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Abstract: This research presents a variant of the vehicle routing problem known as the path cover
problem with time windows (PCPTW), in which each vehicle starts with a particular customer and
finishes its route at another customer. The vehicles serve each customer within the customer’s time
windows. PCPTW is motivated by a practical strategy for companies to reduce operational cost by
hiring freelance workers, thus allowing workers to directly service customers without reporting to
the office. A mathematical programming model is formulated for the problem. This research also
proposes a simulated annealing heuristic with restart strategy (SARS) to solve PCPTW and test it
on several benchmark datasets. Computational results indicate that the proposed SARS effectively
solves PCPTW.

Keywords: simulated annealing with restart strategy; vehicle routing problem; path cover problem;
time windows

1. Introduction

The vehicle routing problem (VRP) is widely used to address logistics and transporta-
tion problems, and on the basis of the literature over the last few decades many variants of it
have been extensively studied. Examples include VRP with time windows [1–4], VRP with
stochastic demand [5–7], time-dependent VRP [8–10], and VRP with split delivery [11–13].
Most of these studies are devoted to dealing concerns about vehicle routes in a logistics and
transportation system, the resources of which belong permanently to the companies. How-
ever, in real-life situations, resources are commonly not owned permanently by companies,
and this situation must be considered by decision makers.

The present work is motivated by the practical strategy currently adopted by many
several small- and medium-sized enterprises (SMEs) that hire freelance workers to reduce
operational costs. This practice allows workers to start driving from either their homes or
certain geographical locations and return directly to them without reporting to the main
office. The freelance workers can be private car owners or occasional drivers provided
by delivery service companies such as Uber and Grab. Hence, hiring freelance workers
provides vehicle fleet operators or companies with flexibility in planning service routes.
By using this strategy, companies can assign efficient paths that disregard the distance
between workers’ homes and the depot. Companies will only be concerned with the path
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of workers from the first to the last customer. This situation is observed in intermediate
service companies (e.g., home care service providers and health home care service agencies)
without resources (e.g., freelance carriers, housekeeping services, handymen, and shopping
assistants), and in companies that hire freelance sales agents.

The practical strategy above creates a variant of VRP called the path cover problem
(PCP) [14]. In practice, many customers want to be served within a particular time range,
and thus this research extends PCP by considering time windows to propose the path
cover problem with time windows (PCPTW). Figure 1 depicts an illustration of PCPTW,
whose structure is similar to PCP, but also covers the service time windows of customers.
As shown in Figure 1, a dummy depot and a dummy route disregard the distance from the
depot to the customer.
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The vehicle routing problems that consider the hiring of outsourced vehicles are com-
monly modeled as open vehicle routing problems (OVRPs), as presented by Salari et al. [15].
Outsourced vehicles provided by third-party logistics operators are hired to fulfill cus-
tomer demands. When each customer is restricted to an earliest and latest visit time, the
problem is extended to the ‘open vehicle routing problem with time windows’ (OVRPTW),
as discussed in Repoussis et al. [16]. After finishing the tasks, the outsourced vehicles
do not return to the depot, since they belong to third-party logistics operators. PCPTW
is different from OVRP and OVRPTW in that the drivers are allowed to visit their first
customer directly from their homes instead of from the main office. In practice, each route
is assigned to a driver who can visit the customers within their respective time windows.
This is similar to the underlying assumption of VRPTW that each driver is available to start
the route at a time that allows her/him to meet the customers’ time window restrictions,
including that of the first customer.

VRP is an NP-hard combinatorial optimization problem, and hence PCPTW is also an
NP-hard problem. To address it, this work proposes a simulated annealing with restart
strategy (SARS) heuristic, which is a diversified version of simulated annealing (SA) that
utilizes a restart strategy to escape from local optima. This study conducts extensive
computational experiments on a PCP dataset, well-known VRPTW benchmark problems,
and a PCPTW dataset to investigate the performance of the proposed method on the
three problems.

The four main contributions of this study are as follows. First, it considers time
windows for PCP, which is closer to real-life situations. In addition, PCPTW is different
from VRPTW [17], because it considers the open-ended paths of vehicles instead of the
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closed vehicle loops in VRPTW. Second, the proposed SARS is compared with an exact
solver on the PCPTW dataset, which is adapted from Solomon’s VRPTW dataset. SARS
obtains optimal solutions for all the small instances and can improve the upper bounds for
medium and large instances. This research also investigates the advantage of the restart
strategy in improving SA. Third, this work evaluates the proposed SARS’s performance
against other heuristics on Solomon’s VRPTW and PCP datasets, finding that the algorithm
performs at par with other heuristics. This research further compares it with another
single-based solution heuristic and finds that SARS performs more efficiently. Fourth,
the proposed SARS obtains new best-known solutions for six instances in Solomon’s
VRPTW dataset.

The remainder of this paper is structured as follows. Section 2 presents the literature
review. Section 3 presents a mathematical model for PCPTW. Section 4 discusses the pro-
posed SARS for PCPTW. Section 5 discusses the computational study. Section 6 concludes
the paper.

