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Abstract: Let Lip([0, 1]) be the Banach space of all Lipschitz complex-valued functions f on [0, 1],
equipped with one of the norms: ‖ f ‖σ = | f (0)|+ ‖ f ′‖L∞ or ‖ f ‖m = max{| f (0)|, ‖ f ′‖L∞}, where
‖·‖L∞ denotes the essential supremum norm. It is known that the surjective linear isometries of such
spaces are integral operators, rather than the more familiar weighted composition operators. In this
paper, we describe the topological reflexive closure of the isometry group of Lip([0, 1]). Namely,
we prove that every approximate local isometry of Lip([0, 1]) can be represented as a sum of an
elementary weighted composition operator and an integral operator. This description allows us to
establish the algebraic reflexivity of the sets of surjective linear isometries, isometric reflections, and
generalized bi-circular projections of Lip([0, 1]). Additionally, some complete characterizations of
such reflections and projections are stated.

Keywords: algebraic reflexivity; topological reflexivity; isometry group; Lipschitz function; Gleason–
Kahane–Żelazko theorem

MSC: 47B38; 47B33; 46B04

1. Introduction

A function f : [0, 1] → C is said to be Lipschitz if there exists a positive constant K
such that

| f (x)− f (y)| ≤ K|x− y|, ∀x, y ∈ [0, 1].

The infimum of such constants K is called the Lipschitz constant of f and it is denoted
by Lip( f ).

On the other hand, a measurable function f : [0, 1] → C is said to be essentially
bounded if there is a positive constant K such that

µ({x ∈ [0, 1] : | f (x)| > K}) = 0,

where µ denotes Lebesgue measure on the Borel subsets of [0, 1]. The infimum of such
constants K is called the essential supremum of f and we denote it here by ‖ f ‖L∞ .

Let Lip([0, 1]) be the linear space of all complex-valued Lipschitz functions on [0, 1].
This space is closely related to the space L∞([0, 1]) of all complex-valued essentially
bounded measurable functions on [0, 1].

Namely, the derivative map f 7→ f ′ is an isometric isomorphism from the space
Lip([0, 1]) (with the Lipschitz seminorm Lip(·)) onto the space L∞([0, 1]) (with the essential
supremum norm ‖·‖L∞ ). On L∞([0, 1]), we take into account the usual convention about
identifying functions equal almost everywhere.

The isometry group of Lip([0, 1]) has been studied under the following equivalent norms:
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‖ f ‖Σ = ‖ f ‖∞ +
∥∥ f ′
∥∥

L∞ ,

‖ f ‖M = max
{
‖ f ‖∞,

∥∥ f ′
∥∥

L∞

}
,

‖ f ‖σ = | f (0)|+
∥∥ f ′
∥∥

L∞ ,

‖ f ‖m = max
{
| f (0)|,

∥∥ f ′
∥∥

L∞

}
,

where
‖ f ‖∞ = sup{| f (x)| : x ∈ [0, 1]} ( f ∈ Lip([0, 1])).

Indeed, for any f ∈ Lip([0, 1]), we have

1
2
‖ f ‖σ ≤ ‖ f ‖m ≤ ‖ f ‖M ≤ ‖ f ‖σ ≤ ‖ f ‖Σ ≤ 2‖ f ‖M.

Furthermore, (Lip([0, 1]), ‖·‖Σ) is a Banach algebra as it satisfies the Banach algebra law:

‖ f g‖Σ ≤ ‖ f ‖Σ‖g‖Σ ( f , g ∈ Lip([0, 1])),

but Lip([0, 1]), equipped with any of the other norms, is only a complete normed algebra
in the sense that there exists a positive constant K (not necessarily equal to 1) such that

‖ f g‖ ≤ K‖ f ‖‖g‖ ( f , g ∈ Lip([0, 1])).

Surjective linear isometries of Lip([0, 1]), with both the σ-norm or the m-norm, were
characterized as a sum of a weighted composition operator and an integral operator by
Koshimizu [1,2], in contrast with the isometry groups of Lip([0, 1]), with both the Σ-norm
or the M-norm, whose members have a canonical form in the sense that they can be
represented as a weighted composition operator [3–6].

Indeed, the prominent part of the representation of the isometries on Lip([0, 1]) with
the σ-norm or the m-norm lies on the integral operator as the involved weighted composi-
tion operator is elementary in the sense that it is the evaluation at the point 0 multiplied by
a unimodular constant.

To present our results, we recall the concepts of reflexivity studied in this paper. Let
E be a Banach space, B(E) be the space of all bounded linear operators from E into E,
and S be a nonempty subset of B(E). For each e ∈ E, let S(e) be {L(e) : L ∈ S} and let
S(e) denote the norm-closure of S(e) in E. Define the algebraic reflexive closure and the
topological reflexive closure of S , respectively, by

refalg(S) = {T ∈ B(E) : T(e) ∈ S(e), ∀e ∈ E},

reftop(S) =
{

T ∈ B(E) : T(e) ∈ S(e), ∀e ∈ E
}

.

