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Abstract: Often for understanding a structure, other closely related structures with the former are
associated. An example of this is the study of hyperspaces. In this paper, we give necessary and
sufficient conditions for the existence of finitely-dimensional maximal free cells in the hyperspace
C(G) of a dendrite G; then, we give necessary and sufficient conditions so that the aforementioned
result can be applied when G is a dendroid. Furthermore, we prove that the arc is the unique arcwise
connected, compact, and metric space X for which the anchored hyperspace Cp(X) is an arc for
some p ∈ X.
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1. Introduction

In the study of a mathematical structure, sometimes other structures that allow for
visualizing problems in different ways are built.

One of the theories developed using this type of study is the Theory of Hyperspaces;
this theory began with the investigations of F. Hausdorff and L. Vietoris. Given a topological
space X, the 2X hyperspace of all nonempty and closed subsets of X was introduced by
L. Vietoris in 1922, and he proved basic facts about 2X—for example, compactness of X
implies compactness of 2X and vice versa; 2X is connected if and only if X is connected.
When X is a metric space, 2X can be endowed with the Hausdorff metric (defined by F.
Hausdorff in 1914).

The hyperspace of all nonempty, closed and connected subsets of X is denoted by
C(X) and considered as a subspace of 2X . In turn, the hyperspace of all nonempty, closed,
and connected sets of X containing a point p, which is denoted by Cp(X), is a subspace
of C(X).

The hyperspaces C(X) and Cp(X) are subjects of study for many researchers. Among
several topics about hyperspace, one of the most interesting is to recognize a hyperspace
as homeomorphic to some known space: Ref. [1] presents a special class of spaces X for
which C(X) is homeomorphic to the infinite cylinder X×R≥0. Another interesting topic is
to analyze topological properties: for compact, connected, and metric X, the hyperspaces
Cp(X) are locally connected for all p ∈ X [2].

Graphs have been widely and deeply studied (see [3–7]) and have proved to be an
excellent tool for representing and modeling different structures in several areas of discrete
mathematics and computation (see [8,9]). As far as hyperspace is concerned, there exist
some works relating both subjects. For example, Duda [10] proved that a space X is a finite
graph if and only if C(X) is a polyhedral. In a dendroid X smooth in a point p, Cp(X) is
homeomorphic to the Hilbert cube if and only if p is not in the interior of a finite tree in
X, a result due to Carl Eberhart [11]. Recently, Reyna et al. proved that, in a local space X,
Cp(X) is a polyhedral for all p if and only if X is a finite graph [12].
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In this paper, we are concerned with fully determining the existence of maximal finite
dimensional free cells in the hyperspace C(X), first of a dendrite and then a dendroid X,
as well as examining necessary and sufficient conditions for the hyperspace Cp(X) if an arc
provided X is an arc-wise connected space.

2. Definitions

Throughout this paper, the term space is meant to be a connected, compact, and metric
space, and a subspace is understood to be a subset of a space which is a space itself. Given a
space X, the symbol 2X denotes the hyperspace of non-empty closed subsets of X, and C(X)
is the hyperspace of non empty subspaces of X both endowed with the Hausdorff’s metric,
two models of hyperspaces are shown in Figure 1. Notice that X is naturally embedded in
2X via the map x 7→ {x} (compare with ([13] [0.48]).

M C(M) M C(M)

Figure 1. The hyperspaces C(M) for the path P2 and the star S3.

Given a point p ∈ X, the anchored hyperspace of X at p, denoted by Cp(X), is the
subspace of C(X) consisting of those elements containing p. Note that Cp(X) is a subspace
of C(X), which in turn is a subspace of 2X .

A space X is unicoherent if, for any A, B ⊂ X subspaces such that X = A ∪ B, we
have that A ∩ B is connected. The space X is called hereditary unicoherent if each subspace
is unicoherent.

