algsup( f ) is a finitely supported subset of U. Moreover, the func-
tion f 7→ algsup( f ) defined on [0, 1]Uf s is equivariant.

We provide some examples of fss degree of membership associations.

Example 1. Let (U, ·) be an invariant set.

1. We define R = {(Y, χY) | Y ∈ ℘ f s(U)}, where χY represents the characteristic function
of Y. According to Lemma 4, R is equivariant, and so R is a fss degree of membership
association over U.

2. We define R = {(algsup( f ), f ) | f ∈ [0, 1]Uf s}, where algsup( f ) represents the algebraic
support of f . According to Lemma 5, R is equivariant, and so R is a fss degree of membership
association over U.

Definition 7. Let (U, ·) be an invariant set. A full fss degree of membership association over
the invariant set U is an equivariant binary relation F on ℘ f s(U) and [0, 1]Uf s (i.e., an equivariant

subset F of the invariant set ℘ f s(U)× [0, 1]Uf s) satisfying the following conditions:

1. F is a left-total binary relation; namely, for any finitely supported subset Z of U, a finitely
supported function f : U → [0, 1] called F-degree of membership function of Z such that
(Z, f ) ∈ F.

2. F is an onto binary relation; namely, for every finitely supported function f : U → [0, 1],
Z ∈ ℘ f s(U) such that (Z, f ) ∈ F.
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The conditions in Definition 7 correspond to our intuition of how a full fss degree
of membership association over an invariant set should be defined.

1. The first condition in Definition 7 means that for each element in ℘ f s(U), we should
find at least one associated fss degree of membership function which models the de-
gree of membership in X for each element in U (at least the characteristic function
of X is such a finitely supported function).

2. The second condition in Definition 7 means that any element of [0, 1]Uf s should be a fss
degree of membership function associated with a certain element of ℘ f s(U). For each
f ∈ [0, 1]Uf s, we could consider that f is associated to at least its algebraic support.

Example 2. Let (U, ·) be an invariant set.
Let F = {(Y, χY) | Y ∈ ℘ f s(U)} ∪ {(algsup( f ), f ) | f ∈ [0, 1]Uf s}, where χY represents
the characteristic function of Y and algsup( f ) represents the algebraic support of f . Then F is
equivariant. Furthermore, F is a full fss degree of membership association over U.

Proposition 4.

1. Let (U, ·) be an invariant set such that there is a fss degree of membership association F

over it. Then the set of all F-degree of membership functions of U, i.e., ℘F
f uzzy(U)

de f
= { f ∈

[0, 1]Uf s | ∃Z ∈ ℘ f s(U), (Z, f ) ∈ F} = Im(F) is an equivariant subset of ([0, 1]Uf s, ?̃), where

?̃ is the standard SA-action on [0, 1]Uf s.
2. Let (U, ·) be an invariant set such that there is a full fss degree of membership association

F over it. Then the set of all F-degrees of membership functions defined on U, namely,
℘F

f uzzy(U), is an invariant set that coincides with ([0, 1]Uf s, ?̃).

Theorem 4. Let (U, ·) be an invariant set such that there is a full fss degree of membership
association F over the invariant set U. Then (℘F

f uzzy(U), ?̃,v) is an invariant complete lattice,
where v is an equivariant order relation on ℘F

f uzzy(U) = { f ∈ [0, 1]Uf s | ∃Z ∈ ℘ f s(U), (Z, f ) ∈
F} defined by: f v g is and only if f (x) ≤ g(x) for all x ∈ U.

To prove Theorem 4, when F = ( fi)i∈I is a finitely supported family of elements
from [0, 1]Uf s, we define t

i∈I
fi : U → [0, 1] by ( t

i∈I
fi)(x) = supremum

i∈I
{ fi(x) | i ∈ I} for all

x ∈ U, where by supremum we denoted the least upper bounds in the set of real numbers.
Using the fact that, whenever π ∈ Fix(supp(F )), for any i ∈ I there is a unique j ∈ I
such that fi = π−1?̃ f j (where ?̃ is the SA-action on [0, 1]Uf s), we obtain that for each i ∈ I
there is a unique j ∈ I such that fi(x) = f j(π · x) for all x ∈ U. Then we concluded
that supremum

i∈I
{ fi(π · x) | i ∈ I} = supremum

i∈I
{ fi(x) | i ∈ I} for all x ∈ U and all

π ∈ Fix(supp(F )), from which we obtained that supp(F ) supports t
i∈I

fi, which means

t
i∈I

fi is the least upper bound of F in [0, 1]Uf s = ℘F
f uzzy(U) (for the last relation we used

Proposition 4(2)).
Several properties of (℘F

f uzzy(U), ?̃,v) are obtained from the general properties of in-
variant complete lattices [6].

Corollary 1. Let (U, ·) be an invariant set such that there is a full fss degree of membership
association F over U.

1. Let ϕ : ℘F
f uzzy(U) → ℘F

f uzzy(U) be a finitely supported order preserving function over
(℘F

f uzzy(U), ?̃,v). Then there is a greatest f ∈ ℘F
f uzzy(U) such that ϕ( f ) = f , as well as a

least g ∈ ℘F
f uzzy(U) such that ϕ(g) = g.
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2. Let ϕ : ℘F
f uzzy(U) → ℘F

f uzzy(U) be a finitely supported order-preserving function over
(℘F

f uzzy(U), ?̃,v). Let P be the set of fixed points of ϕ. Then (P, ?̃,v) is a finitely supported
(by supp(ϕ)) complete lattice.

It is worth noting that we obtain properties that cannot be obtained with standard
fuzzy techniques in ZF. For instance, there exist lattices that are invariant complete, but
fail to be complete in the ZF framework. A related example is presented in [11], where we
proved that the set of those subsets of A which are either finite or cofinite is an invariant
complete lattice (with the classical inclusion order), but it fails to be a complete lattice in ZF.
Another such example is presented in Proposition 4.

Proposition 5. Let us assume that there is a full fss degree of membership association F over the
invariant set of atoms A. Then (℘F

f uzzy(A), ?̃,v) is an invariant complete lattice, but it fails to be
a complete lattice in ZF framework when A is considered as a set in ZF.

In order to prove Proposition 5, we considered P to be a fixed ZF simultaneously
infinite and coinfinite subset of A. For each a ∈ A we defined ϕa : A→ [0, 1] by ϕa(b) ={

1 for b = a
0 for b ∈ A \ {a} . Any function ϕa is supported by supp(a). Moreover, we proved

that the function j : A → [0, 1]Af s defined by j(a) = ϕa for all a ∈ A is equivariant.

We considered the infinite family F from [0, 1]Af s defined by F = {ϕa | a ∈ P}. The only
possible least upper bound of F would have been the function ψ : A → [0, 1] defined

by ψ(x) =
{

1 for x ∈ P
0 for x ∈ A \ P

. Since P is not finitely supported, it followed that ψ is not

finitely supported, and so F does not have a least upper bound in [0, 1]Af s.

