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Abstract: It is easy to notice the great recent development in the oscillation theory of neutral differen-
tial equations. The primary aim of this work is to extend this development to neutral differential
equations of mixed type (including both delay and advanced terms). In this work, we consider
the second-order non-canonical neutral differential equations of mixed type and establish a new
single-condition criterion for the oscillation of all solutions. By using a different approach and
many techniques, we obtain improved oscillation criteria that are easy to apply on different models
of equations.
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1. Introduction

This paper discusses the oscillatory behavior of solutions of second-order neutral
differential equations of mixed type:(

r(s)
(
(x(s) + p1(s)x($1(s)) + p2(s)x($2(s)))

′
)α)′

+ q1(s)xα(θ1(s)) + q2(s)xα(θ2(s)) = 0, (1)

where s ≥ s0. Throughout this paper, we assume the following:

(C1) α ∈ Q+
odd := {a/b : a, b ∈ Z+ are odd};

(C2) r ∈ C([s0, ∞), (0, ∞)) r′(s) > 0, and
∫ ∞

s0
r−1/α(ξ)dξ < ∞, where C(I, J) is the set of

all continuous real-valued functions F : I → J;
(C3) $1, $2, θ1, θ2 ∈ C([s0, ∞),R), $1(s) ≤ s, $2(s) ≥ s, θ1(s) ≤ s, θ2(s) ≥ s,

and $1(s), $2(s), θ1(s), θ2(s)→ ∞ as s→ ∞;
(C4) p1, p2, q1, q2 ∈ C([s0, ∞), [0, ∞)) and q1, q2 are not identically zero for large s.

Let x be a real-valued function defined for all s in a real interval [sx, ∞), sx ≥ s0, which
has the properties

x + p1 · x ◦ $1 + p2 · x ◦ $2 ∈ C1([sx, ∞),R)

and
r · (x + p1 · x ◦ $1 + p2 · x ◦ $2)

′ ∈ C1([sx, ∞),R).

Then, x is called a solution of (1) on [sx, ∞) if x satisfies (1) for all s ≥ sx. We will
consider only the solutions of (1) that exist on some half-line [sx, ∞) for sx ≥ s0 and satisfy
the condition

sup{|x(s)| : sc ≤ s < ∞} > 0 for any sc ≥ sx.

A nontrivial solution x of any differential equation is said to be oscillatory if it has
arbitrary large zeros; otherwise, it is said to be non-oscillatory.
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The oscillation and asymptotic behavior of solutions to various classes of delay and ad-
vanced differential equations have been widely discussed in the literature. For second-order
delay equations, the studies found in [1–5] were concerned with studying the oscillatory
behavior of the equation:(

r(s)
(
(x(s) + p1(s)x($1(s)))

′
)α)′

+ q1(s)xα(θ1(s)) = 0, (2)

with the canonical operator π(s0) = ∞, where

π(s) :=
∫ s

s0

r−1/α(ξ)dξ.

One can find developments and comparisons of the oscillation criteria of (2) in the
recently published paper by Moaaz et al. [4] for a non-canonical case, that is,∫ ∞

s0

r−1/α(ξ)dξ < ∞.

Bohner et al. [6] simplified and improved the previous results found by Agarwal et al. [7]
and Han et al. [8]. For more general equations and more accurate results, see [9,10].

For second-order advanced equations, Chatzarakis et al. [11,12] studied the asymptotic
behavior of the equation: (

r(s)
(

x(s)′
)α)′

+ q2(s)xα(θ2(s)) = 0,

in the non-canonical case, and improved a number of pre-existing results.
Although there are many results of studies of the oscillation of solutions of delay

differential equations, the results that concern the study of mixed equations are few—see,
for example [13–24]. By using the Riccati transformation technique, Arul and Shobha [13]
obtained some sufficient conditions for oscillation of the equation:(

r(s)(x(s) + a(s)x(s− $) + b(s)x(s + δ))′
)′

+ q(s) f (x(θ(s))) = 0,

where 0 ≤ a(s) ≤ a < ∞, 0 ≤ b(s) ≤ b < ∞, and f (u)/u ≥ k > 0. Dzurina et al. [22]
established some criteria for the oscillation of the equation