2. Literature Review

To the best of our knowledge, the literature has no articles devoted to PCPTW. While
OVRP, OVRPTW and VRPTW are variants of VRP that are close to PCPTW, PCPTW extends
PCP toward real-life aspects by considering a range of service times at the customer location.
In PCP, a vehicle starts at a customer and ends at another customer without visiting the
depot. This problem is introduced by Yu et al. [14] and motivated by a practical strategy
of employing private vehicles to undertake the transportation function of a company or
organization. In OVRP, vehicles start from the depot and terminate at a customer location,
and thus there is no transportation cost associated with the distance between the last
customer and the depot. This variant was first introduced by Sariklis and Powell [18]
as a practical technique for companies that require delivery operations from distribution
companies, called freelance vehicles, which deliver goods to customers, but are not owned
by the distribution companies. In contrast to OVRP, in PCPTW there is both no distance cost
between the last customer and the depot, and no distance cost between the depot and the
first customer. In addition, PCPTW also ensures that vehicles serve customers in a certain
time range, which is not considered in OVRP. Due to the more complex characteristics of
PCPTW, solving PCPTW needs more effort compared to solving OVRP. Classical heuristic
methods such as the Clarke and Wright algorithm [19], petal algorithm [20], and sweep
algorithm [21] are the early solution approaches for VRP and it variants [22]. In the last
few decades, metaheuristics has gained much interest from VRP researchers due to their
ability to solve VRP related problems compared to the classical heuristics [23].

Many OVRP studies consider additional characteristics in real-world applications,
including OVRPTW. Xia and Fu [24] proposed a variant of OVRP by considering split
deliveries and solved the problem using an adaptive tabu search. The algorithm was tested
on instances with up to 100 customers. Xia and Fu [25] considered time window and
satisfaction rate in OVRPTW. They developed an improved tabu search algorithm for the
problem. The algorithm was tested on Solomon benchmark instances with 100 customers.
Lalla-Ruiz and Mes [26] presented a two-index-based mathematical formulation to solve
the multi-depot OVRP. The model was tested on instances with 48 to 288 customers.

In VRPTW, vehicles start from the depot, serve all customers without violating the
vehicle capacity and constraints of the customer time range, and then return to the depot.
Solomon [3] solved VRPTW using sequential and parallel methods. Sequential procedures
construct one route at a time until all customers are scheduled. Parallel procedures are
characterized by the simultaneous construction of a number of routes. The author generated
six sets of problems, which are well-known as Solomon’s VRPTW dataset. This dataset
serves as a reference to subsequent researchers for testing their approaches to solving
VRPTW efficiently. Thereafter, several researchers have presented metaheuristic methods
as strong tools for solving VRPTW. This section underlines the methods from recently
published papers on VRPTW, and the average performance of these methods is close to the
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best-known solution (BKS). In recently published papers, several algorithms have been
tested on Solomon’s VRPTW dataset with 100 customers. The methods include hybrid
multi-objective evolutionary algorithm [27], column generation heuristic (CGH) [28], a
hybrid of tabu search and ant colony optimization [17], parallel iterated tabu search
heuristic (PITSH) [29], set-based particle swarm optimization [30], cooperative population
learning algorithm (CPLA) [31], hybrid shuffled frog leaping algorithm (HSFLA) [32],
meta-harmony search algorithm [33], and the most recent tabu–artificial bee colony (Tabu–
ABC) [34].

Yang [35] stated that metaheuristic algorithms could be classified as single-based and
population-based solution heuristics. The methods mentioned in recently published papers
on VRPTW, such as the PITSH, are included in the single-based solution heuristics, whereas
the other methods are included in the population-based solution heuristic. Our SARS is
included in the single-based solution heuristic.

In addition to the VRPTW studies that focused on improving the solution method
as described in the previous paragraph, researchers have also proposed many variants
of VRPTW that accommodate characteristics in real problems. For example, Keskin and
Çatay [36] proposed a VRPTW variant in which freight is distributed by fast-charging
electric vehicles. They solved the problem by an adaptive large neighborhood search.
Goel et al. [37] considered stochastic customers’ demands and stochastic service times in
VRPTW. The authors developed a mathematical model and a modified ant colony system
to solve the problem. Energy consumption in cold chain logistics also employed VRPTW
as reported in Song et al. [38]. An improved artificial fish swarm algorithm was proposed
to solve realistic instances.

3. Mathematical Model

PCPTW is characterized as follows. Let G = (V, A) be a complete directed graph,
where V = {0, 1, . . . n} is a vertex set, and A = {(i, j) : i, j ∈ V, i 6= j} is an arc set. Vertex
0 represents a dummy depot, and V0 = V\{0} denotes a customer set in which each
customer (i ∈ V0) has demand qi and service duration s. Each (i, j) is associated with
travel cost cij, which is also interpreted in this research as travel time. Each customer i
can be visited within time window (ei, li), where ei is opening time, and li is closing time;
m denotes vehicle availability to serve the customers, and each vehicle has capacity C,
activation cost h, and maximum tour length T; and ui and yi represent vehicle load and
arrival time at customer i, respectively. The objective function of PCPTW is to determine the
service paths that minimize the total transportation costs by employing freelance vehicles
to serve the demand of customers under the following constraints: the customers must be
serviced exactly once, the total load of a vehicle does not exceed C, the duration of any
route does not exceed T, and the vehicle serves the customer within their time windows.
The assumptions of this model are realized in the constraints, which are reasonable in
reality. For example, the total load of the vehicle cannot exceed its capacity, the route
representing the driver has a standard work time, and customers have a certain time range
to receive services from other parties.