We say that S is algebraically reflexive (topologically reflexive) if refalg(S) = S
(respectively, reftop(S) = S).

In the case S = Iso(E) (the set of all linear isometries from E onto E), the elements of
refalg(S) and reftop(S) are known as local isometries and approximate local isometries of
E, respectively.

The consideration of approximate local isometries instead of local isometries is more
general and allows us to deal with the problems of topological reflexivity and algebraic
reflexivity at the same time.

The study of algebraic and topological reflexivity of the sets of isometries, derivations,
and automorphisms on operator algebras and function algebras is a classical problem
which follows attracting the attention of numerous researchers. Molnár’s monograph [7]
can give a complete account of these developments.
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Reflexivity problems have been addressed on spaces of vector and scalar-valued
Lipschitz functions defined on metric spaces, equipped with norms of type ‖·‖Σ and
‖·‖M [8–12]. In the last three references, the canonical form of the isometries of such
spaces allowed the application of the Gleason–Kahane–Żelazko theorem (or of some of its
generalizations [11,13]) in their arguments.

In this paper, we deal with the reflexivity of the isometry group of Lip([0, 1]), equipped
with the σ-norm or the m-norm. We provide the form of approximate local isometries of
Lip([0, 1]). With the aid of this description, we prove that the isometry group of Lip([0, 1]),
with each one of these norms, is algebraically reflexive.

Although the non-canonical form of the isometries on such spaces added initially a
little more difficulty to the problem, another application of a spherical variant of Gleason–
Kahane–Żelazko theorem, stated in [11], allows us to show that every approximate local
isometry of Lip([0, 1]) admits a representation as a sum of an elementary weighted com-
position operator and an integral operator. Compare this fact with [11], p. 250, where an
example shows that the cited generalization of Gleason–Kahane–Żelazko theorem can not
be applied when the isometry group is not canonical.

We prove also that the sets of isometric reflections and generalized bi-circular pro-
jections on Lip([0, 1]) are algebraically reflexive. Our approach requires to characterize
these types of maps on Lip([0, 1]), endowed with the σ-norm or the m-norm. This kind of
projections was introduced in [14] and they have been characterized in various settings
(see, for example, in [10,15] and the references therein).

2. Preliminaries

Let Lip([0, 1]) denote the linear space of all complex-valued Lipschitz functions f on
[0, 1]. This space is connected with the space L∞([0, 1]) of all complex-valued essentially
bounded measurable functions f on [0, 1].

Namely, it is known (see, for example, Theorem 1.36 and Corollary 1.39 in [16]) that if
f is function from [0, 1] to C, then the following are equivalent:

(i) f belongs to Lip([0, 1]).
(ii) f is differentiable almost everywhere, its derivative belongs to L∞([0, 1]) and

f (x) = f (0) +
∫ x

0
f ′(t) dt (x ∈ [0, 1]).

(iii) There exists a function g ∈ L∞([0, 1]) such that

f (x) = f (0) +
∫ x

0
g(t) dt (x ∈ [0, 1]).

Moreover, Lip( f ) = ‖ f ′‖L∞ = ‖g‖L∞ . Therefore, we can identify L∞([0, 1]) with{
f ′ : f ∈ Lip([0, 1])

}
.

Throughout the paper, we will sometimes apply (without any explicit mention) the
traditional convention in the space L∞([0, 1]) about identifying functions equal almost
everywhere on [0, 1].

In what follows, σ(·) denotes the spectrum. To simplify, we introduce the follow-
ing notations:

T = {z ∈ C : |z| = 1},
L∞
T ([0, 1]) = { f ∈ L∞([0, 1]) : σ( f ) ⊆ T},

Aut(L∞([0, 1])) = {Φ is a unital algebra automorphism of L∞([0, 1])}.

From now on, the symbols 1 and ι stand for the function with the constant value 1 and
the identity function on [0, 1], respectively.
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Koshimizu [1,2] gave the following characterizations of surjective linear isometries on
the space Lip([0, 1]), equipped with the σ-norm or the m-norm given by

‖ f ‖σ = | f (0)|+
∥∥ f ′
∥∥

L∞ ,

‖ f ‖m = max
{
| f (0)|,

∥∥ f ′
∥∥

L∞

}
,

for f ∈ Lip([0, 1]). These descriptions provide a key tool in our study on the reflexivity of
some subsets of linear maps on such spaces.

Theorem 1 ([1,2], Theorem 1.2). Let T be a linear operator of Lip([0, 1]) to Lip([0, 1]). Then,
T is a surjective isometry with respect to the σ-norm or the m-norm if and only if there exist a
constant λ ∈ T, a function ω ∈ L∞

T ([0, 1]) and a map Φ ∈ Aut(L∞([0, 1])) such that

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]).