(x(s) + p1x(s− $1) + p2x(s + $2))
′′ = q1(s)x(s− θ1) + q2(s)x(s + θ2),

where $i, θi ≥ 0 are constants, qi is nonnegative, and i = 1, 2. Tunc et al. [24] studied the
oscillatory behavior of solutions of the equation:(

r(s)
(
(x(s) + p1(s)x($1(s)) + p2(s)x($2(s)))

′
)α)′

+ q(s)xα(θ(s)) = 0,

in the canonical case π(s0) = ∞, and considered the cases:

(i) p1(s) ≥ 0, p2(s) ≥ 1 and p2(s) 6= 1 eventually

and
(ii) p2(s) ≥ 0, p1(s) ≥ 1 and p2(s) 6= 1 eventually.

Thandapani et al. [23] considered the equation(
(x(s) + p1x(s− $1) + p2x(s + $2))

α)′′ + q1(s)xβ(s− θ1) + q2(s)xγ(s + θ2) = 0,

where α, β, and γ are the ratios of odd positive integers, and established some sufficient
conditions for the oscillation of all of the solutions. For more results, techniques, and
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approaches that deal with the oscillation of delay differential equations of higher orders,
see [25–33].

The objective of this paper is to study the oscillatory and asymptotic properties of a
class of delay differential equations of mixed neutral type with the non-canonical operator.
The oscillation criteria are obtained via only one condition, and hence, they are easy to
apply. Moreover, by using generalized Riccati substitution, we get new criteria that improve
some of the results reported in the literature. An example is provided to illustrate the
significance of the main results.

2. Preliminary Results

In the following, we present the notations used in this study:

- For the continuous function r, we define the integral operator κ(u, v) for u < v as

κ(u, v) :=
∫ v

u
r−1/α(δ)dδ;

- For any solution x of (1), we define the corresponding function υ as

υ(s) := x(s) + p1(s)x($1(s)) + p2(s)x($2(s)), for s ≥ s0.

- Briefly, we use the notations

B1(s) : = 1− p1(s)
κ($1(s), ∞)

κ(s, ∞)
− p2(s),

H(s) : = q1(s)Bα
2 (θ1(s)) + q2(s)Bα

2 (θ2(s)),

G(s) : = q1(s)Bα
1 (θ1(s)) + q2(s)Bα

1 (θ2(s))

and

B2(s) := 1− p1(s)− p2(s)
κ(s1, $2(s))

κ(s1, s)
, for s ≥ s1 ≥ s0.

Lemma 1 ([6], Lemma 2.6). Assume that Θ(v) := Av− B(v− C)(α+1)/α, where A, B, and
C are real constants, B > 0, and α ∈ Q+

odd. Then, the maximum value of Θ on R at v∗ =
C + (αA/((α + 1)B))α is

Θ(v∗) ≤ max
v∈R

Θ(v) = AC +
αα

(α + 1)α+1 Aα+1B−α.

Lemma 2. Let x be a positive solution of (1). If υ is decreasing, then(
υ(s)

κ(s, ∞)

)′
≥ 0, (3)

eventually. Further, if υ is increasing, then(
υ(s)

κ(s1, s)

)′
≤ 0, (4)

for all s ≥ s1 ≥ s0.

Proof. Suppose that (1) has a positive solution x on [s0, ∞). Obviously, υ(s) ≥ x(s) > 0 for
all s ≥ s1 ≥ s0. Thus, from (1), we get(

r(s)
(
υ′(s)

)α
)′

= −q1(s)xα(θ1(s))− q2(s)xα(θ2(s)) ≤ 0.
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Hence, r(s)(υ′(s))α is non-increasing, and so υ′(s) has a constant sign for s ≥ s1.
Assume that υ′(s) < 0 on [s1, ∞). Then,

υ(s) ≥ −
∫ ∞

s
r−1/α(ξ)r1/α(ξ)υ′(ξ)dξ ≥ −κ(s, ∞)r1/α(s)υ′(s), (5)

and so, (
υ(s)

κ(s, ∞)

)′
=

κ(s, ∞)υ′(s) + r−1/α(s)υ(s)

(κ(s, ∞))2 ≥ 0.