A graph G, consisting of a set V(G), called the vertices of G and a set E(G) of unordered
pairs of elements of V(G), called the edges of G. Letting G be a graph, if two vertices x and
y of G form an edge, we say that they are adjacent, and this is denoted by x ∼ y. This fact is
also expressed by saying that x and y are neighbors. A vertex of G is called a ramification
vertex if it has three or more neighbors and a terminal vertex if it has exactly one neighbor.
G is called simple if it contains no loops (a vertex adjacent to itself) and possesses at most
one edge between any two vertices. A path between two vertices u and v of G is a finite
sequence of consecutive adjacent vertices such that the first one is u and the last one is v.
G is connected if there is a path between any two vertices. A cycle in G is a finite sequence
of at least three consecutively adjacent vertices such that the first one and the last one are
adjacent. In this paper, we consider simple and connected graphs without cycles whose
vertices are ramification or terminal vertices, that is, there are no vertices with exactly
two neighbors.

In order to consider a graph G as a metric space, if we use the notation [u, v] for the
edge joining the vertices u and v, we must identify any edge [u, v] ∈ E(G) with the closed
interval [0, l] (if l := L([u, v]); therefore, any point in the interior of any edge is a point of
G and, if we consider the edge [u, v] as a graph with just one edge, then it is identified
with the closed interval [0, l]. A connected graph G is naturally equipped with a distance
defined on its points, induced by taking shortest paths in G. Then, we see G as a metric
graph (see [10,14]); according to this, a dendroid is a simple and connected graph without
cycles which is a hereditary unicoherent space; the comb and the harmonic fan are examples
of dendroids (see Figure 2). By dendrite, we mean a locally connected dendroid. Any tree,
the Fω, and the Gehmann dendrite are examples of these types of graphs (see Figure 3).
Throughout this paper, G denotes a dendroid or a dendrite.
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Figure 2. The comb and harmonic fan dendroids.

Figure 3. The Fω and Gehmann dendrites.

A point p ∈ G is called essential of type I if it is a vertex with infinitely many neighbors
or essential of type II if there exists an infinite sequence of ramification vertices (pn) such
that pn → p. We use the word essential to mean essential of type I or II. A point which
is not a vertex, nor an essential point, is called an ordinary point; we denote T(G), O(G),
R(G), and ES(G) the sets of terminal vertices, ordinary points, ramification vertices, and
essential points, respectively.

The order of a point x in a dendroid G is defined as follows:

oG(x) =


1, if x is a terminal vertex;
2, if x is an ordinary point;
n, if x has exactly n neighbors;
∞, if x is an essential point.

An m-dimensional cell (or m-cell for short) in a space X is a subspace M homeomorphic
to [0, 1]m, the part of M homeomorphic to (0, 1)m is called the interior manifold of M, and
it is denoted by M◦, while M − M◦ is denoted with ∂M, and it is called the boundary
manifold of M. If it occurs that the interior manifold M◦ is actually an open set of X, then
M is called a free cell of X; Figure 4 shows a space with some free cells. In Theorem 2, we
establish sufficient and necessary conditions for the existence of a maximal free m-cell in the
hyperspace C(G) for a dendrite G. Furthermore, in Theorem 3, we establish sufficient and
necessary conditions so that Theorem 2 can be applied when G is an arbitrary dendroid.

Free 3-cell

Free 2-cell

Free 1-cell

Figure 4. Free cells.

3. Preliminaries

Given m ≤ n, let A and B be m, n-cells, respectively, with A ⊆ B. If m = n, A◦ is an
open subset of B◦. On the other hand, if m < n, then A◦ is not an open subset of B◦ because
non-empty neighborhoods of B◦ contain m-dimensional open balls, and none of these can
be contained in A◦. Therefore, the next lemma follows at once.
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Lemma 1. (a) If a cell is contained in a higher dimensional cell, then the first one is not a free cell.
(b) Each m-cell contained in a free m-cell is a free m-cell.

In order to show that the cells that we are going to locate in hyperspace C(G) of the
dendrite G are maximal, we need Corollary 1 and Lemmas 2–5; in all of these, except
Lemma 3, it is assumed that A ⊆ B are m-cells.

Recall that Int A and Bd A designate, respectively, the topological interior and topological
boundary of the set A.

Lemma 2. If ∂A = ∂B, then A = B.