Notice that the algebraic structure of L∞([0, 1]) appears involved in the description
of such isometries. Let us recall that L∞([0, 1]) is a unital commutative C∗-algebra whose
maximal ideal spaceML∞ is extremally disconnected (see [17], p. 130).

We denote by C(ML∞) the Banach algebra of all complex-valued continuous functions
g onML∞ with the supremum norm:

‖g‖C(ML∞ ) = sup{|g(m)| : m ∈ ML∞}.

If f̂ denotes the Gelfand transform of f ∈ L∞([0, 1]), the Gelfand–Naimark theorem
asserts that the Gelfand transform f 7→ f̂ is an isometric algebra ∗-isomorphism from
L∞([0, 1]) onto C(ML∞).

As every algebra automorphism of C(ML∞) is isometric, it is clear that every al-
gebra automorphism of L∞([0, 1]) is a surjective linear isometry of L∞([0, 1]). Besides,
the automorphism group of L∞([0, 1]) is algebraically reflexive ([18], Corollary 1), but not
topologically reflexive ([19], Theorem 5).

From Theorem 1, we deduce immediately the following.

Corollary 1. Let T be a surjective linear isometry of (Lip([0, 1]), ‖·‖σ) or (Lip([0, 1]), ‖·‖m).
Then, |T( f )(0)| = | f (0)| and ‖T( f )′‖L∞ = ‖ f ′‖L∞ for all f ∈ Lip([0, 1]).

Proof. In view of the expression of T as in Theorem 1, we infer that T( f )(0) = λ f (0) and
T( f )′ = ωΦ( f ′) a.e. on [0, 1] for all f ∈ Lip([0, 1]). Therefore, |T( f )(0)| = | f (0)| and∥∥T( f )′

∥∥
L∞ =

∥∥ωΦ( f ′)
∥∥

L∞ =
∥∥Φ( f ′)

∥∥
L∞ =

∥∥ f ′
∥∥

L∞ .

Regarding its Banach structure, L∞([0, 1]) is isometrically isomorphic to the dual of
the Banach space L1([0, 1]) of all complex-valued Lebesgue integrable functions on [0, 1]
with the norm:

‖ f ‖L1 =
∫ 1

0
| f (t)| dt

(
f ∈ L1([0, 1])

)
,

and thus we may consider that L∞([0, 1]) is equipped with the weak* topology.
A result due to Sikorski and von Neumann (see in [18], Theorem 1) shows that every

weak* continuous algebra homomorphism Φ : L∞([0, 1])→ L∞([0, 1]) has the form Φ( f ) =
f ◦ φ for all f ∈ L∞([0, 1]), where φ : [0, 1]→ [0, 1] is a measurable function. In particular,
every algebra automorphism of L∞([0, 1]) has this form as it is weak* continuous by
Lemmas 1 and 2 in [18] (observe that every algebra automorphism of L∞([0, 1]) is a local
algebra automorphism and it is continuous by Corollary 2.1.10 in [17]). This last fact can
also be proven as in Theorem 1 of [20].
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3. Results

In the rest of the paper, we will consider that the linear space Lip([0, 1]) is equipped
with the σ-norm or the m-norm. As the proofs of the results are similar for both norms, we
only will prove them when Lip([0, 1]) is provided with the σ-norm.

We first give a representation of the elements of the topological reflexive closure of the
isometry group of Lip([0, 1]).

Theorem 2. Every approximate local isometry T of Lip([0, 1]) is a linear isometry having the form

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1], x ∈ [0, 1]),

where λ ∈ T, ω ∈ L∞
T ([0, 1]) and Φ is a unital algebra monomorphism of L∞([0, 1]).

Proof. Let T ∈ reftop(Iso(Lip([0, 1])). We establish some properties to prove the theorem.

Property 1. For every f ∈ Lip([0, 1]), there are sequences {λ f ,n}n∈N in T, {ω f ,n}n∈N in
L∞
T ([0, 1]) and {Φ f ,n}n∈N in Aut(L∞([0, 1])) such that

lim
n→∞

∣∣∣λ f ,n f (0)− T( f )(0)
∣∣∣ = 0

and
lim

n→∞

∥∥∥ω f ,nΦ f ,n( f ′)− T( f )′
∥∥∥

L∞
= 0.

Let f ∈ Lip([0, 1]). By hypothesis, there is a sequence {Tf ,n}n∈N in Iso(Lip([0, 1]))
such that

lim
n→∞

∥∥∥Tf ,n( f )− T( f )
∥∥∥

σ
= 0.

This implies that
lim

n→∞

∣∣∣Tf ,n( f )(0)− T( f )(0)
∣∣∣ = 0

and
lim

n→∞

∥∥∥Tf ,n( f )′ − T( f )′
∥∥∥

L∞
= 0.

By Theorem 1, for each n ∈ N, there are a number λ f ,n in T and maps ω f ,n in L∞
T ([0, 1])

and Φ f ,n in Aut(L∞([0, 1])) such that

Tf ,n( f )(x) = λ f ,n f (0) +
∫ x

0
ω f ,n(t)Φ f ,n( f ′)(t) dt (x ∈ [0, 1]).