Since the construction of ℘F
f uzzy(A) = [0, 1]Af s makes sense in ZF, the previous result

shows that ℘F
f uzzy(A) is a lattice which is not complete in ZF, but is the only invariantcom-

plete. This aspect emphasises one benefit of this approach: even though we have only
a refined form of completeness (namely, the invariant completeness) in ZF for ℘F

f uzzy(A),

we can provide new properties of ℘F
f uzzy(A) derived from the general properties of the

invariant complete lattices (presented in [6]).
Invariant monoids were introduced in [12] as invariant sets equipped with equivariant

internal monoid laws. More exactly, (M,+, ·) is an invariant monoid if (M, ·) is an invariant
set and (M,+, 0) is a monoid having the properties that π · (x + y) = (π · x) + (π · y),
π · 0 = 0 for all x, y ∈ M and π ∈ SA.

Theorem 5. Let (U, ·) be an invariant set such that there is a full fss degree of membership
association F over it. Then ℘F

f uzzy(U) can be organised as an invariant monoid in the following
two forms:

1. (℘F
f uzzy(U),⊗, ?̃) is an invariant commutative monoid, where ?̃ is the SA-action on [0, 1]Uf s,

and f ⊗ g : U → [0, 1] is defined by the relation ( f ⊗ g)(x) = f (x)g(x) for all x ∈ U. The
neutral element is the equivariant function 1U : U → [0, 1] defined by 1U(x) = 1 for all
x ∈ U.

2. (℘F
f uzzy(U),t, ?̃) is an invariant commutative monoid, where ?̃ is the SA-action on [0, 1]Uf s,

and f t g : U → [0, 1] is defined by the relation ( f t g)(x) = supremum{ f (x), g(x)}
for all x ∈ U. The neutral element is the equivariant function 0U : U → [0, 1] defined
by 0U(x) = 0 for all x ∈ U.

The general properties of invariant monoids presented in [12] lead to new properties
of ℘F

f uzzy(U) (equipped with one of the two internal laws defined in Theorem 5). Some
of them are related to the invariant isomorphism theorems, to invariant universality
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theorems or to Cayley monoids theorem. We present here an fss Cayley-type embedding
theorem for ℘F

f uzzy(U) which follows from Theorem 7 in [12].

Theorem 6. Let (U, ·) be an invariant set with the property that there is a full fss degree of mem-
bership association F over it. Then there is an equivariant isomorphism between ℘F

f uzzy(U)

and an invariant submonoid of the invariant monoid formed by the finitely supported elements

of ℘F
f uzzy(U)

℘F
f uzzy(U).

The universality properties for invariant monoids [12] allow us to establish connectiv-
ity results between the set of all fuzzy sets over an invariant set U, the free monoid over
U and the set of all extended multisets over U.

Let (U, ·) be an invariant set such that there is a full fss degree of membership associa-
tion F over it. Let Next(U) be the set of all extended multisets over U (defined as functions
f : U → N with finite algebraic supports, which are proved to be finitely supported
by their algebraic supports, where N is the set of all positive integers). Then, Next(U)
endowed with the classical pointwise sum of extended multisets is an invariant monoid
with the same SA-action as NU

f s. If U∗ is the free monoid on U, then U∗ endowed with
the classical juxtaposition of words is an invariant monoid with the SA action � defined
by π � x1 . . . xn = (π · x1) . . . (π · xn) for all π ∈ SA, x1 . . . xn ∈ U∗ \ {1}, and π � 1 = 1
for all π ∈ SA (where 1 is the empty word).

Theorem 7. Let U, V be invariant sets with the property that there is a full fss degree of mem-
bership association with V. Let j : U → Next(U) be the function which maps each x ∈ U into
the characteristic function χ{x}. If φ : U → ℘F

f uzzy(V) is an arbitrary finitely supported func-
tion, then there is a unique finitely supported homomorphism of invariant commutative monoids
ψ : Next(U) → ℘F

f uzzy(V) with ψ ◦ j = φ, i.e., ψ(χ{x}) = φ(x) for all x ∈ U. Furthermore,
supp(ψ) ⊆ supp(φ).

Theorem 8. Let U, V be invariant sets with the property that there is a full fss degree of membership
association with V. Let i : U → U∗ be the standard inclusion of U into U∗ which maps each
element x ∈ U into the word x. If φ : U → ℘F

f uzzy(V) is an arbitrary finitely supported function,
then there is a unique finitely supported homomorphism of invariant monoids ψ : U∗ → ℘F

f uzzy(V)

with ψ ◦ i = φ. Furthermore, supp(ψ) ⊆ supp(φ).

The following isomorphism theorem can be proved from the general properties
of invariant monoids [5]. For its corollaries, we involve Theorem 5 and the fact that
the function f 7→ FZS(X, f ) is an equivariant homomorphism between (FAS(X),t, ?̃) and
(℘ f in(X),∪, ?) with the notations in Corollary 3.

Theorem 9. Let (M,+M, ·) and (N,+N , �) be invariant monoids and let f : M → N be
an equivariant homomorphism. On M we define the relation ∼ f by: m1 ∼ f m2 if f (m1) = f (m2).
Then ∼ f is an equivariant equivalence relation and there is an equivariant isomorphism ϕ between
the invariant factor monoid (M/ ∼ f ,+, ?) and the invariant monoid Im( f ), defined by ϕ([m]) =
f (m) for all m ∈ M, whereby [m] we denoted the equivalence class of m modulo ∼ f ; the internal
law + is defined by : [m] + [m′] = [m +M m′] for all [m], [m′] ∈ M/ ∼ f and the SA-action ? is
defined by π ? [m] = [π ·m] for all [m] ∈ M/ ∼ f .

Corollary 2. Let (X, ·) be an invariant set with the property that there is a full fss degree of mem-
bership association with X, and let (N,+N , �N) be an invariant monoid. Let ψ : ℘F

f uzzy(X)→ N
be an equivariant homomorphism. On ℘F

f uzzy(X) (equipped with the internal laws ⊗ or t), we
define the relation ∼ψ by: f1 ∼ψ f2 if ψ( f1) = ψ( f2). Then ∼ψ is an equivariant equivalence
relation and there is an equivariant isomorphism ϕ between the invariant monoid ℘F

f uzzy(X)/ ∼ψ
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and the invariant monoid Im(ψ), defined by ϕ([ f ]) = ψ( f ) for all f ∈ ℘F
f uzzy(X), whereby [ f ]

we denoted the equivalence class of f modulo ∼ψ.

Corollary 3. Let (X, ·) be an invariant set with the property that there is a full fss degree of mem-
bership association with X. Let FAS(X) = { f : X → [0, 1] | FZS(X, f ) is finite}. On FAS(X)
we define the relation ∼ by: f ∼ g if and only if FZS(X, f ) = FZS(X, f ). Then FAS(X) is
an equivariant submonoid of (℘F

f uzzy(X),t, ?̃) and there is an equivariant isomorphism ϕ be-
tween the invariant factor monoid FAS(X)/ ∼ and the invariant monoid (℘ f in(X),∪, ?) defined
by ϕ([ f ]) = FZS(X, f ) for all f ∈ FAS(X), whereby [ f ] we denoted the family of functions
from X to [0, 1] having the same algebraic support as f .

5. L-Fuzzy Sets and Invariant Complete Lattices

We present the notion of L-fuzzy set and several fixed point properties in this frame-
work. By now on, we implicitly assume that the invariant sets we involve are endowed
with a full fss degree of membership associations. Therefore, for an invariant algebraic
structure P, the P-fuzzy sets over an invariant set U will be defined as finitely supported
functions from U to P.