Proof. Since A◦ ⊆ B◦, it remains to show that B◦ ⊆ A◦. Let x ∈ B◦ and suppose x /∈ A◦.
Now, if we take y ∈ A◦, then x, y ∈ B◦. Let α be an arc from x to y contained in B◦. Then,
the arc α contains an end point in B− A and the other end point in A◦. It necessarily occurs
that α ∩ ∂A 6= ∅, and this is absurd.

Recall that the Borsuk–Ulam Theorem establishes that, for any continuous map f :
Sn → Rn, there must exist some point x ∈ Sn such that f (x) = f (−x). This theorem,
in particular, implies that no such maps can be one to one, and this is the key piece in the
proof of next lemma.

Lemma 3. The unique homemorphic copy of Sn contained in Sn is Sn itself.

Proof. Let A be a proper homeomorphic subspace of Sn; notice that we can suppose
that the North Pole is not contained in A (otherwise, apply a suitable rotation to Sn).
If ψ : Sn → A is a homeomorphism and σ is the usual stereographic projection of Sn to Rn

restricted to A, then σ ◦ ψ : Sn → Rn is a continuous one to one map, a contradiction.

Corollary 1. If ∂A ⊆ ∂B, then A = B.

Lemma 4. If B◦ ⊆ A, then A = B.

Proof. Let x ∈ ∂B and let U be a neighborhood of x in B. Since U ∩ B◦ 6= ∅, U ∩ A 6= ∅,
and hence x ∈ A = A.

Lemma 5. Let x ∈ ∂A, if x /∈ ∂B, then x ∈ Bd A.

Proof. Suppose x /∈ Bd A; then, x ∈ Int A and hence Int A ∩ B◦ is an open set in B
containing x. Thus, there must exist a neighborhood V of x homeomorphic to (0, 1)m

contained in Int A∩ B◦, and the latter shows that x cannot belong to any face of A. In other
words, x /∈ ∂A.

If J = [p1, p2] is an arc, it is a well known fact that C(J) is a 2-cell whose interior
manifold are all subsets in the form A = [a, b], where a 6= b and none of these points equal
to p1 or p2 (see [10]).

4. Free Cells in Hyperspaces of Dendrites
4.1. The Case n = 2

We are close to announcing Theorem 2 where necessary and sufficient conditions
are given for the existence of a maximal finite dimensional free n-cells in the hyperspace
C(G) of a dendrite G. The free cell built in its proof has the property that all of their
elements contain a certain subspace A. In this particular case, the maximal free cells are the
hyperspaces C(J) with J an edge, and none of these cells have such a property. Therefore,
the case n = 2 needs to be treated separately. However, first, it is necessary to state the
following known property about locally connected topological spaces.
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Lemma 6. In any locally connected topological space, the components of open sets are open sets.

Theorem 1. The hyperspace C(G) of a dendrite G contains a maximal free 2-cell B if and only if
B = C(J) for some edge J of G.

Proof. Let J be an edge of G and p1, p2 their extremes, consider an element A = [a, b] ∈
(C(J))◦ and let ε > 0 such that Nε(A) ⊆ J◦ (where Nε(A) is the union of all open balls
B(x, ε) as x ranges over all points of A). Hence, if B(A, ε) is the open ball (in the Haus-
dorff metric of C(G)) centered at A, then B(A, ε) ⊆ (C(J))◦ and C(J) ⊂ C(G) is a free 2-cell.

Now, we see that the free cell C(J) is maximal. LetA be a free 2-cell in C(G) containing
C(J). If A ∈ ∂C(J), we have (i) A = [pj, x], (j = 1 or j = 2) or else (ii) A = {x} with
x ∈ [p1, p2]. We claim that A ∈ ∂A. If A is as (i), we have three sub-cases:

(1) The point pj is a ramification vertex. Suppose with no loss of generality that j = 1.
If A /∈ ∂A, then A ∈ A◦ and hence there must exist ε > 0 with B(A, ε) ⊆ A◦. Take
x1, x2 ∈ Nε(A)− A such that [x1, p1] ∩ [x2, p1] = {p1}, [xi, p1] ⊆ B(p1, ε) (i ∈ {1, 2})
and a point u ∈ (x, p2) such that [u, x] ⊆ B(x, ε). The set

B = {A ∪ [w1, p1] ∪ [w2, p1] ∪ [x, w3] | w1 ∈ [x1, p1], w2 ∈ [x2, p1], w3 ∈ [u, x]}

is a 3-cell (see [13] [Theorem 1.100]) contained in B(A, ε) ⊆ A◦, and this is absurd.
(2) The point pj is essential.