The mathematical model of PCPTW is a slightly modified version of that shown in
Yu et al. [17] by disregarding distance costs between customers and the depot and adding
the activation cost of the vehicles to calculate the objection function. A binary variable, xij,
is used, and xij = 1 if a vehicle moves from customer i to customer j. The mathematical
model is as follows.

Minimize ∑
i∈V0

∑
j∈V0

cijxij + h ∑
j∈V0

X0j (1)

∑
i∈V

xij = 1 ∀j ∈ V0 (2)

∑
j∈V

xij = 1 ∀i ∈ V0 (3)
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∑
i∈V0

xi0 ≤ m (4)

∑
j∈V0

x0j ≤ m (5)

ui − uj + Cxij ≤ C− qj ∀i.j ∈ V0, i 6= j (6)

qi ≤ ui ≤ C ∀i ∈ V0 (7)

yi + s− yj + cij ≤ L(1− xij) ∀i, j ∈ V0, i 6= j (8)

yj + s ≤ T ∀j ∈ V0 (9)

ei ≤ s ≤ li ∀i ∈ V0 (10)

xij ∈ {0, 1} ∀i, j ∈ V (11)

The objective function (1) minimizes the total transportation cost, which consists of
total travel distance and total vehicle activation cost. Constraints (2) and (3) ensure that all
customers are served exactly once. Constraints (4) and (5) ensure that vehicle availability
is not exceeded. Constraints (6) and (7) impose the capacity and connectivity of a route.
In constraints (8) and (9), L is a large number and maintains that each vehicle ends the
service no later than T. Constraint (10) denotes that the customers must be served within
the time windows. Note that the first customer must be served in the relevant time window,
although this model disregards the distance between the depot and its location, since
only the possible freelance worker as described in Section 1 can handle the task. Binary
integrality is guaranteed through constraint (11).

4. Solution Method

SARS targets the solution of PCPTW. This algorithm is a diversified version of SA
to produce improved results. SA itself was introduced by Metropolis et al. [39] and then
by Kirkpatrick et al. [40]. Eglese [41] popularized the heuristic by conducting an SA
overview in the combinatorial optimization problem. According to the literature, SA has
been successfully applied to many NP-hard combinatorial problems [42–46].

SA is a local search-based algorithm consisting of a mechanism to escape from local
optima. It belongs to a single-solution-based algorithm that iteratively explores a better
objective value. This algorithm is a simple local search, which starts with an initial solution.
It then selects a neighborhood solution of the current solution at each iteration. If the
objective value of the neighborhood solution is better than that of the current solution, then
the neighborhood solution replaces the current solution; otherwise, the current solution is
retained. SA allows a worse-neighborhood solution to replace the current solution with a
small probability; thus, the procedure can escape being trapped at a local optimum. This
feature advantage of SA motivates this research to employee the SA-based heuristic in
order to solve PCPTW.

In many cases, SA-based search procedures may require more diversification mecha-
nisms to avoid being trapped at the local optima. Without these diversification mechanisms,
the search space of these SA-based search procedures may be confined to a small region
of the solution space. Therefore, the probability of achieving a global optimum may be
reduced [47]. A popular diversification mechanism is the restart strategy, which can be
used to guide the search escapes from local optima. Thus, this work proposes SARS, which
combines the advantages of an SA-based algorithm in fast search convergence and the
restart strategy in escaping the local optima, herein to obtain better results compared
with merely using SA. The algorithm has been successful in solving combinatorial opti-
mization problems [48]. The remaining subsections explain the solution representation,
neighborhood mechanism, parameters used, and details of the SARS procedure.
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4.1. Solution Representation

The solution is represented by a string of numbers consisting of a permutation of n
customers denoted by the set {1, 2, . . . , n} and Ndummy zeros. Each of the Ndummy zeros
represents the dummy depot and is a sign of constructing a new route, although the

current route does not violate any restrictions. Ndummy is calculated as
⌈

∑
i
(qi/C)

⌉
, where

dxe represents the smallest integer that is larger than or equal to x. Furthermore, the jth
non-zero string in the solution representation denotes the jth customer to be visited. Thus,
the first non-zero number is the first customer of the first route. Subsequent customers
are added one at a time to complete the current route, provided that the time window
constraints of the customers and the maximum length of the route of the vehicle are
not violated. If adding a customer to the current route violates either the time window
constraint of the customer, the time window constraint of the depot, or the maximum length
of route constraint, then this customer is cancelled and the current route is terminated;
hereafter a new route is started whenever feasible.

The vehicle must start within the range of the service time window of the customer.
If the vehicle arrives at the customer earlier than the opening time, then its service must
wait until the opening time. This solution representation always maintains a feasible
PCPTW solution.