Definition 8. Let (L, ·,v) be an invariant complete lattice and (U, �) an invariant set.

• An L-fuzzy set over U is a finitely supported function µ : U → L.
• The algebraic support of a function f : U → L is the crisp set FZS(U, f ) = {x ∈

U | 0 @ f (x)}.

Example 3.

• Let U be an invariant set. The function f : U → ℘ f s(A) defined by f (x) = supp(x) for all
x ∈ U is an equivariant L-fuzzy set over U. This is because ℘ f s(A) is an invariant complete
lattice and, for all π ∈ SA, we have supp(π · x) = π(supp(x)) = π ? supp(x) for all x ∈ X.

• Let (X, ·) be an invariant set. Let ϕ : [0, 1]Xf s → ℘ f s(X), ϕ( f ) = FZS(X, f ). For
π ∈ SA we verify that π ? FZS(X, f ) = FZS(X, π?̃ f ) for all f ∈ [0, 1]Xf s. Fix f and
let z ∈ π ? FZS(X, f ). Then z = π · x with x ∈ FZS(X, f ), and hence (π?̃ f )(z) =
f (π−1 · z) = f (x) > 0, i.e., z ∈ FZS(X, π?̃ f ). Conversely, let z ∈ FZS(X, π?̃ f ). It
follows that f (π−1 · z) > 0. Thus, z = π · (π−1 · z) with π−1 · z ∈ FZS(X, f ), and so
z ∈ π ? FZS(X, f ). Thus, since ℘ f s(X) is an invariant complete lattice, we have that ϕ is
an equivariant L-fuzzy set over [0, 1]Xf s.

Theorem 10. Let (L, ·,v) be an invariant complete lattice and (U, �) an invariant set. Any
function f : U → L has the following properties:

1. If f is an L-fuzzy set over U, then FZS(U, f ) is finitely supported, and:

• supp(FZS(U, f )) ⊆ supp( f );
• supp( f (FZS(U, f ))) ⊆ supp(FZS(U, f )) ∪ supp( f );

2. If the algebraic support of f is finite, then f is an L-fuzzy set over U (i.e., f is finitely
supported) and supp( f ) ⊆ supp(FZS(U, f )) ∪ supp( f (FZS(U, f ))).

3. If the algebraic support of f is finite, then supp( f (FZS(U, f ))) \ supp(FZS(U, f )) =
supp( f ) \ supp(FZS(U, f )).

The L-fuzzy sets are characterised by the following property.

Theorem 11. Let (U, �) be an invariant set and (L, ·,v) an invariant complete lattice.

• The family of those finitely supported functions f : U → L (i.e., the family LU
f s of all L-fuzzy

sets over the invariant set U) is an invariant complete lattice with the order relation ≤ defined
by f ≤ g if and only if f (x) v g(x) for all x ∈ U.
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• Furthermore, if F = ( fi)i∈I is a finitely supported family of L-fuzzy sets over the invariant
set U, its least upper bound with respect to ≤ is ∨

i∈I
fi : U → L defined by ( ∨

i∈I
fi)(x) =

t
i∈I
{ fi(x) | i ∈ I} for all x ∈ U, whereby t we denoted least upper bounds in L with respect

to v.

The requirement that L is invariant complete in Theorem 11 is necessary. For example,
let us fix an element a ∈ A; the family ( fn)n∈N of functions from A to N defined by

fi(b) =
{

i for b = a
0 for b ∈ A \ {a} for all i ∈ N is finitely supported (each fi is supported by

the same set {a}), but it does not have a supremum modulo v.
It is worth noting that some ZF structures are not finitely supported. The family

of finitely supported functions from U to L makes sense in ZF, but it is an invariant
complete lattice and not a fully ZF complete lattice in respect with all atomic sets.

According to Theorem 11, the following fixed point results can provide properties
of finitely supported L-fuzzy sets over an invariant set. We chose to present the results
in the general case, making them also applicable for other finitely supported structures
(not only for finitely supported L-fuzzy sets).

In this section, we present fixed point theorems of Tarski’s type in the framework
of finitely supported structures. Tarski’s theorem plays an important role in the theory
of abstract interpretation of programming languages reformulated in the world of finitely
supported structures [11].

Theorem 12 (Strong Tarski Theorem for fss). Let (L, ·,v) be an invariant complete lattice and
f : L→ L a finitely supported, order-preserving function. Let F be the set of all fixed points of f .
Then (F, ·,v) is itself a non-empty, finitely supported (by supp( f )), complete lattice.

In terms of L-fuzzy sets, this result states that, if (L, ·,v) is an invariant complete
lattice and f is an order-preserving L-fuzzy set over the invariant set L, then the set of fixed
points of f is itself a non-empty finitely supported (by supp( f )) complete lattice.

Corollary 4. Let (L, ·,v) be an invariant complete lattice and f : L → L a finitely supported,
order-preserving function. Then f has a least-fixed point defined as u{x ∈ L | f (x) v x} and
a greatest-fixed point defined as t{x ∈ L | x v f (x)}, which are both supported by supp( f ).

Corollary 5. Let (L, ·,v) be an invariant complete lattice and f : L → L an equivariant order-
preserving function. Let F be the set of all fixed points of f . Then (F, ·,v) is itself an invariant
complete lattice.

According to Theorem 13, Tarski’s fixed-point theorem can be applied for finitely sup-
ported self-functions on the family of those finitely supported subsets of an invariant set [9].

Theorem 13. If (X, ·) is an invariant set, then (℘ f s(X), ?,⊆) is an invariant complete lattice.

Theorem 12 can be extended. We were able to prove the existence of fixed points
of a finitely supported, order preserving self-function on an invariant partially ordered
set, by imposing the existence condition of least upper bounds only for those uniformly
supported subsets of the invariant, partially ordered set, and not for all finitely supported
subsets of the related invariant, partially ordered set [10].

Theorem 14. Let (X, ·,v) be a non-empty invariant partially ordered set having the additional
property that every uniformly supported subset of X has a least upper bound. Let f : X → X be
a finitely supported, order-preserving function with the property that there is x0 ∈ X such that
x0 v f (x0). Then there is u ∈ X with x0 v u such that f (u) = u.
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From Theorems 11 and 12, we obtain the following fixed point result for L-fuzzy sets
over invariant sets.

Theorem 15. Let (U, �) be an invariant set, (L, ·,v) an invariant complete lattice and ϕ : LU
f s →

LU
f s a finitely supported, order-preserving function over LU

f s. Let F be the set of fixed points
of ϕ. Then (F, ?̃,≤) is a non-empty, finitely supported (by supp( f )) complete lattice, where ?̃ is
the induced SA-action on the function space LU

f s, and ≤ is the order relation of the family LU
f s of all

L-fuzzy sets over the invariant set U defined by f ≤ g if and only if f (x) v g(x) for all x ∈ U.

6. Fuzzy Subgroups of an Invariant Group

Rosenfeld introduced the notion of a fuzzy group and proved that many concepts
of group theory can naturally be extended in order to develop the theory of fuzzy groups [13].
A survey of the development of fuzzy group theory can be found in [14].
Let us recall some results of the classical Zermelo–Fraenkel theory of fuzzy groups.