A similar analysis as the previous case shows that a 3-cell contained in B(A, ε) could
be built.

(3) The point pj is a terminal vertex, and x is an ordinary point or a terminal vertex. In this case,
we have A ∈ Int C(J), and this contradicts Lemma 5.

The above shows that A ∈ ∂A as desired. For the case ii), if we assume that A = {x}
and A /∈ ∂A, take H ∈ A◦ − C(J) (see Lemma 4) and notice that H does not contain
ramification points or essential points; otherwise, in a neighborhood of H contained in
A◦, 3-cells or even Hilbert cubes can be located (in the proof of Theorem 2, it is shown
in detail how is this possible). Hence, H is an arc and let q1 and q2 denote their end
points; according to this, it must be p1 ∈ [x, q1] or else p2 ∈ [x, q1]. Suppose p1 ∈ [x, q1],
and, using the fact that H 6= {x} and A◦ is arcwise connected, take α ⊆ A◦ an arc
from {x} to H. We claim that there exists L ∈ α such that p1 ∈ L. Otherwise, we have
α ⊆ C(G)− Cp1(G). Let U be the component of G− {p1} containing x, let V be the union
of the remaining components and notice that H ⊆ V. By Lemma 6, U and V are open sets,
hence U = {B ∈ C(G) | B ⊆ U} and V = {B ∈ C(G) | B ⊆ V} are non-empty, disjoint
open sets in C(G)− Cp1(G) (compare with [15] [Theorem 4.5]) and therefore the sets α ∩ U
and α ∩ V form a separation of α, which is impossible, being α connected. This proves the
existence of the desired L.

The point p1 is a ramification vertex or an essential point; since L ∈ A◦, as in the
sub-cases (1) and (2) for some suitable ε′ > 0, it is possible to find a 3-cell contained in
B(L, ε′) ⊆ A◦, and this is a contradiction once again. Therefore, in this case, it must be
A ∈ ∂A and the result now follows from Corollary 1.

For the converse, let B ⊆ C(G) be a maximal free 2-cell and let A ∈ B◦. Notice that A
does not contain ramification vertices or essential points. The above remarks result in A
needing to be an arc; if J = [p1, p2] (where p1, p2 are vertices of G) is the edge containing
A, we claim that B ⊆ C(J). Otherwise, let B ∈ B − C(J). Hence, for each x ∈ B and for
each y ∈ A, it occurs that a) p1 ∈ [x, y] or b) p2 ∈ [x, y]. Suppose without loss of generality
that a) occurs and let α be an arc in B from B to A such that α− {B} ⊆ B◦. Since B ∈ C(J)
and A ∈ C(J), there must exist C ∈ α ∩ ∂C(J). Hence, C has the form [p1, a]. If ε > 0 is
such that B(C, ε) ⊆ B◦, then B(C, ε) contains a 3-cell (if p1 is a ramification point) or even a
Hilbert cube (if p1 is an essential point). This is a contradiction in any case. This shows that
B ∈ C(J) and therefore B = C(J).
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4.2. The Case n > 2

We need to introduce some terminology about the hyperspace C(K) for a tree K (for
more details, see [10,12]).

An internal tree T of a tree K is a subgraph which is a tree not containing terminal
vertices of K. Let IT(K) denote the set of internal trees of K. For T ∈ IT(K), let I1, . . . , In be
those edges of K such that Ii ∩ T 6= ∅ and Ii is not contained in T. We define

D(1, T) = T ∪
(

n⋃
i=1

Ii

)
,

and we say that this is the canonical representation of D(1, T). Given an internal tree T ⊂ K,
let M(T) be the family of all subspaces of K in the form

((ci)
n
i=1)T = T ∪

(
n⋃

i=1

[0Ii , ci]

)
,

where 0Ii is the vertex of Ii contained in T, and [0Ii , ci] is the subarc of Ii joining 0Ii with ci.