As Tf ,n( f )(0) = λ f ,n f (0) and Tf ,n( f )′ = ω f ,nΦ f ,n( f ′) a.e. on [0, 1], then Property 1
is fulfilled.

From on now, Property 1 will be frequently applied without any explicit mention
along the paper.

Property 2. It holds that ‖T( f )‖σ = ‖ f ‖σ, |T( f )(0)| = | f (0)| and ‖T( f )′‖L∞ = ‖ f ′‖L∞ for
all f ∈ Lip([0, 1]).

Let f ∈ Lip([0, 1]). Therefore, there exists a sequence {Tf ,n}n∈N in Iso(Lip([0, 1]))
such that

lim
n→∞

∥∥∥Tf ,n( f )− T( f )
∥∥∥

σ
= 0.



Mathematics 2021, 9, 1635 6 of 13

Clearly, we have

lim
n→∞

∥∥∥Tf ,n( f )
∥∥∥

σ
= ‖T( f )‖σ,

lim
n→∞

∣∣∣Tf ,n( f )(0)
∣∣∣ = |T( f )(0)|,

lim
n→∞

∥∥∥Tf ,n( f )′
∥∥∥

L∞
=
∥∥T( f )′

∥∥
L∞ .

As
∥∥∥Tf ,n( f )

∥∥∥
σ
= ‖ f ‖σ for all n ∈ N and, by Corollary 1,

∣∣∣Tf ,n( f )(0)
∣∣∣ = | f (0)| and∥∥∥Tf ,n( f )′

∥∥∥
L∞

= ‖ f ′‖L∞ for all n ∈ N, we obtain the equalities of Property 2.

Property 3. There exists a number λ ∈ T such that T( f )(0) = λ f (0) for all f ∈ Lip([0, 1]).

Property 2 yields |T(1)(0)| = 1. Take λ = T(1)(0) and define the functional
T0 : Lip([0, 1])→ C by

T0( f ) = λT( f )(0) ( f ∈ Lip([0, 1])).

Clearly, T0 is linear and unital. Let us recall that (Lip([0, 1]), ‖·‖σ) is a complete
normed algebra, but it is not a Banach algebra. To see that T0 is multiplicative, define S0
from Lip([0, 1]) to C by

S0( f ) = T( f )(0) ( f ∈ Lip([0, 1])).

As S0 is linear and

|S0( f )| = |T( f )(0)| ≤ ‖T( f )‖σ = ‖ f ‖σ ≤ ‖ f ‖Σ

for all f ∈ Lip([0, 1]), then S0 is continuous on the unital complex Banach algebra
(Lip([0, 1]), ‖·‖Σ). Pick f ∈ Lip([0, 1]) and take a sequence {λ f ,n}n∈N in T such that

lim
n→∞

∣∣∣λ f ,n f (0)− T( f )(0)
∣∣∣ = 0.

As λ f ,n f (0) ∈ Tσ( f ) for all n ∈ N, it follows that

S0( f ) = T( f )(0) ∈ Tσ( f ) = Tσ( f ).

Applying a spherical variant of the Gleason–Kahane–Żelazko theorem, stated in
Proposition 2.2 of [11], we conclude that T0 = S0(1)S0 is multiplicative. It is easy to see
that if f ∈ Lip([0, 1]) with {x ∈ [0, 1] : f (x) = 0} = ∅, then 1/ f ∈ Lip([0, 1]). Furthermore,
it is obvious that the unital Banach function algebra (Lip([0, 1]), ‖·‖σ) is self-adjoint. Now,
from Proposition 4.1.5 (ii) in [21] we infer that the maximal ideal space of that algebra is
homeomorphic to [0, 1].

Therefore, there exists a point x ∈ [0, 1] such that T0( f ) = f (x) for all f ∈ Lip([0, 1]),
and thus T( f )(0) = λ f (x) for all f ∈ Lip([0, 1]). This implies that x = 0 because T(ι)(0) =
0 by Property 2. Thus, T( f )(0) = λ f (0) for all f ∈ Lip([0, 1]).

Property 4. The function ω := T(ι)′ belongs to L∞
T ([0, 1]).

Clearly, ω ∈ L∞([0, 1]). We may take sequences {λι,n}n∈N in T, {ωι,n}n∈N in L∞
T ([0, 1])

and {Φι,n}n∈N in Aut(L∞([0, 1])) satisfying that

lim
n→∞

∥∥ωι,nΦι,n(ι
′)−ω

∥∥
L∞ = 0.
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As Φι,n(ι′) = Φι,n(1) = 1 for all n ∈ N, it follows that

lim
n→∞
‖ωι,n −ω‖L∞ = 0.

For any m ∈ ML∞ and n ∈ N, we have

||ω̂n,ι(m)| − |ω̂(m)|| ≤ ‖ω̂n,ι − ω̂‖C(ML∞ ) = ‖ωn,ι −ω‖L∞ .