Next, assume that υ′(s) > 0 on [s1, ∞). Hence, we obtain

υ(s) ≥
∫ s

s1

r−1/α(ξ)r1/α(ξ)υ′(ξ)dξ ≥ κ(s1, s)r1/α(s)υ′(s),

and it follows that (
υ(s)

κ(s1, s)

)′
=

κ(s1, s)υ′(s)− r−1/α(s)υ(s)
κ2(s1, s)

≤ 0.

Thus, the proof is complete.

3. Main Results

Theorem 1. Assume that H(s) ≥ G(s) > 0. If

lim sup
s→∞

∫ s

s1

1
r1/α(u)

(∫ u

s1

G(ξ)κα(θ2(ξ), ∞)dξ

)1/α

du = ∞, (6)

for s1 ≥ s0, then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x($1(s)), x($2(s)), x(θ1(s)), and x(θ2(s)) are positive for all s ≥ s1. Thus, from (1) and
the definition of υ, we note that υ(s) ≥ x(s) > 0 and r(s)(υ′(s))α is non-increasing. Hence,
υ′ > 0 or υ′ < 0 eventually.

Assume that υ′(s) < 0 on [s1, ∞). By using Lemma 2, we have

υ($1(s)) ≤
κ($1(s), ∞)

κ(s, ∞)
υ(s),

based on the fact that $1(s) ≤ s. Therefore,

x(s) = υ(s)− p1(s)x($1(s))− p2(s)x($2(s))
≥ υ(s)− p1(s)υ($1(s))− p2(s)υ($2(s))

≥
(

1− p1(s)
κ($1(s), ∞)

κ(s, ∞)
− p2(s)

)
υ(s)

= B1(s)υ(s).

Hence, (1) becomes(
r(s)

(
υ′(s)

)α
)′
≤ −q1(s)Bα

1 (θ1(s))υα(θ1(s))− q2(s)Bα
1 (θ2(s))υα(θ2(s)),
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and since θ1(s) ≤ θ2(s), we have(
r(s)

(
υ′(s)

)α
)′
≤ −q1(s)Bα

1 (θ1(s))υα(θ2(s))− q2(s)Bα
1 (θ2(s))υα(θ2(s))

≤ −(q1(s)Bα
1 (θ1(s)) + q2(s)Bα

1 (θ2(s)))υα(θ2(s))
= −G(s)υα(θ2(s)). (7)

Since
(
r(s)(υ′(s))α)′ ≤ 0, we have

r(s)
(
υ′(s)

)α ≤ r(s1)
(
υ′(s1)

)α := −L < 0, (8)

for all s ≥ s1, and from (5) and (8), we have

υα(s) ≥ Lκα(s, ∞) for all s ≥ s1. (9)

Combining (7) with (9) yields(
r(s)

(
υ′(s)

)α
)′
≤ −G(s)Lκα(θ2(s), ∞), (10)

for all s ≥ s1. Integrating (10) from s1 to s, we obtain

r(s)
(
υ′(s)

)α ≤ r(s1)
(
υ′(s1)

)α − L
∫ s

s1

G(ξ)κα(θ2(ξ), ∞)dξ

≤ −L
∫ s

s1

G(ξ)κα(θ2(ξ), ∞)dξ.

Integrating the last inequality from s1 to s, we get

υ(s) ≤ υ(s1)− L1/α
∫ s

s1

1
r1/α(u)

(∫ u

s1

G(ξ)κα(θ2(ξ), ∞)dξ

)1/α

du.

