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Abstract: The environment affects population dynamics through multiple drivers. Here we explore
a simplified version of such influence in a three-species food chain, making use of the Hastings–
Powell model. This represents an idealized resource–consumer–predator chain, or equivalently, a
vegetation–host–parasitoid system. By stochastically perturbing the value of some parameters in
this dynamical system, we observe dramatic modifications in the system behavior. In particular,
we show the emergence of on–off intermittency, i.e., an irregular alternation between stable phases
and sudden bursts in population size, which hints towards a possible conceptual description of
population outbursts grounded into an environment-driven mechanism.

Keywords: on–off intermittency; dynamical systems; theoretical ecology; stochastic forcing; hastings-
powell model; food chain

1. Introduction

When Batchelor and Townsend [1] observed a peculiar irregularity in a turbulent
fluid, namely the alternation between sudden bursts of motion and a milder, non-turbulent
activity, they used the word intermittency to describe it. Since then, the same term has been
used to describe several types of switching behavior between different dynamical regimes.
Here, we are especially interested in the phenomenon called on–off intermittency [2].

On-off intermittency has been observed in real systems, such as electronic circuits [3],
earthquakes [4], solar cycles [5], electrodynamics of liquid crystals [6], as well as theo-
retically studied through numerical approaches [2,7] with specific focus on discrete-time
population dynamics models (i.e., maps) [8–10].

The goal of this work is to expand these studies to the case of a stochastically driven
system of coupled ordinary differential equations (ODEs). To this end, we include the
random variability of suitable model parameters to simulate environmental stochasticity
in a system representing the population dynamics of three different species. In the au-
tonomous case, a three-dimensional ODE system is the minimum requirement to allow
chaotic dynamics owing to the Poincaré–Bendixson theorem [11].

Our choice here is the well-known Hastings–Powell model [12,13], a system that
describes the evolution of three species, anonymously called x, y, z, which represent
primary producers (resource), consumers (or host) and predators (or parasitoids). We
stochastically perturb some of the system parameters, which measure species interactions
or carrying capacity, showing that on–off intermittent behaviour can emerge. This feature
could qualitatively explain the onset of outbreaks (also called irruptions) in the population
size of some of the ecosystem components [14,15].

Section 2 describes the properties of on–off intermittency, summarizing results from
previous studies that inspired this work. Section 3 introduces the Hastings–Powell model,
describes its parameters and explains the numerical approach that is adopted. In Section 4,
we illustrate the occurrence of on–off intermittency when one introduces environmentally
driven—and stochastically simulated—parameters. Finally, Section 5 summarizes our
results and outlines some possible future developments.
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2. On-Off Intermittency

On-off intermittency is characterized by the alternation between regular phases, which
duration can span a rather wide range of orders of magnitude, and burst phases, where a
sudden instability throws the system into (possibly) chaotic behavior. This kind of inter-
mittency can appear in a dynamical system that has an invariant manifold (in the simplest
case, a fixed point) whose stability properties depend on an external control parameter but
whose phase-space position is only weakly dependent upon the same parameter.

When such control parameter has an irregular temporal variation, either stochastic or
chaotic, the manifold alternates between stable and unstable conditions. In order to realize
on–off intermittency, a system must keep its dynamics in the proximity of the manifold,
which in the stable phases must be attractive enough to allow for long periods during which
the system resides in the vicinity of the manifold. Lingering near this temporarily stable
manifold, the system undergoes protracted regular phases, when suddenly the volatility
of the control parameter induces the instability of the manifold and causes the system to
burst away from it, leading to values which are quite different from its typical statistics.

In past years, on–off intermittency has raised some interest in the scientific community.
After its basics were scouted by the work of Platt et al. [2], Heagy et al. [7] gave a math-
ematical sounding demonstration of the power law underlying the duration of laminar
phases for maps with the specific form yn+1 = zn f (yn) (with the variable zn coming from
a random or a chaotic process), then Toniolo et al. [8] further deepened this latter aspect,
inspecting the occurrence of on–off intermittency in a stochastically driven logistic map.
Due to the possibility of adopting this concept to qualitatively explain ecological outbreaks,
in 2010 Metta et al. [9] and Moon [10] investigated Toniolo’s framework in the context of
coupled logistic equations. While the former focused on kurtosis as an index to identify
on–off intermittency, the latter put the spotlight on the stability of the coupled system,
employing the largest Lyapunov Exponent to quantify the chaotic dynamics occurring
with different coupling strengths of adjacent logistic systems. Here, we continue the explo-
ration of on–off intermittency in the context of ecosystem dynamics and study its presence
and characteristics in a system of coupled ordinary differential equations representing a
three-layer food chain.