Definition 9. Let (G, ·, 1) be a group. On the family {ν | ν : G → [0, 1]} of all fuzzy sets on G
we define a partial order relation v, called fuzzy sets inclusion by η v µ if and only if η(x) ≤ µ(x)
for all x ∈ G.

Definition 10. Let (G, ·, 1) be a group. A fuzzy set η over the group G (i.e., a function η : G →
[0, 1]) is called fuzzy subgroup of G if the following conditions are satisfied:

• η(x · y) ≥ min{η(x), η(y)} for all x, y ∈ G;
• η(x−1) ≥ η(x) for all x ∈ G.

Definition 11. Let (G, ·, 1) be a group. A fuzzy subgroup µ of G that satisfies the additional
condition µ(x · y) = µ(y · x) for all x, y ∈ G is called a fuzzy normal subgroup of G.

Theorem 16. Let (G, ·, 1) be a group.

• The set FL(G) formed by all fuzzy subgroups of G is a complete lattice with respect to fuzzy
sets inclusion.

• The set FN(G) formed by all fuzzy normal subgroups of G is a modular lattice with respect to
fuzzy sets inclusion.

We translate the above results in the framework of finitely supported structures,
proving their consistency within the new framework.

Definition 12. An invariant group is a triple (G, ·, �) with the property that the following
conditions are satisfied:

• G is a group with the internal law ·;
• G is a non-trivial invariant set with the SA-action �;
• for each π ∈ SA and each x, y ∈ G we have π � (x · y) = (π � x) · (π � y), meaning that

the internal law on G is equivariant.

Proposition 6. (G, ·, �) be an invariant group. We have the following properties:

1. π � e = e for all π ∈ SA, where e is the neutral element of G.
2. π � x−1 = (π � x)−1 for all π ∈ SA and x ∈ G.

We provide the following examples of invariant groups.

Example 4.

1. The group (SA, ◦, ·) is an invariant group, where ◦ is the composition of permutations and · is
the SA-action on SA defined by π · σ := π ◦ σ ◦π−1 for all π, σ ∈ SA. Since the composition



Mathematics 2021, 9, 1651 14 of 23

of functions is associative, it is easy to verify that π · (σ ◦ τ) = (π · σ) ◦ (π · τ) for all
π, σ, τ ∈ SA.

2. The free group (F(X),ᵀ, ?̃) over an invariant set (X, �) (formed by those equivalence classes
[w] of words w, where two words are in the same equivalence class if one can be obtained from
another by repeatedly inserting or cancelling terms of the form u−1u or uu−1 for u ∈ X) is
an invariant group, where ?̃ : SA × F(X)→ F(X) is defined by π?̃[xε1

1 xε2
2 . . . xε l

l ] = [(π �
x1)

ε1 . . . (π � xl)
ε l ], and [xε1

1 xε2
2 . . . xεn

n ] ᵀ [yδ1
1 yδ2

2 . . . yδm
m ] = [xε1

1 xε2
2 . . . xεn

n yδ1
1 yδ2

2 . . . yδm
m ].

3. Given an invariant set (X, �), any function f : X → Z (where Z is the set of all integers)

with the property that S f
de f
= {x ∈ X | f (x) 6= 0} is finite is called an extended generalised

multiset over X. The set of all extended generalised multisets over X is denoted by Zext(X).
Each function f ∈ Zext(X) is finitely supported with supp( f ) = supp(S f ). The set
(Zext(X),+, ?̃) is an invariant commutative group, where f+g: X→Z is defined pointwise
by ( f + g)(x) = f (x) + g(x) for all x ∈ X and ?̃ is the standard SA-action on ZX

f s.

Definition 13. Let (G, ·, �) be an invariant group. A finitely supported subgroup of G is a sub-
group of G, which is also an element of ℘ f s(G).

Example 5.

1. Let (G, ·, �) be an invariant group. The centre of G (namely, C(G) := {g ∈ G | g · u = u · g
for all u ∈ G}) is a finitely supported subgroup of G, and it is itself an invariant group
because it is empty-supported as an element of ℘(G).

2. Let X be a finitely supported subset of G. The subgroup of G generated by X (denoted by [X])
is a finitely supported (by supp(X)) subgroup of G, but not itself an invariant group.

If (G, ·, �) is an invariant group, we denote by L f s(G) the family of all finitely sup-
ported subgroups of G ordered by inclusion.

Theorem 17.

• Let (G, ·, �) be an invariant group. Then (L f s(G), ?,⊆) is an invariant complete lattice,
where ⊆ represents the classical inclusion relation on ℘(G) and ? is the SA-action on ℘(G).

• Furthermore, if F = (Hi)i∈I is a finitely supported family of finitely supported subgroups
of G, then its least upper bound is [ ∪

i∈I
Hi] which is supported by supp(F ).

From Tarski’s theorem (Theorem 12), we obtain the next result.

Corollary 6. Let (G, ·, �) be an invariant group and f : L f s(G)→ L f s(G) a finitely supported,
order-preserving function. The set of all fixed points of f is itself a finitely supported (by supp( f ))
complete lattice.

Definition 14. Let (G, ·, �) be an invariant group. A fuzzy set η over the invariant set G (i.e.,
a finitely supported function η : G → [0, 1]) is called a finitely supported fuzzy subgroup of G
if the following conditions are satisfied:

• η(x · y) ≥ min{η(x), η(y)} for all x, y ∈ G;
• η(x−1) ≥ η(x) for all x ∈ G.

Example 6. Let (F(A),ᵀ, ?̃) be the invariant free group over the set A of atoms defined as in
Example 4(2). For an element [w] = [xε1

1 xε2
2 . . . xεk

k ] in F(A), we define sum([w]) = ε1 + ε2 +
. . . + εk. Whenever [w] = [w′], we have sum([w]) = sum([w′]), and so sum is well defined.
It can be proved that sum is an equivariant (empty-supported) group homomorphism between
the invariant groups F(A) and Z (the set of all integers being a trivial invariant group).

Let us consider ηA : F(A)→ [0, 1] defined by
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ηA([w]) =


0, if sum([w]) is an odd integer;
1− 1

n , if sum([w]) = m · 2n where m is an odd integer and n ∈ N;
1, if sum([w]) = 0 .

It can be proved that µA is a finitely supported fuzzy subgroup of F(A).

Theorem 18. Let (G, ·, �) be an invariant group. The set FL f s(G) consisting of all finitely sup-
ported fuzzy subgroups of G forms an invariant complete lattice with respect to fuzzy sets inclusion.

In order to prove Theorem 18, the construction of least upper bounds for finitely
supported subsets of FL f s(G) follows the next steps [9]:

• First, we proved that FL f s(G) is itself an invariant set; that is, we verified that π?̃µ is
a finitely supported fuzzy subgroup of G for all π ∈ SA and µ ∈ FL f s(G) (it satisfies
the conditions in Definition 14), where ?̃ is the SA-action on [0, 1]Gf s.

• We remarked that the inclusion relation v on FL f s(G), defined by µ v η if and only if
µ(x) ≤ η(x) for all x ∈ G, is equivariant.