Passing to the limit as s→ ∞, we arrive at a contradiction with (6).
Now, assume that υ′(s) > 0 on [s1, ∞). From Lemma 2, we arrive at

υ($2(s)) ≤
κ(s1, $2(s))

κ(s1, s)
υ(s). (11)

From the definition of υ, we obtain

x(s) = υ(s)− p1(s)x($1(s))− p2(s)x($2(s))
≥ υ(s)− p1(s)υ($1(s))− p2(s)υ($2(s)). (12)

Using that (11) and υ($1(s)) ≤ υ(s), where $1(s) < s in (12), we obtain

x(s) ≥ υ(s)
(

1− p1(s)− p2(s)
κ(s1, $2(s))

κ(s1, s)

)
≥ B2(s)υ(s). (13)

Hence, (1) becomes(
r(s)

(
υ′(s)

)α
)′
≤ −q1(s)Bα

2 (θ1(s))υα(θ1(s))− q2(s)Bα
2 (θ2(s))υα(θ2(s)),
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and since θ1(s) ≤ θ2(s), we have(
r(s)

(
υ′(s)

)α
)′
≤ −q1(s)Bα

2 (θ1(s))υα(θ1(s))− q2(s)Bα
2 (θ2(s))υα(θ1(s))

≤ −(q1(s)Bα
2 (θ1(s)) + q2(s)Bα

2 (θ2(s)))υα(θ1(s))
= −H(s)υα(θ1(s)). (14)

On the other hand, it follows from (6) and (C2) that
∫ s

s1
G(ξ)κα(θ2(ξ), ∞)dξ must be

unbounded. Further, since κ′(s, ∞) < 0, it is easy to see that∫ s

s1

G(ξ)dξ → ∞ as s→ ∞. (15)

Integrating (14) from s2 to s, we get

r(s)
(
υ′(s)

)α ≤ r(s2)
(
υ′(s2)

)α −
∫ s

s2

H(ξ)υα(θ1(ξ))dξ

≤ r(s2)
(
υ′(s2)

)α − υα(θ1(s2))
∫ s

s2

H(ξ)dξ.

Since H(s) > G(s), we get

r(s)
(
υ′(s)

)α ≤ r(s2)
(
υ′(s2)

)α − υα(θ1(s2))
∫ s

s2

G(ξ)dξ, (16)

which, with (15), contradicts the fact that υ′(s) > 0. The proof is complete.

Theorem 2. Assume that H(s) ≥ G(s) > 0. If

lim sup
s→∞

κα(θ2(s), ∞)
∫ s

s1

G(ξ)dξ > 1, (17)

then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x($1(s)) > 0, x($2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. As in the
proof of Theorem 1, υ′ > 0 or υ′ < 0 eventually.

Assume that υ′ < 0 on [s1, ∞). Integrating (7) from s1 to s, we get

r(s)
(
υ′(s)

)α ≤ r(s1)
(
υ′(s1)

)α −
∫ s

s1

G(ξ)υα(θ2(ξ))dξ

≤ −υα(θ2(s))
∫ s

s1

G(ξ)dξ. (18)

Since θ2(s) ≥ s, then from (3), we have

υ(θ2(s)) ≥
κ(θ2(s), ∞)

κ(s, ∞)
υ(s), (19)

and using (19) and (5) in (18), we obtain

r(s)
(
υ′(s)

)α ≤ r(s)
(
υ′(s)

)α
κα(θ2(s), ∞)

∫ s

s1

G(ξ)dξ. (20)

Dividing both sides of inequality (20) by r(s)(υ′(s))α and taking the limsup, we get
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lim sup
s→∞

κα(θ2(s), ∞)
∫ s

s1

G(ξ)dξ ≤ 1,

we obtain a contradiction with the condition (17).

Now, assume that υ′ > 0 on [s1, ∞). From (17) and the fact that κ(θ2(s), ∞) < ∞, we
have that (15) holds. Then, this part of the proof is similar to that of Theorem 1. Therefore,
the proof is complete.

Theorem 3. Assume that H(s) ≥ G(s) > 0 and (15) hold. Further, if the differential equation

υ′(s) +
1

r1/α(s)
κ(θ2(s), ∞)

κ(θ1(s), ∞)

(∫ s

s1

G(ξ)dξ

)1/α

υ(θ1(s)) = 0 (21)

is oscillatory, then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x($1(s)) > 0, x($2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. As in the
proof of Theorem 1, υ′ > 0 or υ′ < 0 eventually.