Lemma 7. Let K be a tree, then

(i) For each internal tree T ⊂ K, the family M(T) is a n-cell.
(ii) The hyperspace of C(K) is

C(K) =

 ⋃
T∈IT(K)

M(T)

 ∪
 ⋃

I∈E(K)

C(I)

.

Theorem 2. The hyperspace C(G) of a dendrite G contains a maximal free n-cell (n > 2) if and
only if there exists a tree K ⊆ G satisfying the following conditions:

(i) T(K) = {p1, . . . , pn} ⊆ R(G) ∪ T(G) ∪ ES(G),
(ii) for all x ∈ K− T(K), oK(x) = oG(x).

Proof. For each pi ∈ T(K), let ri ∈ R(K) such that [ri, pi] ∩ R(K) = {ri}.

Put A = K −
(

n⋃
i=1

(ri, pi]

)
and for each x = (xi)

n
i=1 ∈

n

∏
i=1

[ri, pi] let Cx denote the set

A ∪
(

n⋃
i=1

[ri, xi]

)
. We claim that the family M(A) = {Cx | x ∈

n

∏
i=1

[ri, pi]} is a maximal free

n-cell in C(G).
That M(A) is actually a n-cell is due to [13], [Theorem 1.100]; therefore, we only need

to verify the maximal and free properties.
Let Cx ∈ (M(A))◦ and define L = (G − K) ∪ {p1, p2, . . . , pn}. Put α = d(Cx, L) =

in f {d(c, l) | c ∈ Cx, l ∈ L}, αi = d(xi, A), βij = d(xi, [rj, pj]), where i 6= j and i, j ∈
{1, 2, . . . , n}. Since all these quantities are positive, take ε > 0 less than all those and
Y ∈ B(Cx, ε). For each i ∈ {1, 2, . . . , n}, choose zi ∈ B(xi, ε) ∩ Y and notice that zi /∈
A ∪ L ∪ [rj, pj] if i 6= j, and hence zi ∈ (ri, pi). Now, if x ∈ A, there exists zi, zj which are in
different components of K−{x}. Then, x ∈ [zi, zj], which shows that A ⊆

⋃
i,j
[zi, zj]; since Y

is arcwise connected,
⋃
i,j
[zi, zj] ⊆ Y and therefore A ⊆ Y; in particular, no point belonging

to A is a terminal vertex of Y.
We want to see that Y contains exactly n terminal vertices and these are contained in

the arcs (ri, pi). Let y ∈ Y be a terminal vertex of Y. Since y /∈ L, we have y 6= pi for all
1 ≤ i ≤ n and y /∈ A gives y ∈ (ri, pi) for some i. For the above argument, it follows that
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Y contains at most n terminal vertices; otherwise, two of them must belong to a same arc
(ri, pi) which is not possible.

Now, given 1 ≤ i ≤ n, Gi = Y ∪ [ri, pi] is a subspace of G. Since G is hereditary
unicoherent, Y ∩ [ri, pi] is connected and non-degenerate (i.e., contains more than one
point) because the arc [ri, zi] is contained in the intersection and therefore such intersection
is an arc whose extremes are ri and say yi. The point yi is a terminal vertex of Y. This
shows that Y contains at least n terminal vertices. We conclude Y = Cy ∈ (M(A))◦, where
y = (yi)

n
i=1.

Let us verify that n-cell M(A) is actually maximal; for this purpose, suppose there
exists a free n-cell A ⊆ C(G) such that M(A) ⊆ A with M(A) 6= A. By Corollary 1, it
must occur that there exists some point Cx ∈ ∂M(A) such that Cx ∈ A◦. Take ε > 0 such
that B(Cx, ε) ⊆ A◦.

Now, there are several cases to consider about the point Cx. The first one arises when

we suppose Cx = A ∪
(

n⋃
i=1

[ri, xi]

)
, where, for some index, say i = 1, we have x1 = p1 is a

terminal vertex of K and, at the same time, a ramification vertex of the dendrite G.
Let ui ∈ [ri, xi] (for 2 ≤ i ≤ n) be points such that [ui, xi] ⊆ B(xi, ε) and let L1, Ln+1 be

two different edges of G such that L1 ∩ Ln+1 ∩ K = {p1}. Consider also points u1 ∈ L1 and
un+1 ∈ Ln+1 such that [u1, p1] ⊆ B(p1, ε) and [un+1, p1] ⊆ B(p1, ε).