3. Hastings–Powell Model

Alan Hastings and Thomas Powell introduced a three-dimensional dynamical sys-
tem [12] in order to illustrate chaotic behavior in a food web involving three trophic levels.
They employed the type 2 functional response (i.e., a Michaelis–Menten functional form)
shown in the 1975 Murdoch and Oaten’s paper [16] to couple the different trophic levels of
the system. The basic equations of the Hastings–Powell model are:

dX
dT

= R0X
(

1 − X
K0

)
− C1

A1X
B1 + X

Y (1)

dY
dT

=
A1X

B1 + X
Y − A2Y

B2 + Y
Z − D1Y (2)

dZ
dT

= C2
A2Y

B2 + Y
Z − D2Z (3)

where X, Y, Z represent the biomass of three species on three different trophic levels and T
is time. Throughout the three equations, subscripts 0, 1, 2 indicate parameters referring to,
respectively, X, Y, Z. R0 and K0 are, respectively, the growth rate and the carrying capacity
of the species X. The constants A1, A2, B1, B2 characterize the functional responses among
the species, representing the saturation of the response; specifically, the Bs are the prey
populations that correspond to half the maximum value of the predation rate per unit prey.
C−1

1 , C2 are the conversion rates from resource to consumer and from prey to predator,
respectively, while, finally, D1, D2 are constant death rates.
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A suitable nondimensionalization leads to redefine the variables of the system:

x =
X
K0

y =
C1Y
K0

z =
C1Z
C2K0

t = R0T

(4)

Consequently, the nondimensional parameters are:

a1 =
K0 A1

R0B1
b1 =

K0

B1
d1 =

D1

R0

a2 =
C2 A2K0

C1R0B2
b2 =

K0

C1B2
d2 =

D2

R0

(5)

Thus, the final equations of Hastings–Powell model are:

dx
dt

= x(1 − x)− a1x
b1x + 1

y (6)

dy
dt

=
a1x

b1x + 1
y − a2y

b2y + 1
z − d1y (7)

dz
dt

=
a2y

b2y + 1
z − d2z (8)

Hastings and Powell chose the model parameters to be, in their words, “biologically
reasonable”. For example, the parameter values associated with the consumer (y) are larger
than those for the predator/parasitoid (z), so that x and y interact on a faster time scale
with respect to y and z. We defer to the original work of Hastings and Powell for further
discussions on parameter values.

Note that Equation (8) is conceptually different from Equations (6) and (7): indeed,
it is possible to factorize z on the right hand side, leading to dz

dt =
(

a2y
b2y+1 − d2

)
z. A

separation of variables allows to retrieve the exact solution z(t) = z(0) exp
(

a2y
b2y+1 − d2

)
,

which could replace the differential equation in the numerical simulation. This peculiarity
makes Equation (8) quite different from the other two equations and, therefore, we expect
it to react differently to stochastic forcing.

In Appendix A we provide a concise analysis of the fixed points in the Hastings–
Powell model.

Stochastic Parameters and Numerical Simulations

To simulate how the environment affects the evolution of the three-species food
chain in the Hasting-Powell model, we allow some of the model parameters to become
random numbers. In particular, we allow either a1 or K0 in Equations (5)–(8) to vary
stochastically with a uniform distribution between 0 and α. The computation of the
stochastic term is performed at every time step of the numerical simulation, feeding the
same term throughout all the steps needed by the Runge–Kutta 4 scheme employed. The
random number at each time step is independent of the previous value, that is we force the
system with white noise.