• For each α ∈ [0, 1] and each ν ∈ [0, 1]Gf s, we defined Gν
α = {x ∈ G | ν(x) ≥ α} (which

corresponds to the concept of α-cut). We obtained that each Gν
α is finitely supported

by supp(ν).
• As in Example 5(2), we obtained that each subgroup [Gν

α] generated by Gν
α is finitely

supported by supp(ν).
• For any finitely supported function µ : G → [0, 1], we defined the function µ∗ : G →

[0, 1] by µ∗(x) = supremum{α ∈ [0, 1] | x ∈ [Gµ
α ]} for any x ∈ G, whereby supremum

we denoted the least upper bounds in the set of real numbers. We proved that µ? is
supported by supp(µ).

• If F = (µi)i∈I is a finitely supported family of elements from FL f s(G), we defined
t

i∈I
µi : G → [0, 1] by t

i∈I
µi(x) = supremum

i∈I
{µi(x) | i ∈ I} for all x ∈ G. Since [0, 1]

is a ZF (trivial invariant) complete lattice, from Theorem 11 we have that supp(F )
supports t

i∈I
µi. Therefore, we have that ( t

i∈I
µi)
∗ is finitely supported by supp( t

i∈I
µi) ⊆

supp(F ).
• As in the standard fuzzy groups theory, we found that ( t

i∈I
µi)
∗ is a fuzzy subgroup

of G (in the sense of Definition 14) and it is the least upper bound of F in FL f s(G)
with respect to the order relation v.

From Tarski’s theorem (Theorem 12), the next result follows.

Corollary 7. Let (G, ·, �) be an invariant group and f : FL f s(G)→ FL f s(G) a finitely supported,
order-preserving function. The set of all fixed points of f is itself a finitely supported (by supp( f ))
complete lattice.

Theorem 19. Let (G, ·, �) be an invariant group. The set FN f s(G) consisting of all finitely
supported fuzzy normal subgroups of G forms an invariant modular lattice with respect to fuzzy
sets inclusion.

7. T-Fuzzy Sets and Invariant Strong Inductive Sets

We introduce the concept of the T-fuzzy set, where T is an invariant partially ordered
set having the property that every finitely supported totally ordered subset of T has a least
upper bound in T. We present some fixed point results in a more general framework; they
can be also applied to T-fuzzy sets.
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Definition 15.

1. An invariant strong inductive set is an invariant partially ordered set (T, ·,v) with the prop-
erty that every finitely supported totally ordered subset (i.e., every finitely supported chain)
of T has a least upper bound in T.

2. Let (X, ·X ,vX) and (Y, ·Y,vY) be two invariant partially ordered sets. A finitely supported
function f : X → Y is c-continuous if and only if for each finitely supported, countable
sequence (un)n∈N in X which has a least upper bound, we have that f ((un)n∈N) has a least
upper bound in Y and f ( t

n∈N
un) = t

n∈N
( f (un)).

Definition 16. Let (T, ·,v) be an invariant strong inductive set and (U, �) an invariant set.
A T-fuzzy set over U is a finitely supported function µ : U → T.

The T-fuzzy sets are characterised by the following property.

Theorem 20.

• Let (U, �) be an invariant set and (T, ·,v) an invariant strong inductive set. The family
of those finitely supported functions f : U → T (i.e., the family of all finitely supported
T-fuzzy sets over U) is an invariant strong inductive set with the order relation ≤ defined
by f ≤ g if and only if f (x) v g(x) for all x ∈ U.

• Furthermore, if F = ( fi)i∈I is a finitely supported, totally ordered family of T-fuzzy sets
over the invariant set U, its least upper bound with respect to ≤ is ∨

i∈I
fi : U → T defined

by ( ∨
i∈I

fi)(x) = t
i∈I
{ fi(x) | i ∈ I} for all x ∈ U, whereby t we denoted least upper bounds

in T of finitely supported totally ordered subsets (with respect to v).

The following theorem connects the concept of a ‘uniformly supported set’ with the
concept of a ‘invariant strong inductive set’.

Theorem 21.

• An invariant partially ordered set (T, ·,v) with the property that every uniformly supported
subset of T has a least upper bound in T is an invariant strong inductive set.

• An invariant partially ordered lattice (not necessarily complete) (T, ·,v) with the property that
T does not contain a uniformly supported, infinite subset is an invariant strong inductive set.

The following result presents a hierarchical construction of invariant sets contain-
ing no uniformly supported, infinite subsets [6,7]. We were able to prove this property
for apparently large finitely supported sets that are presented as functions spaces.

Theorem 22.

1. Let A≤n = {(a1, . . . , ak) | a1, . . . , ak ∈ A, k ≤ n}. Let T be a finitely supported subset of an
invariant set such that T does not contain a uniformly supported, infinite subset. The function
space TA≤n

f s does not contain a uniformly supported, infinite subset, whenever n ∈ N.
2. Let ℘≤n(A) = {Z ∈ ℘ f in(A) | Z ∈ ℘m(A) for some m ≤ n}, where ℘m(A) is the family

of all m-sized subsets of A. Let T be a finitely supported subset of an invariant set such that T
does not contain a uniformly supported, infinite subset. The function space T℘≤n(A)

f s does not
contain a uniformly supported, infinite subset, whenever n ∈ N.

Corollary 8. Let T be a finitely supported subset of an invariant set such that T does not contain
a uniformly supported, infinite subset. For any n ∈ N,

1. The function space TAn

f s does not contain a uniformly supported, infinite subset;

2. The function space T℘n(A)
f s does not contain a uniformly supported, infinite subset.
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Corollary 9. Let P be an invariant set (in particular, P could be an invariant complete lattice or an
invariant strong inductive set) that does not contain a uniformly supported, infinite subset. Let
X be one of the sets An, A≤n,℘n(A),℘≤n(A) for some n ∈ N. The set of all P-fuzzy sets over
the invariant set X does not contain a uniformly supported, infinite subset.

The following four results are specific to finitely supported sets, i.e., they do not have
ZF correspondents. We present some examples of finite powersets that are invariant strong
inductive sets. Such a result does not hold in ZF since a ZF set could admit an unbounded
countable ascending chain of finite subsets.

Theorem 23. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(T), ?,⊆) does not contain a uniformly supported, infinite subset, and
so it is an invariant strong inductive set.

Corollary 10. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(TAn

f s ), ?,⊆) is an invariant strong inductive set, n ∈ N.

Corollary 11. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(T

℘n(A)
f s ), ?,⊆) is an invariant strong inductive set, n ∈ N.

Corollary 12. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Then (℘ f in(℘ f s(An)), ?,⊆) is an invariant strong inductive set, n ∈ N.

Example 7.

• Let X be an invariant set. The function f : X → ℘ f in(A) defined by f (x) = supp(x)
for all x ∈ X is an equivariant T-fuzzy set over X. This is because (℘ f in(A), ?,⊆) is
an invariant strong inductive set according to Theorem 23 and, for all π ∈ SA, we have
supp(π · x) = π(supp(x)) = π ? supp(x).