Assume that υ′ < 0 on [s1, ∞). Since θ2(s) ≥ θ1(s), we get, from (3), that

υ(θ2(s)) ≥
κ(θ2(s), ∞)

κ(θ1(s), ∞)
υ(θ1(s)),

which, with (18), gives

r(s)
(
υ′(s)

)α ≤ κα(θ2(s), ∞)

κα(θ1(s), ∞)
υα(θ1(s))

∫ s

s1

G(ξ)dξ.

Now, we see that υ > 0 is a solution of the inequality

υ′(s) +
1

r1/α(s)
κ(θ2(s), ∞)

κ(θ1(s), ∞)

(∫ s

s1

G(ξ)dξ

)1/α

υ(θ1(s)) ≤ 0.

Using [34], we find that (21) also has a positive solution—a contradiction.
By proceeding as in the proof of Theorem 1, the proof of this theory is completed.

Corollary 1. Assume that H(s) ≥ G(s) > 0 and (15) hold. If

lim inf
s→∞

∫ s

θ1(s)

1
r1/α(u)

κ(θ2(u), ∞)

κ(θ1(u), ∞)

(∫ u

s1

G(ξ)dξ

)1/α

du >
1
e

, (22)

then all solutions of (1) are oscillatory.

Proof. Using ([35], Theorem 2), we have that (22) implies the oscillation of (21). From
Theorem 3, we have that (1) is oscillatory.

Theorem 4. Assume that H(s) > 0, G(s) > 0. If there exist functions ψ, δ ∈ C1([s0, ∞), (0, ∞)),
and s1 ∈ [s0, ∞) such that

lim sup
s→∞

{
κα(s, ∞)

δ(s)

∫ s

s1

(
δ(ξ)G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
− r(ξ)(δ′(ξ))α+1

(α + 1)α+1(δ(ξ))α

)
dξ

}
> 1 (23)
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and

lim sup
s→∞

∫ s

s1

(
ψ(ξ)H(ξ)− 1

(α + 1)α+1
r(ξ)(ψ′(ξ))α+1

ψα(ξ)
(
θ′1(ξ)

)α

)
dξ = ∞, (24)

then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the
same form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0
such that x($1(s)) > 0, x($2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. From
Theorem 1, υ′ > 0 or υ′ < 0 eventually.

Assume that υ′ < 0 on [s1, ∞). As in the proof of Theorem 1, we arrive at (7). Now, we
define the function

ω(s) = δ(s)
(

r(s)(υ′(s))α

υα(s)
+

1
κα(s, ∞)

)
on [s1, ∞). (25)

From (5), we get that ω ≥ 0 on [s1, ∞). Differentiating (25), we obtain

ω′(s) =
δ′(s)
δ(s)

ω(s) + δ(s)

(
r(s)(υ′(s))α)′

υα(s)
− αδ(s)r(s)

(
υ′(s)
υ(s)

)α+1

+
αδ(s)

r1/α(s)κα+1(s, ∞)

≤ δ′(s)
δ(s)

ω(s) + δ(s)

(
r(s)(υ′(s))α)′

υα(s)
− α

(δ(s)r(s))1/α

(
ω(s)− δ(s)

κα(s, ∞)

)(α+1)/α

+
αδ(s)

r1/α(s)κα+1(s, ∞)
. (26)

Combining (7) and (26), we have

ω′(s) ≤ − α

(δ(s)r(s))1/α

(
ω(s)− δ(s)

κα(s, ∞)

)(α+1)/α

− δ(s)G(s)
υα(θ2(s))

υα(s)

+
αδ(s)

r1/α(s)κα+1(s, ∞)
+

δ′(s)
δ(s)

ω(s). (27)

Using Lemma 1 with A := δ′(s)/δ(s), B := α(δ(s)r(s))−1/α, C := δ(s)/κα(s, ∞) and
ξ := ω, we get

δ′(s)
δ(s)

ω(s)− α

(δ(s)r(s))1/α

(
ω(s)− δ(s)

κα(s, ∞)

)(α+1)/α

≤ r(s)