To illustrate the solution representation, Table 1 presents a PCPTW instance with
15 customers. The table consists of the customer’s location (X,Y), demand (Q), opening
time (OP), closing time (CL), and service time (ST) columns. Figure 2 illustrates an example
of a solution representation. The solution representation consists of three routes. In the
first route, the vehicle starts from the dummy depot (zero number), proceeds to Customer
1, and ends at Customer 8. The addition of Customer 5 to the first route violates one of
the constraints; thus, Customer 5 is excluded from the first route, and a second route is
constructed starting from Customer 5. The second route ends at Customer 4. The second
route terminates at the customer, because the number is zero after Customer 4. Furthermore,
the third route starts from Customer 11 and ends at Customer 3. Figure 3 provides a visual
illustration of the path cover network corresponding to the sample solution representation
illustrated in Figure 2.

Table 1. PCPTW instances with 15 customers.

No. X Y Q OP CL ST

0 40 50 0 0 1200 0
1 52 65 10 0 967 90
2 52 72 30 0 870 90
3 24 70 10 448 505 90
4 32 53 10 727 782 90
5 31 53 10 0 67 90
6 45 79 20 255 324 90
7 51 78 20 0 225 90
8 42 71 20 621 702 90
9 40 78 10 534 605 90

10 23 54 10 567 620 90
11 30 73 10 30 92 90
12 25 80 20 0 146 90
13 28 78 30 384 429 90
14 24 45 10 357 410 90
15 22 80 40 0 721 90
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4.2. Neighborhood

This study uses a standard neighborhood search mechanism that includes swap,
insertion, and reverse movements, similar to Yu et al. [49] and Yu and Lin [50]. The swap
movement randomly selects the ith and jth customers of X and then exchanges their
positions. The insertion movement is performed by randomly selecting the ith customer of
X and then inserting it into the position immediately before another randomly selected jth
customer of X. The reverse movement is conducted by reversing the sequence from the ith
until the jth customers of X. The probabilities of performing each movement is set to be
1/3. After a movement is executed, the new solution must be encoded again to ensure its
feasibility. Yu and Lin [50] illustrated the implementation of the movements.

4.3. Parameters Used

The proposed SARS consists of six parameters: T0, TF, α, Iiter, Nnon-improving, and Mrestart.
T0 represents the initial temperature, TF denotes the final temperature, α denotes controlling
the temperature reductions, Iiter denotes the number of iterations performed at a certain
temperature, and Nnon-improving declares the number of allowable maximum consecutive
non-improving temperature reductions that the value of the objective function has not
improved. Finally, Mrestart is the maximum number of restarts.

4.4. SARS Heuristic

The SA starts with an initial solution X generated randomly. The initial temperature
is set to be T0; and the objective function value of X is denoted as Obj(X). The current
best solution Xbest is then set to be X. Fbest denotes the value of the best objective function
obtained in the current SA run and is initialized as Obj(X). FGbest is the value of the best
objective function value obtained in all SA runs and is set as zero.

At each iteration, a new solution Y is generated from N(X), the neighborhood of the
current solution X, and its feasibility is checked to ensure that no constraints are violated.
If Y is feasible, then its objective function value is evaluated; otherwise, it is disregarded. If
Y is better than X, then it replaces X as the new current solution; otherwise, Y is accepted as
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the new current solution with a low probability. The probability of accepting the solution
is calculated based on the Boltzmann function exp(−∆/T), with ∆ = Obj(Y) − Obj(X). This
process is performed by randomly generating a number 0 < r < 1 and replacing X with Y if
r < exp(−∆/T).

The current temperature is gradually reduced after performing Iiter iterations at the
current temperature. The cooling process occurs in this stage. The next temperature is
obtained by multiplying the current temperature with cooling rate α (T = T* α). Nnon-improving
represents the maximum allowable number of reductions in temperature if the value of the
objective function has not improved.

The algorithm restarts if Nnon-improving is reached. When the algorithm restarts, the
current temperature is reset to the initial temperature, and a new initial solution is generated
randomly to initiate a new SA run. The algorithm is terminated once it reaches the
maximum number of restart (Mrestart). The best PCPTW solution can be derived from XGbest
after the SARS algorithm is terminated. Figure 4 presents the pseudocode of the proposed
SARS heuristic.
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5. Computational Study

SARS was coded in C++ and performed with Intel® Core™ i7 at 3.4 GHz CPU, 8 GB
of RAM, and a 64-bit Windows 10 Pro operating system. CPLEX 12.2 was used to obtain
exact solutions. The following subsections describe test instance, parameter setting, and
computational results.

Three experiments are conducted to investigate the performance of the proposed SARS.
The first experiment compares the proposed SARS’s performance with another algorithm
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on PCP dataset. In the second experiment, the proposed SARS is compared with other
algorithms on VRPTW benchmark problems. In the last experiment, the upper bounds
for each PCPTW instance are generated by CPLEX, and the SA algorithm is employed
to solve the instances, in order to investigate the performance of the proposed SARS in
solving PCPTW.

5.1. Test Instances

To evaluate the proposed algorithm, three datasets are used. The dataset used for
the first experiment consists of 10 small and 14 large instances of PCP problems, and is
adopted from Yu et al. [14]. The feature of this dataset includes total demand (TD), vehicle
activation cost (h), vehicle capacity (C), service time (s), maximum route length (T), and the
number of vehicle routes (m).