• Let (X, ·) be an invariant set which does not contain an infinite uniformly supported sub-
set. According to Theorem 23, (℘ f in(X), ?,⊆) is an invariant, strong inductive set. Let
FAS(X) = { f : X → [0, 1] | FZS(X, f ) is finite}. Since [0, 1] is a trivial invariant com-
plete lattice, according to Theorem 10(2), every function f ∈ FAS(X) is finitely supported.
As in Example 3(2), for all π ∈ SA, we have FZS(X, π?̃ f ) = π ? FZS(X, f ) for all
f ∈ FAS(X), and so FAS(X) is an invariant set. The equivariant function ψ between
the invariant set FAS(X) and the invariant set (℘ f in(X), ?) defined by ψ( f ) = FZS(X, f )
for all f ∈ FAS(X) is a T-fuzzy set over FAS(X).

• Let (X, ·) be an invariant set which does not contain an infinite uniformly supported subset.
On FAS(X) we define the relation∼ by: f ∼ g if and only if FZS(X, f ) = FZS(X, g). Then,
according to Corollary 3, since equivariant isomorphisms of monoids are also equivariant func-
tions, we know that there is an equivariant function ϕ between the invariant set FAS(X)/ ∼
and the invariant set (℘ f in(X), ?) defined by ϕ([ f ]) = FZS(X, f ) for all f ∈ FAS(X),
where by [ f ] we denoted the family of functions from X to [0, 1] having the same algebraic
support as f . Thus, ϕ is a T-fuzzy set over FAS(X)/ ∼.

From Theorem 20, Theorem 23, Corollary 10, Corollary 11 and Theorem 22, the follow-
ing property of T-fuzzy sets can be presented.

Theorem 24. Let (U, �) be an invariant set.

1. Let T be an invariant set such that T does not contain a uniformly supported, infinite subset.
The family of all ℘ f in(T)-fuzzy sets over the invariant set U is an invariant strong inductive
set with the order relation ≤ defined by f ≤ g if and only if f (x) ⊆ g(x) for all x ∈ U.

2. Let (T, ·) be an invariant set such that T does not contain a uniformly supported, infinite
subset. For each n ∈ N, the family of all ℘ f in(TAn

f s )-fuzzy sets over the invariant set U is
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an invariant strong inductive set with the order relation ≤ defined by f ≤ g if and only if
f (x) ⊆ g(x) for all x ∈ U.

3. Let (T, ·) be an invariant set such that T does not contain a uniformly supported, infinite

subset. For each n ∈ N, the family of all ℘ f in(T
℘n(A)
f s )-fuzzy sets over the invariant set U is

an invariant strong inductive set with the order relation ≤ defined by f ≤ g if and only if
f (x) ⊆ g(x) for all x ∈ U.

According to Theorem 20, the following fixed point results can provide properties
of finitely supported T-fuzzy sets over an invariant set. We chose to present the results
in the general case, making them applicable also for other finitely supported structures.

The Bourbaki–Witt theorem is an important fixed-point result in mathematics. Its ZF
formulation is used to define recursive data types (e.g., linked lists in domain theory).
Other applications can be found in logic or in the theory of computable functions. This
theorem is also valid for finitely supported progressive self-functions on invariant sets.

Theorem 25 (Bourbaki–Witt Theorem for fss). Let (T, ·,v) be an invariant strong inductive
set. Let f : T → T be a finitely supported function having the additional property that x v f (x)
for all x ∈ T. Then there is u ∈ T such that f (u) = u.

In terms of T-fuzzy sets, this result states that, if (T, ·,v) is an invariant strong
inductive set and f is a T-fuzzy set over the invariant set T with the additional property
that x v f (x) for all x ∈ T, then f has a fixed point.

Corollary 13. Let (T, ·,v) be an invariant strong inductive set. Let f : T → T be a finitely
supported function having the additional property that x v f (x) for all x ∈ T. Then for any y ∈ T,
there is u ∈ T such that f (u) = u and y v u.

If in the statement of Theorem 25 we impose the requirement regarding the existence
of least upper bounds for all uniformly supported subsets of an invariant set (instead
of for all finitely supported totally ordered subsets of an invariant set), we obtain the fol-
lowing result of Bourbaki–Witt type [6,10].

Theorem 26. Let (T, ·,v) be a non-empty invariant partially ordered set with the property that
every uniformly supported subset of T has a least upper bound. Let f : T → T be a finitely
supported function having the additional property that x v f (x) for all x ∈ T. Then there is u ∈ T
such that f (u) = u.

We proved in [6] that the existence of fixed points for a finitely supported, order-
preserving function is possible even in the case when the related function is defined
on an invariant strong inductive set (instead on an invariant complete lattice).

Theorem 27 (Tarski—Extended Theorem for fss). Let (T, ·,v) be an invariant strong inductive
set. Let f : T → T be a finitely supported, order preserving function having the additional property
that there is x0 ∈ T such that x0 v f (x0). Then there is u ∈ T such that f (u) = u.

In terms of T-fuzzy sets, this result states that, if (T, ·,v) is an invariant strong
inductive set and f is an order-preserving T-fuzzy set over the invariant set T having
the additional property that x0 ∈ T with x0 v f (x0) exists, then f has a fixed point.

From Theorems 20, 25 and 27 we obtain the following fixed point result for T-fuzzy sets.

Theorem 28. Let (U, �) be an invariant set and (T, ·,v) an invariant strong inductive set.

1. Let ϕ : TU
f s → TU

f s be a finitely supported function with the property that f ≤ ϕ( f ) for all

f ∈ TU
f s, where ≤ is the order relation on the family of all T-fuzzy sets over the invariant set



Mathematics 2021, 9, 1651 19 of 23

U defined by f1 ≤ f2 if and only if f1(x) v f2(x) for all x ∈ U. Then there is g ∈ TU
f s such

that ϕ(g) = g.
2. Let ϕ : TU

f s → TU
f s be a finitely supported, order-preserving function with the property that

f0 ∈ TU
f s exists such that f0 ≤ ϕ( f0), where ≤ is the order relation on the family of all

T-fuzzy sets over the invariant set U defined by f1 ≤ f2 if and only if f1(x) v f2(x) for all
x ∈ U. Then g ∈ TU

f s is with f0 v g such that ϕ(g) = g.

In ZF, the following two fixed point theorems (known as the Tarski–Kantorovitch
theorem and Scott theorem, respectively) have applications in domain theory, in formal
semantics of programming languages, in the theory of iterated function systems and
in abstract interpretation. We adequately reformulate them for finitely supported sets.

Theorem 29 (Tarski–Kantorovitch Theorem for fss). Let (T, ·,v) be an invariant partially
ordered set and f : T → T a finitely supported c-continuous function. Assume that x0 ∈ T,
having the following properties:

• x0 v f (x0);
• Every finitely supported countable chain in ↑x0= {x ∈ T | x0 v x} has a least upper bound

in T.

Then f has a fixed point u = t
n∈N

f n(x0) with the property that supp(u) ⊆ supp( f ) ∪
supp(x0).

Corollary 14 (Scott Theorem for fss). Let (T, ·,v, 0) be an invariant, partially ordered set with
a least element 0 and with the additional property that any finitely supported countable ascending
chain in T has a least upper bound. Every finitely supported c-continuous function f : T → T has
a least fixed point u = t

n∈N
f n(0) with the property that supp(u) ⊆ supp( f ).