The different cases are run for 108 time units, after a spin-up time of 106 time units
to eliminate the initial transient. Initial conditions for x0, y0 are randomly and uniformly
chosen between 0 and 1 while the initial value for z0 is randomly and uniformly chosen
between 4 and 5. This choice for z0 is related to the convenience of starting as close as
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possible to the system attractor, thus reducing the spin-up time. Laminar phases are defined
as x > 1 − 0.001 or y, z < 0.001—i.e., a distance of 10−3 from the stable fixed point.

4. Results
4.1. Intensity of Grazing

The parameter a1 measures the intensity of grazing by the consumer (y) on the resource
(x) in the coupling term between the equations for x and y in Equations (6) and (7). As a
first test, we replace a1 with the random number ã1, uniformly distributed between 0 and
α. In this way, the time-averaged value of ã1 becomes ā1 = α/2. Therefore, the coupling
between x and y becomes:

ã1x
b1x + 1

y (9)

Here we use α = 3.5, which gives ā1 = 1.75. For the other parameters we adopt the
same values as in the original paper of Hastings and Powell, namely:

b1 = 3 d1 = 0.4 a2 = 0.1 b2 = 2 d2 = 0.01 (10)

Figure 1 shows the time series of the three trophic levels (x, y and z) and a running
mean of the instantaneous value of ã1. The time series of the resource x and of the
herbivorous y visually illustrate the occurrence of on–off intermittency, with the alternation
of long laminar phases and irregularly spaced bursts. The laminar phases of x are centered
on x = 1, corresponding to a fixed point of the system, and the bursts are towards lower
values when the herbivorous density suddenly increases. The z signal, instead, corresponds
to a smoothed version of the intermittent signals and it is slightly delayed with respect to
the herbivorous dynamics, as expected from the form of the equations.

Figure 1. Case α = 3.5 for stochastic a1. Time series of x (Panel a), y (Panel b), z (Panel c) and of the
running mean of ã1 computed on a window with width τ = 200—the dotted line is the mean value
of ã1 (Panel d).

As mentioned above, the simplest case of on–off intermittency appears when the
stability of a fixed point of the system depends on an external parameter that varies
irregularly in time, thus determining an alternation between stability and instability of the
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fixed point. To motivate our choice of α = 3.5, in Figure 2 we show the orbit diagram for y
in the range 0 ≤ a1 ≤ 5 (the orbit diagram for x is conceptually similar). In order to find on–
off intermittency, we need to span a parameter range covering the interval between stability
and chaos. The chosen value of α suits this well, forcing the instantaneous value of a1 to
vary between 0 and 3.5. From Figure 1, one sees an approximate correspondence between
intermittent bursts and periods when the running average of ã1 exceeds its average value
which, in this case, approximately corresponds to the stability limit of the fixed point.

Figure 2. Orbit diagram depicting the attractors of y as a function of a1. Other parameter values as
in the original Hastings–Powell model.

The first distinctive feature of on–off intermittent time series is the shape of the
probability distribution of the off-phase durations—i.e., the number of time steps in which
the system endures off (laminar) behaviour. It has been shown that for a simplified type of
discrete maps [7,8], for on–off intermittency the distribution of laminar phase duration, D,
follows a power law, D− 3

2 . Figure 3 shows that, also for this continuous on–off intermittent
system, the x and y signals display the same approximate power-law distribution of off
phases, at least in a limited range of off-phase durations.

Another characteristics of the intermittent signals is the broad distribution of the
amplitudes. Figure 4 shows the distribution of maxima for on–off intermittency and
for standard chaotic behavior with a fixed value a1 = 5. An approximate power-law
distribution of the maxima is evident for the intermittent dynamics.
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Figure 3. Duration of the off (laminar) phases of the x (dashed) and y (solid) components with
a stochastic a1 parameter in the Hastings–Powell model. The dotted line indicates a dependence
proportional to D− 3

2 .

Figure 4. Probability distribution of the maxima of 1 − x (Panel a), y (Panel b), z (Panel c), in case of
non-intermittent dynamics (solid line) and for on–off intermittent behavior (dotted line).