For y1 ∈ [p1, u1], yi ∈ [ui, xi] (2 ≤ i ≤ n) and yn+1 ∈ [p1, un+1], let A1 = [p1, y1], Ai =

[ui, yi] and An+1 = [pi, yn+1]. The family of all subspaces of the form A ∪
(

n+1⋃
i=1

Ai

)
is an

(n + 1)-cell contained in B(Cx, ε) ⊆ A◦, and this is a contradiction. Similar considerations
show that, if xi is an essential point for some i, then it is possible find an (n + 1)-cell
contained in A◦.

A second case is obtained when, for some index i, say i = 1, it occurs that x1 = r1.
In this case, Cx can not belong to Int (M(A)) since this contradicts Lemma 5. However,

if Cx ∈ Fr(M(A)), consider the decomposition C(K) =

 ⋃
T∈IT(K)

M(T)

 ∪
 ⋃

I∈E(K)

C(I)


of Lemma 7 (ii). We claim that we may suppose Cx ∈

 ⋃
T 6=A

M(T)

 ∪
 ⋃

I∈E(K)

C(I)

,

where T runs over all internal trees of K different from A. Otherwise, there exists an open

set U of C(G) such that Cx ∈ U ⊆ C(G)−

 ⋃
T 6=A

M(T)

 ∪
 ⋃

I∈E(K)

C(I)

.

Let N be the first positive integer such that B(Cx, 1
N ) ⊆ A◦ ∩ U . Thus, for each

m ≥ N, there exists Ym ∈ C(G)− C(K), such that H(Ym, Cx) <
1
m . For each m ≥ N, take

a point ym ∈ Ym − K and a point xm ∈ Cx such that d(ym, xm) <
1
m . Since G is compact,

the sequence (ym) contains a convergent subsequence. We can suppose without loss of
generality that (ym) is actually convergent, say, to y. We claim that y ∈ Cx. Indeed, given
ε > 0, choose M ∈ N such that ym ∈ B(y, ε

2 ) for all m ≥ M. If m ≥ M satisfies 1
m < ε

2 , then
d(xm, y) ≤ d(xm, ym) + d(ym, y) < 1

m + ε
2 < ε, that is, xm ∈ Cx ∩ B(y, ε). With ε > 0 being

arbitrary, we conclude that y ∈ Cx.
The above argument shows that y is a cluster point of G− K; this implies that y = pi

for some index i, where pi ∈ R(G) ∪ ES(G), and this case has already been analyzed.

Thus, we may suppose Cx ∈

 ⋃
T 6=A

M(T)

 ∪
 ⋃

I∈E(K)

C(I)

. In fact, by [10], [6.2, 6.3]

or [12], [Lemma 2.6], we must suppose Cx ∈

 ⋃
T 6=A

∂M(T)

∪
 ⋃

I∈E(K)

∂C(I)

. Supposing

first that Cx ∈ ∂C(I) since the points belonging to the boundary manifold of a cell are
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cluster points of their interior manifold, we must have A◦ ∩ (C(I))◦ 6= ∅. Now, this
set is open in A, and, on the other hand, is contained in C(I); this is impossible since
Dim(A) = n > 2 = Dim(C(I)).

Suppose now Cx ∈ ∂M(T). Recall that A is the internal tree obtained from K by
removing their terminal edges. It follows by [10], [5.3, 7.1] that Dim(M(T)) < Dim(M(A)).
On the other hand, since Cx is a cluster point of (M(T))◦, it must occur that (A)◦ ∩
(M(T))◦ 6= ∅ and notice that this set is open in C(G) and therefore open in A◦. Hence,
there exists a homeomorphic copy of [0, 1]n contained in (M(T))◦, which is impossible
regarding the dimension of M(T).

The final case to consider is obtained when, for some index i, xi = pi with pi ∈ T(G)
or else xi ∈ (ri, pi). In this case, it is not difficult see that Cx ∈ Int (M(T)) contradicting
Lemma 5. This shows that M(A) is a maximal free n-cell as desired.