Corollary 15. Let (T, ·,v, 0) be an invariant strong inductive set with a least element 0. Every
finitely supported c-continuous function f : T → T has a least fixed point u = t

n∈N
f n(0) with

the property that supp(u) ⊆ supp( f ).

From Corollary 15 we conclude that if (T, ·,v, 0) is an invariant strong inductive set
with a least element 0 and f is an c-continuous T-fuzzy set over the invariant set T, then
t

n∈N
f n(0) is the least fixed point of f .

Theorem 29 was generalised in [10] to the following result.

Theorem 30. Let (T, ·,v) be an invariant partially ordered set with the property that every
uniformly supported subset has a least upper bound. If f : T → T is a finitely supported c-
continuous function having the additional property that x0 ∈ T and k ∈ N∗ such that x0 v f k(x0),
then t

n∈N
f n(x0) is a fixed point of f .

Proposition 7. Let (T, ·,v) be an invariant partially ordered set containing no uniformly sup-
ported, infinite subset and f : T → T a finitely supported, order-preserving function over T.

• If the set X = {x ∈ T | x v f (x)} is non-empty and totally ordered, then f has the greatest
fixed point defined as gfp( f ) = tX.

• If the set X′ = {x ∈ T | f (x) v x} is non-empty and totally ordered, then f has the least
fixed point defined as lfp( f ) = uX′.

In either of the above cases, f only has many finitely fixed points that form a finitely supported
complete lattice.

We presented above examples of invariant partially ordered sets that do not contain
uniformly supported, infinite subsets. For these sets, some fixed point properties hold.
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Theorem 31. Let (T, ·,v) be an invariant partially ordered set that does not contain a uniformly
supported, infinite subset. Let f : T → T be a finitely supported function having the additional
property that x v f (x) for all x ∈ T. Then for each x ∈ T n ∈ N exists, such that f k(x) is a fixed
point of f for all k ≥ n.

Theorem 32. Let (T, ·,v) be an invariant, partially ordered set that does not contain a uniformly
supported, infinite subset. Let f : T → T be a finitely supported, order-preserving function having
the additional property that there is x0 ∈ T such that x0 v f (x0). Then there is n ∈ N such that
f k(x0) is a fixed point of f for all k ≥ n.

From Theorems 22, 23, 31 and 32, we obtain the following corollaries.

Corollary 16. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f : ℘ f in(T)→ ℘ f in(T) be a ℘ f in(T)-fuzzy set over the invariant set ℘ f in(T)
and let T0 ∈ ℘ f in(T) such that T0 ⊆ f (T0). If f is order-preserving or progressive (i.e., f has
the property that Y ⊆ f (Y) for all Y ∈ ℘ f in(T)), then n ∈ N exists, such that f k(T0) is a fixed
point of f for all k ≥ n.

Corollary 17. Let (T, ·) be an invariant set such that T does not contain a uniformly supported, in-
finite subset. Let f be a ℘ f in(TAn

f s )-fuzzy set over the invariant set ℘ f in(TAn

f s ) having the additional

property that f is a progressive function. Then T0 ∈ ℘ f in(TAn

f s ) such that f (T0) = T0.

Corollary 18. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f be a ℘ f in(TAn

f s )-fuzzy set over the invariant set ℘ f in(TAn

f s ) which is order-

preserving. Then a least T0 ∈ ℘ f in(TAn

f s ) supported by supp( f ) such that f (T0) = T0.

Corollary 19. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f be a ℘ f in(T

℘n(A)
f s )-fuzzy set over the invariant set ℘ f in(T

℘n(A)
f s ) having

the additional property that f is a progressive function. Then T0 ∈ ℘ f in(T
℘n(A)
f s ) such that

f (T0) = T0.

Corollary 20. Let (T, ·) be an invariant set such that T does not contain a uniformly supported,
infinite subset. Let f be a ℘ f in(T

℘n(A)
f s )-fuzzy set over the invariant set ℘ f in(T

℘n(A)
f s ) which

is order-preserving. Then there is a least T0 ∈ ℘ f in(T
℘n(A)
f s ) supported by supp( f ) such that

f (T0) = T0.

For a particular class of T-fuzzy sets, i.e., for those ℘ f in(A)-fuzzy sets over the invari-
ant set ℘ f in(A) (which are actually finitely supported self-functions defined on the finite
powerset of atoms) that satisfy some additional conditions such as injectivity, surjectivity,
monotony or progressivity, we were able to prove stronger fixed point properties than
in the general case; we mention some of them here.

Proposition 8. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) which is strictly
order-preserving (i.e., f has the property that U ( V implies f (U) ( f (V)). Then we have
Z \ supp( f ) = f (Z \ supp( f )) for all Z ∈ ℘ f in(A).

Proposition 9. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) with the property that
Y ⊆ f (Y) for all Y ∈ ℘ f in(A). There are infinitefixed points of f , namely, those finite subsets of A
containing all the elements of supp( f ).
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Proposition 10. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) which is injective.
For each Y ∈ ℘ f in(A) we have Y \ supp( f ) 6= ∅ if and only if f (Y) \ supp( f ) 6= ∅. Furthermore,
Y \ supp( f ) = f (Y) \ supp( f ).

Proposition 11. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) which is surjective.
For each Y ∈ ℘ f in(A) we have Y \ supp( f ) 6= ∅ if and only if f (Y) \ supp( f ) 6= ∅. Furthermore,
Y \ supp( f ) = f (Y) \ supp( f ).

Proposition 12. Let f be a ℘ f in(A)-fuzzy set over the invariant set ℘ f in(A) having the properties
that f (Y) ⊆ Y for all Y ∈ ℘ f in(A) and f (Y) 6= ∅ for all Y 6= ∅. Then f (Z) = Z for all
Z ∈ ℘ f in(A) with Z ∩ supp( f ) = ∅.

From Theorems 20 and 14 we obtain the following fixed point result for T-fuzzy sets.

Theorem 33. Let (U, �) be an invariant set and (T, ·,v) an invariant, strong inductive set with
a least element 0. Let ϕ : TU

f s → TU
f s be a finitely supported, c-continuous function defined

on the family of all T-fuzzy sets over the invariant set U. Then a least g ∈ TU
f s with the property

that ϕ(g) = g. Furthermore, g = ∨
n∈N

ϕn(0U), whereby ∨ we denoted the least upper bounds

in TU
f s with respect to the relation ≤ defined by f1 ≤ f2 if and only if f1(x) v f2(x) for all x ∈ U,

and 0U : U → T, 0U(x) = 0 for all x ∈ U.

8. Conclusions

This article represents an overview of the properties of L-fuzzy sets and T-fuzzy sets
over possibly infinite universes, properties presented in a discrete manner by involving
the notion of finite support. We presented a relationship between the algebraic support and
the finite support of an (L-)fuzzy set over an invariant set. We translated several concepts
from the framework of classical ZF fuzzy sets (such as α− cut, operations with fuzzy sets,
fuzzy extension principles, fuzzy subgroups) into the framework of finitely supported
structures, and proved the consistency of their related results in the new framework
of finitely supported structures.