The dataset used for the second experiment is Solomon’s VRPTW instances adopted
from Sintef website (https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/,
accessed on 5 July 2020). In particular, two types of datasets are used, i.e., small and
large instances, each consisting of 25 and 100 customers, respectively. There is a total of
102 instances including 56 small instances and 56 large instances. These datasets vary in
vehicle capacity, travel time, spatial distribution of customers, time window density, and
width and are thus classified into three types of problem as follows: C-type (clustered
customers), R-type (uniformly distributed customers), and RC-type (a mix of R and C
types). Each of these three types of problem consists of two categories. Problem sets C1,
R1, and RC1 exhibit a narrow scheduling horizon, whereas problem sets C2, R2, and RC2
show a large scheduling horizon. Vehicles with small capacities and short route times are
considered setbacks to the narrow scheduling horizon. Thus, a vehicle can only serve a few
customers. A large scheduling horizon includes the use of a vehicle with large capacity
and long travel times; thus, more customers can be served using the same vehicle. Problem
sets C1, C2, R1, R2, RC1, and RC2 consist of 9, 8, 12, 11, 8, and 8 instances, respectively.

The datasets used for the third experiment contains 168 instances including 56 small,
56 medium, and 56 large instances. Because no prior PCPTW dataset exists, the aforemen-
tioned VRPTW datasets are converted into the PCPTW datasets in the following manner.
The calculation of the objective value is similar to that of VRPTW. However, the objective
function value of PCPTW excludes the distances between the depot and the customers
and includes the vehicle activation cost of 100. Note that double precision is utilized for
calculating the distances.

5.2. Parameter Settings

The parameter values may influence the quality of the computational results. A
parameter setting experiment is conducted to determine the appropriate parameter setting
for the proposed algorithm. This study employs a two-level (2k) factorial design to set
the parameters. This type of factorial design has been successfully used as a procedure
to determine an effective parameter setting in heuristics [51]. For the preliminary setting,
some instances are randomly selected from each of the six problem sets of Solomon’s
benchmark problems [3].

Six parameters are required for the 2k factorial design: T0, TF, α, Iiter, Nnon-improving, and
Mrestart. Each parameter consists of four levels as follows:

- Iiter = 9000, 10,000, 13,000, 15,000;
- α = 0.90, 0.95, 0.98, 0.99;
- T0 = 10, 20, 50, 80;
- TF = 0.1, 0.01, 0.001, 0.0001;
- Nnon-improving = 100, 150, 200, 250;
- Mrestart = 3, 5, 7, 10.

First, the one-factor-at-a-time (OFAT) approach is used to generate low and high levels
for the 2k factorial design prior to the actual parameter setting. Low and high levels are
generated for each parameter from the OFAT approach to conduct the factorial design of

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/
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the experiment, as depicted in Table 2. Parameter values may influence the solution quality
and computational time, and therefore this study conducts sensitivity analyses to observe
the effects.

Table 2. Parameters for the 2k factorial design of the experiment.

Parameter Low (−) High (+)

Iiter 13,000 15,000
α 0.95 0.99

T0 10 50
TF 0.001 0.0001

Nnon-improving 100 150
Mrestart 3 7

Figure 5 illustrates that Iiter and TF tend to influence solution quality and computa-
tional time. As Iiter or TF increases, the space for exploring solutions becomes larger, and
so the chances of obtaining better solutions will increase. However, these efforts need
more computational time. In contrast to Iiter and TF, α does not affect solution quality
or computational time, whereas T0 does slightly affect the performance of the proposed
algorithm. Increasing the value of this parameter does not always improve solution quality
or reduce computational time.
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When Nnon-improving or Mrestart increases, one needs significantly more time to solve
the problem, but it is not always followed by an increase in the quality of the solution.
Based on the design of the experiment and the sensitivity analyses, it seems that the setting
Iiter = 15,000, α = 0.99, T0 = 10, TF = 0.001, Nnon-improving = 100, and Mrestart = 7 provide the
best results. Therefore, these parameter values are used to run the proposed SARS.

5.3. Computational Results
5.3.1. Verification of SARS for Solving the PCP Datasets

The first experiment’s results are presented in Tables 3 and 4. The first column denotes
the name of the instances. The subsequent five columns denote the feature of the instances
described above. The following columns present the performance of HVTNS and the
proposed SARS, respectively. Based on executing SARS in ten replications for each instance,
the performance of the two algorithms is represented by both the best objective value (Obj)
and the computational time (CT) of the best objective value. The last column describes the
percentage gap between the best objective values of the two algorithms. Since there is no
report of the computational time for small instances of PCP dataset in Yu et al. [14], the
performance of HVTNS in Table 3 is only represented by the best objective value.

Table 3. Comparison between SARS and HVNTS on small PCP instances.