Conversely, let A be a free n-cell, B ∈ A◦ and let us analyze how B looks. Let
T(B) = {p1, . . . , pk} and let r1, . . . , rs ∈ B− T(B) be the points such that oB(ri) < oG(ri).

Put αi = oG(ri)− oB(ri) and assume that k +
s

∑
i=1

αi = m > n. Consider ε > 0 such that

B(B, ε) ⊆ A◦ and for each 1 ≤ i ≤ s consider also arcs [ui1 , ri], . . . , [uiαi
, ri] such that

[uij , ri] ⊆ B(ri, ε) and [uij , ri] ∩ B = {ri}. In addition, take points vt on the terminal edges
of B such that [vt, pt] ⊆ B(pt, ε) for 1 ≤ t ≤ k.

Letting B1 = B−
(

n⋃
i=1

[pt, vt]

)
, we obtain that the familyH of all subspaces of G has

the form:

B1 ∪
(

k⋃
t=1

[vt, xt]

)
∩

 s⋃
i=1

 αi⋃
j=1

[ri, yij ]

,

where xt ∈ [vt, pt] and yij ∈ [ri, uij ] is a m-cell contained in A, which is absurd. Notice
that the above argument in particular shows that B− T(B) does not contain I-essential
points. A similar reasoning shows that B− T(B) also does not contain I I-essential points.
Now, assume that m < n. If p1, p2, . . . , pq are the terminal vertices of B which are ordinal
points of G, for each 1 ≤ t ≤ q, let Jt be the edge of G such that pt ∈ Jt and for each
i ∈ {1, . . . , s}, let Ii1 , Ii2 , . . . , Iiαi

be the edges of G such that Jij ∩ B = {ri}. Hence, the tree

K = B ∪
( q⋃

t=1

Jt

)
∪

 s⋃
i=1

 αi⋃
j=1

Iij

 has m terminal points and satisfies conditions (i) and

(ii) and, by the only if part, we have already seen how to get a maximal free m-cell containing
the above m-cell H. Now, on the one hand, by Lemma 1, the cell H is free; on the other
hand, sinceH ⊆ A◦, Lemma 1 (a) gives thatH is not a free cell and, again, this is absurd.
Thus, we conclude that m = n and K is the desired tree.

5. Free Cells in Hyperspace of Dendroids

In this section, necessary and sufficient conditions are given so that Theorem 2 can be
applied for dendroids. For this purpose, the notion of convergence space is required.

A non degenerated subspace A of a space X is called convergence space if there exists a
sequence An of subspaces of X such that:

(1) lim An = A,
(2) An ∩ A = ∅.

The subspaces An can be chosen to be mutually disjoint (see [13] [5.11]).

Theorem 3. Let G be a dendroid, a tree K ⊆ G, which satisfies the following conditions:

(i) T(K) = {p1, . . . , pn} ⊆ R(G) ∪ T(G) ∪ ES(G),
(ii) for all x ∈ K− T(K), oK(x) = oG(x).
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If A is the tree obtained from K by removing their terminal edges, then A induces a maximal
free n-cell M(A) if and only if this cell does not contain convergence subspaces.

Proof. The cell M(A) is constructed as in the proof of Theorem 2. It is not hard to see that,
if Cx ∈ (M(A))◦ is a convergence subspace, then M(A) can not be a free n-cell. On the
other hand, if M(A) is not a free n-cell, then there exists Y = Cx ∈ (M(A))◦ such that,
for each ε > 0, there exists Z ∈ C(G)− (M(A))◦ with H(Y, Z) < ε.

Consider αi = d(Y, pi), β = H(Y, ∂(M(A))), γT′ = H(Y, (M(A))) and δI = H(Y, C(I))
(where T runs over the set of internal trees of K with T 6= A and I runs over the set of
edges of K). Since all these quantities are positive, take ε > 0 less than all of them and take
Z1 ∈ C(X)− (M(A)) such that H(Z1, Y) < ε. If Z1 ∩Y 6= ∅, we have the following cases:

(i) Z1 − K 6= ∅,
in this case pi ∈ Z1 for some i. Hence, the ball B(pi, ε1) intersects Y, and this contra-
dicts the choice of ε1.