As ω̂n,ι(ML∞) = σ(ωn,ι) ⊆ T for all n ∈ N, we deduce that ω̂(ML∞) ⊆ T and thus
σ(ω) ⊆ T.

Property 5. There exists a unital algebra monomorphism Φ of L∞([0, 1]) such that

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1], x ∈ [0, 1]).

Define the isometric linear embedding S of L∞([0, 1]) into itself by

S( f ′) = T( f )′ ( f ∈ Lip([0, 1]), a.e. on [0, 1]).

For each f ∈ Lip([0, 1]) there are sequences {ω f ,n}n∈N in L∞
T ([0, 1]) and {Φ f ,n}n∈N in

Aut(L∞([0, 1])) such that

lim
n→∞

∥∥∥ω f ,nΦ f ,n( f ′)− S( f ′)
∥∥∥

L∞
= 0.

As each ω f ,nΦ f ,n ∈ Iso(L∞([0, 1])) by the work in Theorem 3 of [22], we deduce that
S belongs to reftop(Iso(L∞([0, 1]))). As L∞([0, 1]) is a uniform algebra, it follows that

S( f ′) = ωΦ( f ′) ( f ∈ Lip([0, 1]), a.e. on [0, 1])

for some ω ∈ L∞
T ([0, 1]) and some unital algebra endomorphism Φ of L∞([0, 1]) (see [23],

Theorem 5). Therefore,

T( f )′ = ωΦ( f ′) ( f ∈ Lip([0, 1]), a.e. on [0, 1]).

By Property 2, Φ is injective. Finally, we have

T( f )(x) = T( f )(0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1])

and Property 3 gives

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]).

We now prove that every local isometry of Lip([0, 1]) is a surjective isometry.

Theorem 3. The isometry group of Lip([0, 1]) is algebraically reflexive.

Proof. Let T ∈ refalg(Iso(Lip([0, 1]))). Clearly, T ∈ reftop(Iso(Lip([0, 1]))) and so Theo-
rem 2 yields

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]),

where λ ∈ T, ω ∈ L∞
T ([0, 1]) and Φ is a unital algebra monomorphism of L∞([0, 1]).

It follows that
T( f )′ = ωΦ( f ′) ( f ∈ Lip([0, 1]), a.e. on [0, 1]).
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In view of Theorem 1, we only need to show that Φ is surjective.
First, we prove that Φ is weak* continuous. By hypothesis, for each f ∈ Lip([0, 1]),

we have
T( f )(x) = λ f f (0) +

∫ x

0
ω f (t)Φ f ( f ′)(t) dt (x ∈ [0, 1]),

where λ f ∈ T, ω f ∈ L∞
T ([0, 1]) and Φ f ∈ Aut(L∞([0, 1])). Therefore,

T( f )′ = ωΦ f ( f ′) (a.e. on [0, 1]).

Consider the map S of L∞([0, 1]) into itself defined in Property 5. Hence we may write
S( f ′) = ω f Φ f ( f ′) a.e. on [0, 1]. As ω f Φ f ∈ Iso(L∞([0, 1])) by Theorem 3 in [22], it follows
that S ∈ refalg(Iso(L∞([0, 1]))). This implies that S ∈ Iso(L∞([0, 1])) by Corollary 1 in [18].
Again, by applying Theorem 3 in [22], gives S( f ′) = τΨ( f ′) for all f ∈ Lip([0, 1]), where
τ ∈ L∞

T ([0, 1]) and Ψ ∈ Aut(L∞([0, 1])). Finally, we have

Φ( f ′) = ωT( f )′ = ωS( f ′) = ωτΨ( f ′) ( f ∈ Lip([0, 1]), a.e. on [0, 1]),

and as Ψ is weak* continuous, so is also Φ.
Consider now the function h(x) = x2/2 for all x ∈ [0, 1]. By hypothesis, Theorem 1

assures the existence of some λh ∈ T, ωh ∈ L∞
T ([0, 1]) and Φh ∈ Aut(L∞([0, 1])) for which

T(h)(x) = λhh(0) +
∫ x

0
ωh(t)Φh(h′)(t) dt (x ∈ [0, 1]).

Therefore, we have∫ x

0
ω(t)Φ(h′)(t) dt =

∫ x

0
ωh(t)Φh(h′)(t) dt (x ∈ [0, 1]).

As h′ = ι, it follows that ωΦ(ι) = ωhΦh(ι) a.e. on [0, 1]. Since Φ and Φh are weak*
continuous algebra homomorphisms of L∞([0, 1]), Theorem 1 in [18] guarantees that there
exist measurable functions φ, φh : [0, 1]→ [0, 1] such that Φ( f ) = f ◦ φ and Φh( f ) = f ◦ φh
for all f ∈ L∞([0, 1]). As σ(ω), σ(ωh) ⊆ T, from ωφ = ωhφh a.e. on [0, 1], we infer that
φ = φh a.e. on [0, 1] and thus Φ = Φh. Therefore, Φ is surjective as required. This completes
the proof.