(α + 1)α+1
(δ′(s))α+1

(δ(s))α

+
δ′(s)

κα(s, ∞)
, (28)

and since s ≤ θ2(s), we arrive at

υ(θ2(s)) ≥
κ(θ2(s), ∞)

κ(s, ∞)
υ(s), (29)

which, in view of (27), (28), and (29), gives
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ω′(s) ≤ δ′(s)
κα(s, ∞)

+
1

(α + 1)α+1 r(s)
(δ′(s))α+1

(δ(s))α − δ(s)G(s)
υα(θ2(s))

υα(s)

+
αδ(s)

r1/α(s)κα+1(s, ∞)

≤ −δ(s)G(s)
κα(θ2(s), ∞)

κα(s, ∞)
+

(
δ(s)

κα(s, ∞)

)′
+

r(s)(δ′(s))α+1

(α + 1)α+1(δ(s))α
. (30)

Integrating (30) from s2 to s, we arrive at

∫ s

s2

(
δ(ξ)G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
− r(ξ)(δ′(ξ))α+1

(α + 1)α+1(δ(ξ))α

)
dξ ≤

(
δ(s)

κα(s, ∞)
−ω(s)

)∣∣∣∣s
s2

≤ −
(

δ(s)
r(s)(υ′(s))α

υα(s)

)∣∣∣∣s
s2

.(31)

From (5), we have

− r1/α(s)υ′(s)
υ(s)

≤ 1
κ(s, ∞)

,

which, in view of (31), implies

κα(s, ∞)

δ(s)

∫ s

s2

(
δ(ξ)G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
− r(ξ)(δ′(ξ))α+1

(α + 1)α+1(δ(ξ))α

)
dξ ≤ 1.

Thus, we get a contradiction with (23).
Now, assume that υ′(s) > 0 on [s1, ∞). Let us define the Riccati function

ϕ(s) = ψ(s)
r(s)(υ′(s))α

υα(θ1(s))
, on [s1, ∞). (32)

We find that ϕ ≥ 0 on [s1, ∞). Differentiating (32), we get

ϕ′(s) =
ψ′(s)
ψ(s)

ϕ(s) + ψ(s)

(
r(s)(υ′(s))α)′

υα(θ1(s))
− αψ(s)r(s)

(υ′(s))α
υ′(θ1(s))θ′1(s)

υα+1(θ1(s))
. (33)

Combining (14) and (33), we have

ϕ′(s) ≤ ψ′(s)
ψ(s)

ϕ(s)− ψ(s)H(s)− αψ(s)r(s)
(υ′(s))α

υ′(θ1(s))θ′1(s)
υα+1(θ1(s))

.

Since
(
r(s)(υ′(s))α)′ < 0 and θ1(s) ≤ s, we arrive at

ϕ′(s) ≤ ψ′(s)
ψ(s)

ϕ(s)− ψ(s)H(s)− αψ(s)r(s)θ′1(s)
(υ′(s))α+1

υα+1(θ1(s))
,

and from (32), we have

ϕ′(s) ≤ ψ′(s)
ψ(s)

ϕ(s)− ψ(s)H(s)−
αθ′1(s)

ψ1/α(s)r1/α(s)
φ(α+1)/α(s).

Using the inequality

Kv− sv
(α+1)/α ≤ αα

(α + 1)α+1
Kα+1

sα
, s > 0, (34)
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with K = ψ′(s)/ψ(s), s = αθ′1(s)/ψ1/α(s)r1/α(s), and v = ϕ, we have

ϕ′(s) ≤ −ψ(s)H(s) +
1

(α + 1)α+1
r(s)(ψ′(s))α+1

ψα(s)
(
θ′1(s)

)α . (35)

Integrating (35) from s2 to s, we arrive at

∫ s

s2

(
ψ(ξ)H(ξ)− 1

(α + 1)α+1
r(ξ)(ψ′(ξ))α+1

ψα(ξ)
(
θ′1(ξ)

)α

)
dξ ≤ ϕ(s2).

Taking the limsup on both sides of this inequality, we have a contradiction with (24).
The proof of the theorem is complete.