Instance n C S T m
HVNTS SARS

Gap a

Obj Obj CT

p1_s 15 50 0 Inf 5 658.39 658.39 48.913 0.00
p2_s 15 50 0 Inf 5 623.63 623.62 48.737 0.00
p3_s 15 50 0 Inf 5 632.40 632.41 49.146 0.00
p4_s 15 50 0 Inf 4 604.09 604.08 46.99 0.00
p5_s 15 50 0 Inf 7 781.59 781.59 54.513 0.00
p6_s 15 50 5 80 5 636.64 636.66 53.743 0.00
p7_s 15 50 5 80 5 617.44 617.41 49.59 −0.01
p8_s 15 50 5 80 5 628.40 628.40 49.672 0.00
p9_s 15 50 5 80 5 714.60 724.60 50.914 1.40

p10_s 15 50 5 96 5 632.40 632.41 50.742 0.00
Average 652.96 653.96 50.30 0.14

a Gap = (obj of SARS − obj of HVNTS)/obj of HVNTS × 100%.

Table 4. Comparison between SARS and HVTNS on large PCP instances.

Instance n C S T m
HVNTS SARS

Gap a

Obj CT Obj CT

p1 50 160 0 Inf 5 865.88 6.74 865.88 70.46 0.00
p2 75 140 0 Inf 10 1434.56 16.01 1441.91 102.92 0.51
p3 100 200 0 Inf 8 1350.61 12.11 1352.66 125.93 0.15
p4 150 200 0 Inf 12 1803.87 63.96 1808.40 190.47 0.25
p5 199 200 0 Inf 17 2357.36 117.31 2365.06 251.70 0.33
p6 50 160 10 160 6 947.11 7.52 947.11 71.25 0.00
p7 75 140 10 128 11 1523.32 22.31 1527.01 104.23 0.24
p8 100 200 10 184 9 1443.38 35.10 1441.95 134.52 −0.10
p9 150 200 10 160 14 2078.35 42.08 1990.52 186.81 −4.23
p10 199 200 10 160 18 2532.90 220.38 2455.28 241.45 −3.06
p11 120 200 0 inf 7 1148.29 39.00 1127.59 145.63 −1.80
p12 100 200 0 inf 10 1284.99 19.87 1284.99 132.51 0.00
p13 120 200 50 576 11 1609.42 23.01 1518.84 165.59 −5.63
p14 100 200 90 832 11 1626.39 31.18 1520.88 137.56 −6.49

Average 1571.89 46.90 1546.29 147.22 −1.42
a Gap = (obj of SARS − obj of HVNTS)/obj of HVNTS × 100%.
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Table 3 shows that the proposed SARS can give a solution quality as good as HVNTS
with an average gap of 0.14% in small PCP instances. Table 4 shows the computational
results in large PCP instances. It implies that SARS implementation is unable to provide a
better solution than HVNTS for instances p2, p3, p4, p5, and p7. However, for instances
p8, p9, p10, p11, p13, and p14, the result obtained by SARS is superior compared to
HVNTS in terms of objective value. Overall, the proposed SARS outperforms HVTNS in
terms of average objective value of all large instance. Particularly, the average percentage
gap of the objective value between SARS and HVNTS is −1.42%. Although the average
computational time required by SARS is higher than that of HVTNS, it is still acceptable.
The result indicates that the performance of SARS is as good as HVNTS, if not better, while
the computational time is still reasonable.

5.3.2. Comparison of SARS with Other Algorithms on VRPTW Benchmark Instances

Tables 5–7 summarize the results of the second experiment, which show the perfor-
mance of SARS in solving both small and large VRPTW benchmark instances. In each table,
column “TD” represents the total travel distance, “NV” denotes the number of vehicles, and
“CT” indicates the computational time (s). Table 5 presents the results of the experiment
of VRPTW with 25 customers. The SARS heuristic is compared with the optimal solution
obtained by previous heuristics [52]. TD is the best result of 10 runs. On the basis of the
experimental results, SARS obtains the optimal solution for all instances.

Table 5. Comparison of SARS with other optimal solution heuristics on the VRPTW dataset with
25 customers.

Instance
Optimal Solution SARS

Gap
TD NV CT TD NV CT

C101 191.3 3 0.6 191.3 3 9.7 0.00
C102 190.3 3 1.9 190.3 3 9.6 0.00
C103 190.3 3 4.0 190.3 3 9.3 0.00
C104 186.9 3 8.5 186.9 3 9.5 0.00
C105 191.3 3 0.6 191.3 3 9.8 0.00
C106 191.3 3 0.6 191.3 3 9.5 0.00
C107 191.3 3 0.6 191.3 3 9.5 0.00
C108 191.3 3 0.6 191.3 3 9.4 0.00
C109 191.3 3 0.9 191.3 3 8.8 0.00
C201 214.7 2 a 214.7 2 4.0 0.00
C202 214.7 2 a 214.7 2 4.9 0.00
C203 214.7 2 a 214.7 2 2.9 0.00
C204 213.1 2 a 213.1 2 2.6 0.00
C205 214.7 2 a 214.7 2 3.0 0.00
C206 214.7 2 a 214.7 2 2.9 0.00
C207 214.5 2 a 214.5 2 3.0 0.00
C208 214.5 2 a 214.5 2 3.7 0.00
R101 617.1 8 0.2 617.1 8 5.0 0.00
R102 547.1 7 0.5 547.1 7 3.0 0.00
R103 454.6 5 0.9 454.6 5 4.4 0.00
R104 416.9 4 1.3 416.9 4 2.7 0.00
R105 530.5 6 0.3 530.5 6 4.8 0.00
R106 465.4 3 1.3 465.4 3 2.8 0.00
R107 424.3 4 1.5 424.3 4 3.1 0.00
R108 397.3 4 18.6 397.3 4 2.7 0.00
R109 441.3 5 0.4 441.3 5 2.7 0.00
R110 444.1 4 5.9 444.1 4 3.9 0.00
R111 428.8 5 2.0 428.8 5 3.9 0.00
R112 393.0 4 14.6 393 4 4.9 0.00
R201 463.3 4 1.9 463.3 4 2.9 0.00
R202 410.5 4 18.8 410.5 4 2.9 0.00
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Table 5. Cont.