Another application of Theorem 2 allows us to state the algebraic reflexivity for other
distinguished subsets of linear maps on Lip([0, 1]) as, for example, isometric reflections
and generalized bi-circular projections.

Definition 1. Let E be a Banach space. An isometric reflection of E is a linear isometry T : E→ E
such that T2 = Id, where Id denotes the identity operator of E. We denote by Iso2(E) the set of all
isometric reflections of E.

The next result provides a characterization of isometric reflections on Lip([0, 1]).

Proposition 1. A map T : Lip([0, 1])→ Lip([0, 1]) is an isometric reflection if and only if there
exist a constant λ ∈ {±1}, a function ω ∈ L∞

T ([0, 1]) and a map Φ ∈ Aut(L∞([0, 1])) with
Φ(ω) = ω almost everywhere on [0, 1] and Φ2 = Id such that

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt

for all x ∈ [0, 1] and f ∈ Lip([0, 1]).
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Proof. Let T ∈ Iso2(Lip([0, 1])). We have

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]),

with λ, ω and Φ being as in Theorem 1. As T2 = Id, we obtain the equation:

f (x) = T(T( f ))(x)

= λT( f )(0) +
∫ x

0
ω(t)Φ(T( f )′)(t) dt

= λ2 f (0) +
∫ x

0
ω(t)Φ(ωΦ( f ′))(t) dt

= λ2 f (0) +
∫ x

0
ω(t)Φ(ω)(t)Φ2( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]).

Taking f = 1 in the equation, we deduce that λ ∈ {±1}. Substituting f = ι, we obtain

x =
∫ x

0
ω(t)Φ(ω)(t) dt (x ∈ [0, 1]),

Therefore, ωΦ(ω) = 1 a.e. on [0, 1] and so Φ(ω) = ω a.e. on [0, 1]. Then, the equation
can be written as

f (x) = f (0) +
∫ x

0
Φ2( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]),

Thus,

∫ x

0
f ′(t) dt = f (x)− f (0) =

∫ x

0
Φ2( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]),

and this implies that, for each f ∈ Lip([0, 1]), Φ2( f ′) = f ′ a.e. on [0, 1]. Therefore Φ2 = Id,
as required.

Conversely, assume that T has the form as in the statement:

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]).

For each f ∈ Lip([0, 1]) and all x ∈ [0, 1], an easy calculation gives

T2( f )(x) = λ2 f (0) +
∫ x

0
ω(t)Φ(ω)(t)Φ2( f ′)(t) dt,

and therefore
T2( f )(x) = f (0) +

∫ x

0
f ′(t) dt = f (x).

Corollary 2. The group of isometric reflections of Lip([0, 1]) is algebraically reflexive.

Proof. Let T ∈ refalg(Iso2(Lip([0, 1]))). For each f ∈ Lip([0, 1]), we can take some Tf ∈
Iso2(Lip[0, 1]) such that Tf ( f ) = T( f ). Hence T ∈ refalg(Iso(Lip([0, 1]))) and then T ∈
Iso(Lip([0, 1]))) by Theorem 3. On a hand, by Theorem 1, there exist λ ∈ T, ω ∈ L∞

T ([0, 1])
and Φ ∈ Aut(L∞([0, 1])) such that

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt (x ∈ [0, 1]).
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On the other hand, Proposition 1 guarantees the existence of λ f ∈ {±1}, ω f ∈ L∞
T ([0, 1])

and Φ f ∈ Aut(L∞([0, 1])) with Φ2
f = Id and Φ f (ω f ) = ω f a.e. on [0, 1] for which

Tf ( f )(x) = λ f f (0) +
∫ x

0
ω f (t)Φ f ( f ′)(t) dt (x ∈ [0, 1]).

As T( f ) = Tf ( f ), we have the formula

λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt = λ f f (0) +

∫ x

0
ω f (t)Φ f ( f ′)(t) dt (x ∈ [0, 1]).

First, applying the formula for f = 1, one obtains λ = λ1 ∈ {±1}. Second, putting
f = h, where h(x) = x2/2 if x ∈ [0, 1], we get ωΦ(ι) = ωhΦh(ι) a.e. on [0, 1]. A reasoning
similar to that of the proof of Theorem 3 yields Φ = Φh. Now, ωΦ(ι) = ωhΦh(ι) a.e.
on [0, 1] gives ω = ωh a.e. on [0, 1] because Φ(ι)(x) 6= 0 for all x ∈ [0, 1] (otherwise,
if Φ(ι)(x0) = 0 for some x0 ∈ [0, 1], we have Φ(p)(x0) = 0 if p is a polynomial function,
and since polynomials are weak* dense in L∞([0, 1]) and Φ is weak* continuous, it is clear
that Φ( f )(x0) = 0 for all f ∈ L∞([0, 1]), which contradicts, for example, that Φ is unital).
Therefore, Φ2 = Φ2

h = Id and Φ(ω) = Φh(ωh) = ωh = ω a.e. on [0, 1]. This shows that
T ∈ Iso2(Lip([0, 1])).