Theorem 5. Assume that H(s) > 0 and G(s) > 0. If there exist the functions δ ∈ C1([s0, ∞), (0, ∞))
and s1 ∈ [s0, ∞) such that (23) and

lim inf
s→∞

α

Ψ(s)

∫ ∞

s

θ′1(ξ)

r1/α(ξ)
Ψ(α+1)/α(ξ)dξ >

α

(α + 1)(α+1)/α
(36)

hold, where

Ψ(s) =
∫ ∞

s
H(ξ)dξ,

then all solutions of (1) are oscillatory.

Proof. Assume the contrary: that (1) has a non-oscillatory solution x on [s0, ∞). Without
loss of generality (since the substitution y = −x transforms (1) into an equation of the same
form), we suppose that x is an eventually positive solution. Then, there exists s1 ≥ s0 such
that x($1(s)) > 0, x($2(s)) > 0, x(θ1(s)) > 0, and x(θ2(s)) > 0 for all s ≥ s1. Theorem 1
yields that υ′ eventually has one sign.

Assume that υ′(s) < 0 on [s1, ∞). The proof is similar to that of Theorem 4.
Now, assume that υ′(s) > 0 on [s1, ∞).Let us define the Riccati function

ϕ(s) =
r(s)(υ′(s))α

υα(θ1(s))
. (37)

We see that ϕ ≥ 0 on [s1, ∞). Differentiating (37), we arrive at

ϕ′(s) =
(
r(s)(υ′(s))α)′

υα(θ1(s))
− αr(s)

(υ′(s))α
υ′(θ1(s))θ′1(s)

υα+1(θ1(s))
. (38)

Combining (14) and (38), we have

ϕ′(s) ≤ −H(s)− αr(s)
(υ′(s))α

υ′(θ1(s))θ′1(s)
υα+1(θ1(s))

.

Since
(
r(s)(υ′(s))α)′ < 0 and θ1(s) ≤ s, we arrive at

ϕ′(s) ≤ −H(s)− αr(s)θ′1(s)
(υ′(s))α+1

υα+1(θ1(s))
,

which, with (37), gives

ϕ′(s) ≤ −H(s)−
αθ′1(s)
r1/α(s)

ϕ(α+1)/α(s). (39)

Integrating (39) from s to ∞, and using the fact that ϕ(s) > 0 and ϕ′(s) < 0, we get
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−ϕ(s) ≤ −
∫ ∞

s
H(ξ)dξ −

∫ ∞

s

αθ′1(ξ)

r1/α(ξ)
ϕ(α+1)/α(ξ)dξ.

Hence, we have

ϕ(s)
Ψ(s)

≥ 1 +
1

Ψ(s)

∫ ∞

s

αθ′1(ξ)

r1/α(ξ)
Ψ(α+1)/α(ξ)

(
ϕ(ξ)

Ψ(ξ)

)(α+1)/α

dξ. (40)

Let ϑ = infs≥s ϕ(s)/Ψ(s);then, obviously, ϑ ≥ 1. Hence, it follows from (40) and
(36) that

ϑ ≥ 1 + α

(
ϑ

α + 1

)(α+1)/α

or
ϑ

α + 1
≥ 1

α + 1
+

α

α + 1

(
ϑ

α + 1

)(α+1)/α

,

which contradicts the admissible value of ϑ and α. Therefore, the proof is complete.

Corollary 2. Assume that H(s) > 0 and G(s) > 0. If (36) and either

lim sup
s→∞

∫ s

s

(
G(ξ)κα(θ2(ξ), ∞)− αα+1

(α + 1)α+1r1/α(ξ)κ(ξ, ∞)

)
dξ > 1, (41)

lim sup
s→∞

κα−1(s, ∞)
∫ s

s

(
G(ξ)

κα(θ2(ξ), ∞)

κα−1(ξ, ∞)
− 1

(α + 1)α+1r1/α(ξ)κα(ξ, ∞)

)
dξ > 1, (42)

or

lim sup
s→∞

κα(s, ∞)
∫ s

s
G(ξ)

κα(θ2(ξ), ∞)

κα(ξ, ∞)
dξ > 1, (43)

hold, then all solutions of (1) are oscillatory.