Instance
Optimal Solution SARS

Gap
TD NV CT TD NV CT

R203 391.4 3 355.4 391.4 3 5.1 0.00
R204 355.0 2 b 355 2 3.7 0.00
R205 393.0 3 21.4 393 3 2.8 0.00
R206 374.4 3 988.7 374.4 3 2.7 0.00
R207 361.6 3 9296.8 361.6 3 2.7 0.00
R208 328.2 1 b 328.2 1 2.8 0.00
R209 370.7 2 1991.4 370.7 2 5.3 0.00
R210 404.6 3 2417.7 404.6 3 6.7 0.00
R211 350.9 2 27,998.8 350.9 2 5.8 0.00

RC101 461.1 4 0.7 461.1 4 4.1 0.00
RC102 351.8 3 0.6 351.8 3 5.9 0.00
RC103 332.8 3 4.0 332.8 3 5.2 0.00
RC104 306.6 3 6.9 306.6 3 4.5 0.00
RC105 411.3 4 3.1 411.3 4 5.9 0.00
RC106 345.5 3 7.7 345.5 3 5.2 0.00
RC107 298.3 3 0.7 298.3 3 9.2 0.00
RC108 294.5 3 4.3 294.5 3 10.4 0.00
RC201 360.2 3 a 360.2 3 6.0 0.00
RC202 338.0 3 6386.7 338 3 3.1 0.00
RC203 326.9 3 b 326.9 3 3.2 0.00
RC204 299.7 3 b 299.7 3 9.4 0.00
RC205 338.0 3 57.9 338 3 3.8 0.00
RC206 324.0 3 82,387.5 324 3 3.8 0.00
RC207 298.3 3 220,991.2 298.3 3 7.3 0.00
RC208 269.1 2 b 269.1 2 6.6 0.00

a = running time set to 2 until 25,000 s [53]. b = no mention of specific computing time [54]. Gap = (TD of
SARS − TD of optimal solution)/TD of optimal solution × 100%.

Table 6. Comparison of SARS with other heuristics in the currently published papers on the VRPTW
dataset with 100 customers (average best solution for each instance).

C1 C2 R1 R2 RC1 RC2

BKS TD 828.38 589.86 1180.36 888.67 1339.24 1014.5
NV 10.0 3.0 13.1 5.1 12.8 6.1

CGH [28] a TD 828.38 589.86 1183.38 899.90 1341.67 1015.90
NV 10.0 3.0 13.3 5.5 12.9 6.5

TD gap (%) 0.00 0.00 0.27 1.36 0.16 0.15
Average CT 3600

Average gap (%) 0.37
PITSH [29] b TD 828.38 589.86 1209.19 951.17 1385.90 1120.53

NV 10.0 3.0 12.0 2.7 11.5 3.3
TD gap (%) 0.00 0.00 2.53 6.99 3.23 9.85
Average CT 2357

Average gap (%) 3.78
CPLA [31] a TD 828.38 589.86 1232.13 922.48 1355.36 1106.00

NV 10.0 3.0 11.9 3.1 12.0 3.4
TD gap (%) 0.00 0.00 4.67 3.50 1.25 8.60
Average CT -

Average gap (%) 3.1
HSFLA [32] a TD 828.38 589.86 1210.34 951.03 1384.17 1119.24

NV 10.0 3.0 11.2 2.7 11.5 3.3
TD gap (%) 0.00 0.00 2.65 6.97 3.09 9.72
Average CT 112

Average gap (%) 3.77
tabu–ABC [34] a TD 828.38 590.40 1187.90 891.24 1361.08 1017.47

NV 10.0 3.0 13.5 4.7 13.3 5.5
TD gap (%) 0.00 0.09 0.72 0.23 1.66 0.29
Average CT 560

Average gap (%) 0.49
SARS b TD 828.38 589.86 1191.81 894.47 1367.64 1024.55

NV 10.0 3.9 14.0 6.7 13.5 7.3
TD gap (%) 0.00 0.00 1.01 0.57 2.08 0.90
Average CT 117

Average gap (%) 0.75
a = population-based solution heuristic. b = single-based solution heuristic.



Mathematics 2021, 9, 1625 14 of 22

Table 7. Comparison of SARS with PITSH [29] and BKS on the VRPTW dataset with 100 customers
(best solution for each instance).