Definition 2. Let E be a Banach space. A projection of E is a map P : E → E such that P2 = P.
A generalized bi-circular projection of E is a linear projection P : E→ E such that P + τ(Id− P)
is a linear surjective isometry for some τ ∈ T \ {1}. We denote by GBP(E) the set of all generalized
bi-circular projections of E.

The next theorem describes this kind of projections on Lip([0, 1]).

Proposition 2. A map P : Lip([0, 1]) → Lip([0, 1]) is a generalized bi-circular projection if
and only if there exist a number λ ∈ {−1, 1}, a function ω ∈ L∞

T ([0, 1]) and a map Φ ∈
Aut(L∞([0, 1])) with Φ(ω) = ω almost everywhere on [0, 1] and Φ2 = Id such that

P( f )(x) =
1
2

[
f (x) + λ f (0) +

∫ x

0
ω(t)Φ( f ′)(t) dt

]
( f ∈ Lip([0, 1]), x ∈ [0, 1]).

Proof. We use some arguments of the proof of [15] Theorem 3.2. If P ∈ GBP(Lip([0, 1])),
then T = P + τ(Id − P) ∈ Iso(Lip([0, 1])) for some τ ∈ T \ {1}, and we obtain the
equality (1):

P( f ) = (1− τ)−1[T( f )− τ f ] ( f ∈ Lip([0, 1])).

As P2 = P, an easy calculation yields the equation

T2( f )− (τ + 1)T( f ) + τ f = 0 ( f ∈ Lip([0, 1])).

By Theorem 1, there are λ ∈ T, ω ∈ L∞
T ([0, 1]) and Φ ∈ Aut(L∞([0, 1])) such that

T( f )(x) = λ f (0) +
∫ x

0
ω(t)Φ( f ′)(t) dt ( f ∈ Lip([0, 1]), x ∈ [0, 1]).

Using this expression of T, the above-cited equation becomes Equation (2):

λ2 f (0) +
∫ x

0
ω(t)Φ(ω)(t)Φ2( f ′)(t) dt

− (τ + 1)λ f (0)

− (τ + 1)
∫ x

0
ω(t)Φ( f ′)(t) dt + τ f (x) = 0
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for all f ∈ Lip([0, 1]) and x ∈ [0, 1]. Differentiating respect of x, for almost every point in
[0, 1], we obtain the Equation (3):

ωΦ(ω)Φ2(g)− (τ + 1)ωΦ(g) + τg = 0,

where g = f ′ with f ∈ Lip([0, 1]). Taking g = ι and g = ι2 in (3), we get

ωΦ(ω)Φ2(ι)− (τ + 1)ωΦ(ι) + τι = 0, ωΦ(ω)Φ2(ι2)− (τ + 1)ωΦ(ι2) + τι2 = 0.

Subtracting the second equation from the first one multiplied by ι, we have

ωΦ(ω)
[
Φ2(ι2)− ιΦ2(ι)

]
− (τ + 1)ω

[
Φ2(ι)− ιΦ(ι)

]
= 0,

or, equivalently, the Equation (4):

Φ(ω)Φ2(ι)
[
Φ2(ι)− ι

]
− (τ + 1)Φ(ι)[Φ(ι)− ι] = 0.

We distinguish three cases:

Case 1. If Φ 6= Id (that is, Φ(i) 6= ι) but Φ2 = Id (which implies Φ(i) 6= 0), we have
τ = −1 by (4). Now, we deduce that λ2 = 1 from (2), and that Φ(ω) = ω a.e. on [0, 1] from
(3) taking g = 1. Finally, from (1) we infer that

P( f )(x) =
1
2
[T( f )(x) + f (x)]

=
1
2

[
f (x) + λ f (0) +

∫ x

0
ω(t)Φ( f ′)(t) dt

]
( f ∈ Lip([0, 1]), x ∈ [0, 1]),

as stated in the theorem.

Case 2. If Φ = Id, then the Equations (2) and (3) yield λ2 − (τ + 1)λ + τ = 0 and
ω2 − (τ + 1)ω + τ = 0 a.e. on [0, 1], respectively. Therefore, λ ∈ {τ, 1} and ω ∈ {τ1, 1} a.e.
on [0, 1].

First, if λ = 1 and ω = 1 a.e. on [0, 1], or λ = τ and ω = τ1 a.e. on [0, 1], an easy
calculation shows that P = 0, which can be expressed in the form as in the statement taking
λ = 1, ω = 1 a.e. on [0, 1] and Φ = Id.