(ii) Z1 ⊆ K,

in this case, Z1 ∈ C(K) =

 ⋃
T∈IT(K)

M(T)

 ∪
 ⋃

I∈E(K)

C(I)]

.

If Z1 ∈ ∂M(A), Z1 ∈ M(T) with T 6= A or Z1 ∈ C(I), again this contradicts the
choice of ε1. Therefore, Z1 and Y are disjoint. Taking 0 < ε2 < H(Z1, Y), in a similar way,
we can obtain a subspace Z2 with no points in common with Y and such that H(Z2, Y) < ε2.
Continuing with this process, we obtain a sequence (Zn) of mutually disjoint subspaces
convergent to Y.

6. Characterization of the Arc in Terms of Anchored Hyperspaces

The aim of this section is to prove that the arc is the unique arcwise connected space
X, for which Cp(X) is an arc for some p ∈ X (Theorem 4). An important tool in the proof
of this theorem is the use of order arcs. An order arc in 2X is an arc α contained in 2X such
that, for any A, B ∈ α, A ⊆ B or B ⊆ A. The concepts and results we use for order arcs can
be found in [13]. We use freely the notation found in there.

Proposition 1. The anchored hyperspace Cp(X) is an arc if and only if it is an order arc.

Proof. Let α an order arc in C(X) from {p} to X. Since p ∈ A for all A ∈ α, we have
α ⊆ Cp(CX). Now, it is sufficient to show that {p} and X are also the end points of
Cp(X), and this will be done by proving that neither {p} nor X are cut points of Cp(X)
(see [16], [Theorem 1, Pag. 179]). Take different points A, B ∈ Cp(X)− {p} if β and γ are
order arcs from A to A ∪ B and from B to A ∪ B respectively, then β ∪ γ ⊆ Cp(X)− {p}
is an arc containing the points A and B; this shows that {p} is not a cut point of Cp(X).
Similarly, if A, B ∈ Cp(X)− {X}, taking β and γ order arcs from {p} to A and from {p}
to B, one obtains that X is not a cut point either and therefore α = Cp(X). The converse is
obvious.

A point p of a space X is an irreducibility point of X if there exists another point q such
that no proper subspace contains both points. The following result is due to Kuratoski and
is a handy tool in the proof of Theorem 4.

Lemma 8 (Kuratoski’s Theorem, [15]). Let X be a space and let p ∈ X. Then, p is point of
irreducibility of X if and only if X is not the union of two proper subspaces both of which contain p.

Theorem 4. Let X be an arcwise connected space. Then, Cp(X) is an arc for some p ∈ X if and
only if X is an arc.

Proof. By Proposition 1, Cp(X) is an order arc from {p} to X. It follows that X is not the
union of two proper subspaces both containing the point p. By Lemma 8, it turns out that
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p is an irreducibility point of X, if q ∈ X is another point such that no proper subspace of
X contains the points p and q; the arcwise connectedness implies that X = [p, q].

For the converse, suppose without loss of generality that X = [0, 1]. Letting p = 0,
the map

x 7→ [p, x],

is a homeomorphism from X to Cp(X).

The arcwise connectedness hypothesis is necessary in the above theorem (see [13]
[Example 1.1]).

7. Comparative Studies and Conclusions

Some of the main goals on hyperspace research from a theoretical approach are: to
obtain topological models corresponding to familiar or not difficult to handle spaces, to find
relations between hyperspaces and their underlying spaces, uniqueness of hyperspaces,
i.e., to investigate which spaces are the only ones whose hyperspaces possess a given
structure. Motivated by the studies carried out in [17,18], the present work was deemed
convenient by the authors. In the aforementioned works, the existence of cells in hyper-
spaces is characterized. Our work is carried out on infinite graphs and describes when
such cells are free.

In [19], the arc is characterized in terms of anchored hyperspaces within the class
of trees. In our work, we conduct a similar study but within a broader class of spaces,
the arc-connected spaces.

Question: If the class of anchored hyperspaces of an arcwise connected space X
matches the class of anchored hyperspaces of a connected graph G, does it follow that X
and G are homeomorphic?
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