Conceptually, inserting the stochastic term as done in Equation (9) is tantamount to
randomly forcing A1 in Equations (1) and (2). Thus, the results presented in this section
indicate that the environmental fluctuations (represented by the stochastic term), randomly
influencing the rate of successful consumption by y of the resource x, can cause on–off
intermittency in both compartments.

4.2. Carrying Capacity K0

Another interesting option is to allow the environment to stochastically affect the
system carrying capacity, K0. Even though a1 and K0 are mathematically related, their
ecological meaning is different: the former is related to the interaction between x and y
and the latter only to the maximum value of x in the absence of consumers. Therefore, they
deserve separate analyses from an ecological standpoint. Looking at Equation (5), we infer
that to this end we must multiply a1, b1, a2 and b2 in Equations (6)–(8) by the same value
of a random number ρ, uniformly distributed in the interval 0 ≤ ρ ≤ α. The parameters
chosen for this Section are the same described in Equation (10), with a1 = 2. Following the
rationale that yielded Equation (9), the couplings in Equations (6)–(8) become:
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ã1x
b̃1x + 1

y (11)

ã2y
b̃2y + 1

z (12)

Choosing different values for α leads to different and peculiar behaviours.
From α = 0 to α ≈ 1.3 the system undergoes a long lasting stability at x = 1, y = 0,

z = 0. For α = 1.4 we observe the occurrence of on–off intermittency for x and y, while
after the transient the z species becomes extinct, that is, the predator (parasitoid) cannot
control the consumer (host).

Figure 5 shows the time series of x and y, along with the probability distributions of
the maxima and the moving average of the value of the random number ρ controlling K0.
As in the case of stochastic variability in a1, the intermittency of the time series is matched
by the fluctuations of the running mean of K0, with low values of the latter corresponding
to laminar phases of the time series.

Figure 6 shows the probability distribution of the laminar phase durations, which
matches a power law with D− 3

2 .

Figure 5. Stochastic K0 with α = 1.4. Time series of x (Panel a), y (Panel b) and of the running mean
of the random variable ρ controlling K0, computed on a window with width τ = 2000—the dotted
line is the mean value of ρ (Panel d). The probability distributions of the maxima of 1 − x and y are
shown in (Panel c).



Mathematics 2021, 9, 1641 8 of 11

Figure 6. Laminar phase duration of the x (dashed) and y (solid) variables for stochastic variability
of the carrying capacity K0 in the case α = 1.4. The dotted line is proportional to D− 3

2 .

For α = 1.5, x and y show chaotic dynamics, but the most intriguing phenomenon is
related to the apparent on–off intermittency of z, as shown in Figure 7. A close inspection
of the laminar phase durations, however shows that extended laminar periods are quite
likely to occur, thus the curve is less steep than D− 3

2 .

Figure 7. (Left panel) Time series of z in the case α = 1.5; (Right panel) Laminar phase durations of the predator/parasitoid
z (solid) for stochastic K0 with α = 1.5. The dashed line is proportional to D− 3

2 .

Finally, we report that at larger values of α—here we employ α = 2.1—non-intermittent,
chaotic dynamics for z is paired with approximately on–off intermittent behavior for x
and y. Figure 8 shows a time series of y along with the laminar phase durations, which
approximately follows the simple power law (even though less robustly than in Figure 6).

The implications of these results are intriguing. If the environment induces a random
variability of the carrying capacity K0, allowing it to temporarily reach large enough values,
on–off intermittency can emerge quite easily in both x and y—that is, in the primary
producers and their consumers. By further increasing α, that is, the amplitude of the
random variability of K0, a peculiar intermittency in the predator (parasitoid) z develops.
This implies that sudden bursts in a population could be induced far from the trophic level
that is directly affected by the environmental fluctuations. For even larger values of the
fluctuations in K0 (α = 2.1), the resource and the consumer again undergo approximate
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on–off behavior, while the predator behaves chaotically. Clearly, the complexity of the
system behavior is huge, and a deeper exploration of the different dynamics and of their
ecological implications is deferred to future works.

Figure 8. (Left panel) Time series of y in case α = 2.1; (Right panel) Laminar phase durations of the x (dashed) and y (solid)
variables for stochastic K0 with α = 2.1. The dotted line is proportional to D− 3

2 .