Second, if λ = 1 and ω = τ1 a.e. on [0, 1], we obtain P( f ) = f (0)1 for all f ∈
Lip([0, 1]), which has the required form taking now λ = 1, ω = −1 a.e. on [0, 1] and
Φ = Id.

Finally, if λ = τ and ω = 1 a.e. on [0, 1], one gets P( f ) = f − f (0)1 for all f ∈
Lip([0, 1]), which takes the desired form for λ = −1, ω = 1 a.e. on [0, 1] and Φ = Id.

Case 3. Assume that Φ 6= Id and Φ2 6= Id. Let us recall that Φ( f ) = f ◦ φ for
all f ∈ L∞([0, 1]), where φ : [0, 1] → [0, 1] is a measurable function. Thus, there exists
x0 ∈ [0, 1] such that φ(x0) 6= x0 and φ2(x0) 6= x0. We can take a polynomial p ∈ L∞([0, 1])
such that p(φ(x0)) = p(φ2(x0)) = 0 and p(x0) = 1. Substituting g by p in the Equation (3)
and evaluating at x0, we obtain τ = 0, a contradiction.

Conversely, if P has the form as in the statement of the theorem, that is, as the
mean of the identity operator and an isometric reflection of Lip([0, 1]), we obtain that
P ∈ GBP(Lip([0, 1])) with τ = −1.

Corollary 3. The set of generalized bi-circular projections of Lip([0, 1]) is algebraically reflexive.

Proof. Let P ∈ refalg(GBP(Lip([0, 1]))). By Proposition 2, for each f ∈ Lip([0, 1]), there
exists a T ∈ Iso2(Lip([0, 1])) such that P( f ) = (1/2)[ f + T( f )]. Therefore, for each
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f ∈ Lip([0, 1]), we have 2P( f )− f = T( f ) and so 2P− Id ∈ refalg(Iso2(Lip([0, 1]))). Thus,
2P− Id ∈ Iso2(Lip([0, 1])) by Corollary 2, and therefore P ∈ GBP(Lip([0, 1])).

4. Discussion

Given a Banach space E, an operator T ∈ B(E) is a local isometry of E whenever for
every e ∈ E, there exists a Te ∈ Iso(E), possibly depending on e, such that Te(e) = T(e),
and T is an approximate local isometry of E if for every e ∈ E, there is a sequence {Te,n}n∈N
in Iso(E) such that limn→∞ Te,n(e) = T(e).

One of the main questions addressed in the studies on local isometries is for which
Banach spaces E, every local isometry of E is a surjective isometry or, equivalently, which
Banach spaces E have an algebraically reflexive isometry group. The topological variant of
this question can also be considered, that is, when every approximate local isometry of E is
a surjective isometry or, with other words, when Iso(E) is topologically reflexive.

We are interested here in the problems of algebraic and topological reflexivity for
the sets of surjective linear isometries, isometric reflections and generalized bi-circular
projections on the Banach spaces (Lip([0, 1]), ‖·‖σ) and (Lip([0, 1]), ‖·‖m).

To address this type of problem, it is necessary to have convenient descriptions of the
isometries on the involved spaces. However, Koshimizu [1,2] showed that the surjective
linear isometries of such spaces do not have a canonical representation as a weighted
composition operator but instead they admit a representation as integral operators.

Although this fact added some initial difficult to the problem, we have been able
to apply a spherical variant of the Gleason–Kahane–Żelazko theorem [11] to establish
our results.

Our main theorem states that every approximate local isometry of Lip([0, 1]) can be
represented as a sum of an elementary weighted composition operator and an integral
operator. Applying this description, we obtain some important consequences: the groups
of surjective linear isometries and isometric reflections and the set of generalized bi-circular
projections of Lip([0, 1]) are algebraically reflexive. In the process, we give complete
descriptions of such reflections and projections.

Besides, the advantage of considering approximate local maps rather than local maps
is that they are more general and they allow us to state these results more easily.

The problems studied in this paper are closely related to the research on 2-local
isometries between Banach spaces, which was raised by Molnár [24]. Let us recall that given
a Banach space E, a set S ⊆ B(E) is called 2-algebraically reflexive if 2-refalg(S) = S , where

2-refalg(S) =
{

∆ ∈ EE : ∀e, u ∈ E, ∃Se,u ∈ S | Se,u(e) = ∆(e), Se,u(u) = ∆(u)
}

.

In the case S = Iso(E), the members of 2-refalg(S) are called 2-local isometries.
A complete information on 2-local maps can also be found in [7].

The study of 2-local isometries on Lipschitz spaces with the Σ-norm or the M-norm
was considered in [11,13,25]. The 2-locality problem for surjective isometries on Lip([0, 1]),
without assuming linearity, has been dealed in [26].

It would be interesting to study the 2-algebraic reflexivity of the sets of surjective
linear isometries, isometric reflections and generalized bi-circular projections on Lip([0, 1]),
equipped with the σ-norm or the m-norm.

We believe that results of this type have strong potential for further applications,
fitting into a quickly growing area of international research.
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