Several fixed-point theorems for partially ordered sets (that can be particularly ap-
plied to the families of L-fuzzy sets and T-fuzzy sets over invariant sets) are adequately
reformulated in the framework of finitely supported sets; they can also be generalised
by imposing requirements only for uniformly supported subsets. Also presented are other
fixed point properties for functions defined on invariant sets containing no uniformly
supported, infinite subsets. Specific properties of self-functions defined on finite powersets
are presented as corollaries of some general results. We presented even stronger fixed-point
properties for order preserving, injective, surjective or progressive self-functions defined
on the finite powerset of atoms. We introduced and described lattices and inductive sets
in the framework of finitely supported structures. We connected the concept of L-fuzzy
set with the concept of invariant complete lattice, and the concept of T-fuzzy set with
the concept of invariant strong inductive set. Some particular invariant complete lattices
were studied. We mentioned the finitely supported subsets of an invariant set, the finitely
supported functions from an invariant set to an invariant complete lattice (i.e., the finitely
supported L-fuzzy sets with L being an invariant complete lattice) and the finitely sup-
ported (fuzzy) subgroups of an invariant group. For these particular invariant complete
lattices, the theorems presented in this article can provide new properties. We also pre-
sented some examples of invariant strong inductive sets, such as the finite powerset of a
set containing no uniformly supported, infinite subset. For the finitely supported self-
functions on invariant strong inductive sets, some fixed point properties are mentioned.
The related fixed-point properties (presented in the general case) lead to applications
in the theory of L-fuzzy sets and T-fuzzy sets over invariant sets (e.g., Theorems 15, 28
and 33). According to Examples 3 and 7, the functions which associate with any classical
fuzzy set on an invariant set means its algebraic support or its finite support are fss L-fuzzy
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sets, and in some cases, fss T-fuzzy sets. In this way, we can discretely model the infinite
classical fuzzy sets over invariant sets in terms of finite supports or algebraic supports
using the properties of fss L-fuzzy sets or fss T-fuzzy sets, respectively.

9. Future Research

We mention below some future work directions.

• Finitely supported monoids can be used to describe automata and languages over infi-
nite alphabets. A relaxed notion of ‘finite’ called ‘orbit finite’ is defined; it means ‘hav-
ing a finite number of orbits (equivalence classes) under a certain group action’ [15].
A future goal is to describe and study finitely supported M-fuzzy sets, where M is
a finitely supported monoid (similarly to finitely supported T-fuzzy sets) and finitely
supported fuzzy submonoids (similarly to finitely supported fuzzy sugbroups). For
these fuzzy structures, we would provide embedding theorems, isomorphism proper-
ties, universality theorems and applications in automata theory and programming
languages.

• The study of fixed points is important since they can encode recursion or model induc-
tive reasoning. Other applications can be found in the theory of computable functions,
in logic, in abstract interpretation to prove the existence of least fixed points for specific
mappings (defined on chain complete sets of properties) modelling the transitions
between properties of programming languages, in formal semantics of programming
languages and in the theory of iterated function systems. A fixed-point induction
technique in the framework of finitely supported structures could be presented,
to prove even stronger properties than those that would lead to usual replacement
of ‘non-atomic structure’ with ‘atomic, finitely supported structure’ in a related ZF
result. For example, a fixed-point theorem of Knaster–Tarski type claims that a finitely
supported, monotone self-function defined on a finitely supported partially ordered
set having the property that any finitely supported subset has a least upper bound
is valid in fss if we require the existence of least upper bounds only for uniformly
supported subsets, and not for all finitely supported subsets of the domain of the
related function.

• We intend to present some examples of apparently large sets (such as finite powersets
or functions spaces) that satisfy some Dedekind-finiteness properties and for which
the fss fixed-point properties can provide a certain form of stability. We particularly

mention ℘ f in(X), ℘ f in(XA≤n

f s ), ℘ f in(X℘≤n(A)
f s ) that are proved to be fss Dedekind finite

whenever X is a finitely supported Dedekind finite set (i.e., whenever X has the prop-
erty that every finitely supported injection f : X → X is also surjective). Many
other pair-wise, non-equivalent forms of infinity such as Levy infinity, Tarski infinity,
Kuratowski infinity, Mostowski infinity, ascending infinity, etc. can be defined and
compared; for functions on sets satisfying these forms of infinity, new calculability
and stability properties could be presented.

• Uncertainty is an inherent property of all living systems. P systems are models used
in membrane computing inspired by the behaviour of living cells [16]. There have
been a few defined fuzzy P systems: fuzzy cell-like P systems and fuzzy reasoning
spiking neural P systems. Fuzzy aspects have been used to handle the uncertainty
in the number of copies of the reactants, imperfectness of objects in membranes
and approximate copies of reactants used in reactions. A possible future work is
to continue the existing development by introducing fss L-fuzzy sets in membrane
computing, and studying them together with the natural finiteness properties.

Author Contributions: All authors contributed equally to this work. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2021, 9, 1651 23 of 23

References
1. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Zimmermann, H.J. Fuzzy Set Theory and Its Applications; Springer: Dordrecht, The Netherlands, 2001.
3. Barwise, J. Admissible Sets and Structures: An Approach to Definability Theory; Perspectives in Math. Logic; Springer:

Berlin/Heidelberg, Germany, 1975; Volume 7.
4. Pitts, A.M. Nominal Sets Names and Symmetry in Computer Science; Cambridge University Press: Cambridge, UK, 2013.
5. Alexandru, A.; Ciobanu, G. Finitely Supported Mathematics: An Introduction; Springer: Cham, Switzerland, 2016.
6. Alexandru, A.; Ciobanu, G. Foundations of Finitely Supported Structures: A Set Theoretical Viewpoint; Springer: Cham, Switzerland,

2020.
7. Alexandru, A.; Ciobanu, G. Properties of the atoms in finitely supported structures. Arch. Math. Logic 2020, 59, 229–256. [CrossRef]
8. Alexandru, A.; Ciobanu, G. Fuzzy sets within finitely supported mathematics. Fuzzy Sets Syst. 2018, 339, 119–133. [CrossRef]
9. Alexandru, A.; Ciobanu, G. Fixed point results for finitely supported algebraic structures. Fuzzy Sets Syst. 2020, 397, 1–27.

[CrossRef]
10. Alexandru, A.; Ciobanu, G. Uniformly supported sets and fixed points properties. Carpath. J. Math. 2020, 36, 351–364. [CrossRef]
11. Alexandru, A.; Ciobanu, G. Abstract interpretations in the framework of invariant sets. Fundam. Inf. 2016, 144, 1–22. [CrossRef]
12. Alexandru, A.; Ciobanu, G. Mathematics of multisets in the Fraenkel-Mostowski framework. Bull. Math. Soc. Sci. Math. Roumanie

2015, 58, 3–18.
13. Rosenfeld, A. Fuzzy groups. J. Math. Anal. Appl. 1971, 35, 512–517. [CrossRef]
14. Mordeson, J.N.; Bhutan, K.R.; Rosenfeld, A. Fuzzy Group Theory; Studies in Fuzziness and Soft Computing 182; Springer:

Berlin/Heidelberg, Germany, 2005.
15. Bojanczyk, M.; Klin, B.; Lasota, S. Automata with group actions. In Proceedings of the 26th Symposium on Logic in Computer

Science, Toronto, ON, Canada, 21–24 June 2011; pp. 355–364.
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