Proof. By choosing δ(s) = κα(s, ∞), δ(s) = κ(s, ∞), or δ(s) = 1, the condition (23) reduces
to one of the conditions (41)–(43), respectively.

Example 1. Consider the second-order neutral differential equation(
s2
(

x(s) + p∗1 x
( s

λ

)
+ p∗2 x(λs)

)′)′
+ q∗1 x

(
s
µ

)
+ q∗2 x(µs) = 0, (44)

where s ≥ 1, λ ≥ 1, µ ≥ 1, p∗1 > p∗2 , and λ
(

p∗1 + p∗2
)
∈ (0, 1). Now, we note that r(s) = s2,

p1(s) = p∗1 , p2(s) = p∗2 , $1(s) = s/λ, $2(s) = λs, q1(s) = q∗1 , q2(s) = q∗2 , θ1(s) = s/µ, and
θ2(s) = µs.Thus, we have that

B1(s) = 1− λp∗1 − p∗2 , B2(s) = 1− p∗1 − p∗2

(
s− 1

λ

s− 1

)

and
G(s) = (q∗1 + q∗2)(1− λp∗1 − p∗2).

Set W(s) =
(

s− 1
λ

)
/(s− 1). Since lims→∞ W(s) = 1, there exists sε > s0 such that

W(s) < 1 + ε for all ε > 0 and every s ≥ sε. By choosing ε = λ− 1, we obtain W(s) < λ for all
s ≥ s∗. Thus, and taking into account the fact that p∗1 > p∗2 and λp∗1 + p∗2 ∈ (0, 1), we get that
B2 ≥ B1 > 0. Now, from Theorem 2, we have that equation (44) is oscillatory if

q∗1 + q∗2 >
µ

1− λp∗1 − p∗2
. (C1)
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On the other hand, using Corollary 1, we see that (44) is oscillatory if

q∗1 + q∗2 >
µ(

1− λp∗1 − p∗2
) µ

e ln µ
. (C2)

Next, since W(s) < λ for all s ≥ s∗, we find that B2(s) > 1 −
(

p∗1 + λp∗2
)
, and so,

H(s) >
(
q∗1 + q∗2

)(
1−

(
p∗1 + λp∗2

))
.Hence, by choosing ψ(s) = 1, condition (24) holds, directly.

Using Theorem 4, we see that (44) is oscillatory if

q∗1 + q∗2 >
1
4

µ(
1− λp∗1 − p∗2

) . (C3)

Remark 1. Taking the fact that µ > e ln µ into account, it is easy to notice that condition (C3)
supports the most efficient condition for oscillation of (44). Figures 1 and 2 display a comparison of
the criteria (C1)–(C3).

Figure 1. Comparison of the criteria (C1)–(C3) when λ = 2, p∗1 = 0.25, and p∗2 = 0

Figure 2. Comparison of the criteria (C1)–(C3) when µ = 2, p∗1 = 0.5, and p∗2 = 0

Remark 2. In the special case of (44), p∗2 = q∗2 = 0, that is,(
s2
(

x(s) + p∗1 x
( s

λ

))′)′
+ q∗1 x

(
s
µ

)
= 0.

The oscillation criterion (C3) reduces to
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q∗1 >
1
4

µ(
1− λp∗1

) , (45)

which is the exact criterion that was obtained in Example 3.1 in [7]. Moreover, if p∗1 = 0 and
µ = 1, then condition (45) reduces so that q∗1 > 1/4, which is a sharp condition for oscillation of
the second-order Euler equation.

4. Conclusions

Most works that studied the oscillatory behavior of mixed equations regarded the
canonical case π(l0) = ∞. Likewise, works that were concerned with the non-canonical
case of neutral equations obtained two conditions for testing the oscillation. In this paper,
we focused on studying the non-canonical case, and we created criteria with only one
condition that is easy to verify. Therefore, our results are an extension, complement, and
improvement to previous results in the literature. It is interesting to extend the results of
this paper to higher-order equations.
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