5. Discussion and Conclusions

This paper conceptually extends the works of Platt et al. [2], Heagy et al. [7], To-
niolo et al. [8] and Metta et al. [9] and it focuses on the emergence of on–off intermittency in
idealized food chains. In our view, such dynamical behavior can be taken as a conceptual
description of species outbreak events in different levels of the food chain.

To explore this issue, we used the Hastings–Powell model, a well-known system that
allowed us to inspect a simple three-species food chain: resource, consumer and predator
(or else, vegetation, pest host species and parasitoid). Environmental forcing was supposed
to act on the resource dynamics, and it was represented as an imposed random variation in
some of the controlling parameters.

When the stochastic variability is inserted into the parameter controlling the intensity
of resource consumption (i.e., y on x, Section 4.1), on–off intermittency easily arises in both
these variables, while the predator z displays a smoother dynamics.

Stochastic variability of the carrying capacity (Section 4.2) leads to intriguing results;
indeed, increasing the range of random variations to higher values sequentially generates
different behaviours:

• For low maximum values of the carrying capacity, we observe only a stable fixed point
for x, y and z;

• Above a threshold of the maximum value of the carrying capacity, we observe on–off
intermittency in x and y, while z goes extinct;

• For larger ranges of random variations, chaotic dynamics for x and y and intermittent
behavior in z;

• For still larger fluctuations, we observe weak on–off intermittency in x and y and
chaotic behavior of z.

Ecologically, this suggests that a low carrying capacity for x implies that the species
directly feeding on it (y) can endure but on average it does not supply enough biomass
for z to survive. A slightly larger value of K0 allows for z to “jump start”, while a higher
average value of the carrying capacity is enough to fully support the predator species,
bringing back on–off intermittency in the dynamics of x and y. Of course, this is just an
euristic representation that requires further exploration.

Several points remain open to investigation, such as:

• Would a deterministic, chaotic system representing the environment dynamics, in
place of the stochastic process adopted here, allow for a more thoroughly mathematical
analysis of the problem?
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• How would spatial extension, with coupling across different location of the same
species, affect our results?

• How would on–off intermittency manifest itself (if it does) in a food web rather than a
simple food chain?

• Can we find intermittency when using real-world datasets or controlled laboratory
experiments in microcosms?

Such questions are, in our opinion, relevant to better understand bursting phenomena
in ecology and will be a subject of future research, after the first demonstration of the
possibility of on–off intermittent behavior in model food chains that was illustrated here.
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Appendix A. Fixed Points in Hastings–Powell Model

A thorough analysis of the fixed points of the models is beyond the scope of this paper.
Nevertheless, it is useful to briefly recap them, in order to give some perspective on the
results obtained, especially on the population values typically attained during the laminar
phases. Checking the fixed points in the system leads to four different results:

• (0, 0, 0) Computing the Jacobian and substituting these values leads to the eigenvalues
1, −d1, −d2. Note that the ecologically-relevant case has d1, d2 > 0, so this fixed point
is a saddle. If we numerically perturb the system along the x direction (e.g., adding a
small perturbation to x = 0), the system falls into the (1, 0, 0) fixed point (see below)
while, perturbing it along other directions, the null state is attractive.

• (1, 0, 0) The three eigenvalues are −1, a1
(b1+1) − d1, −d2. −1 and −d2 are always

negative, but the second eigenvalue depends on the values of the parameters a1, b1.
With the values used in the paper, the eigenvalue is positive and the system is therefore
repulsive along one direction (it can be numerically checked perturbing y = 0). If
a1 < 1.6, then the fixed point becomes stable.

• From Equation (8), we obtain y∗ = d2
a2−d2b2

; inserting it in Equation (6) leads to two
(rather cumbersome) different solutions for x∗ and, consequently, two solutions for z∗

from Equation (7). With the parameter values adopted in this work, one solution for
x∗ is negative and therefore not acceptable. The other solution is positive and, for the
first case in Section 4.1 (with a1 = 5, as in Hastings–Powell’s paper), the fixed point is
x∗ ∼ 0.819, y∗ ∼ 0.125, z∗ ∼ 9.808 (numerically verified).
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