Instance
BKS PITSH [29] SARS

TD NV TD NV TD NV CT

C101 828.94 10 828.94 10 828.94 10 34.41
C102 828.94 10 828.94 10 828.94 10 64.70
C103 828.06 10 828.07 10 828.06 10 42.58
C104 824.77 10 824.78 10 824.77 10 39.95
C105 828.94 10 828.94 10 828.94 10 37.21
C106 828.94 10 828.94 10 828.94 10 38.00
C107 828.94 10 828.94 10 828.94 10 38.03
C108 828.94 10 828.94 10 828.94 10 40.56
C109 828.94 10 828.94 10 828.94 10 39.43
C201 591.55 3 591.56 3 591.55 3 33.58
C202 591.56 3 591.56 3 591.56 4 50.66
C203 591.17 3 591.17 3 591.17 4 133.34
C204 590.6 3 590.6 3 590.60 4 152.16
C205 588.88 3 588.88 3 588.88 4 102.72
C206 588.49 3 588.49 3 588.49 4 57.05
C207 588.29 3 588.29 3 588.29 3 119.90
C208 588.32 3 588.32 3 588.32 5 104.13
R101 1642.87 20 1650.8 19 1644.26 20 123.50
R102 1460.26 18 1486.12 17 1481.9 19 122.26
R103 1213.62 14 1294.23 13 1224.24 15 109.72
R104 981.2 10 981.2 10 1002.47 12 135.96
R105 1360.78 15 1377.11 14 1374.68 16 133.26
R106 1241.52 13 1252.62 12 1253.86 15 105.66
R107 1076.13 11 1104.66 10 1093.08 12 146.60
R108 948.57 10 963.99 9 954.48 11 115.38
R109 1151.84 13 1194.73 11 1159.72 13 188.29
R110 1080.36 11 1118.84 10 1081.78 12 116.81
R111 1053.5 12 1096.73 10 1061.29 12 117.78
R112 953.63 10 989.27 9 969.99 11 119.95
R201 1148.48 9 1252.37 4 1167.53 9 114.19
R202 1046.1 5 1191.7 3 1053.5 9 134.87
R203 884.02 5 941.08 3 891.61 7 171.39
R204 750.4 4 825.52 2 744.92 5 105.27
R205 960.75 5 994.43 3 978.74 8 146.25
R206 898.91 5 906.14 3 900.29 7 160.37
R207 809.72 4 890.61 2 809.36 5 134.03
R208 723.14 5 726.82 2 721.01 4 136.85
R209 863.12 5 909.16 3 875.47 6 160.38
R210 927.54 5 939.37 3 930.86 8 248.89
R211 763.22 4 885.71 2 765.87 6 138.37

RC101 1623.58 15 1696.95 14 1664.06 17 108.57
RC102 1466.84 14 1554.75 12 1489.22 15 110.98
RC103 1261.67 11 1261.67 11 1290.62 12 205.65
RC104 1135.48 10 1135.48 10 1140.64 10 160.80
RC105 1518.6 16 1633.72 13 1553.95 16 137.99
RC106 1377.35 13 1424.73 11 1417.87 14 132.24
RC107 1212.83 12 1232.2 11 1251.51 13 162.17
RC108 1117.53 11 1147.69 10 1133.25 11 130.32
RC201 1271.78 7 1406.94 4 1287.05 9 96.13
RC202 1113.53 8 1367.09 3 1109.51 9 109.19
RC203 941.81 5 1050.64 3 962.63 7 200.41
RC204 798.41 3 798.46 3 797.42 4 109.55
RC205 1161.81 7 1297.65 4 1186.54 9 130.72
RC206 1059.89 7 1153.61 3 1083.78 7 150.00
RC207 976.4 7 1061.14 3 984.38 8 153.98
RC208 792.33 5 828.71 3 785.07 5 152.26

Average 981.14 8.5 1021.41 7.3 990.23 9.4 117.24
The italic font indicates that the proposed SARS outperforms PITSH on the corresponding instance. The bold font
implies that the proposed SARS obtains a new BKS.

Table 6 presents the comparison of SARS to other heuristics from recently published
papers on VRPTW. BKSs are summarized from Zhang et al. [34]. The table implies that
in terms of solution quality, the results of SARS are equal to other algorithms and BKS
on C1 and C2 instances and still comparable on other instances. Moreover, in terms
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of computational time, the proposed SARS outperforms CGH, PITSH, and tabu-ABC
and is comparable with HSFLA. Note that Barbucha [31] did not report computational
times. From the table, the other heuristics consist of two categories, namely single-based
solution algorithms for PITSH by Cordeau and Maischberger [29] and population-based
solution algorithms for CGH by Alvarenga et al. [28], CPLA by Barbucha [31], HSFLA
by Luo et al. [32], and Tabu–ABC by Zhang et al. [34]. The table implies that the results
of SARS are equal to other heuristics in terms of BKS on C1 and C2 instances and also
still comparable in the other instances. In particular, SARS performs better in terms of
the average gap with BKS when compared with another single-solution based algorithm
from [29]. According to the table, the average gaps are 0.75% and 3.78% for SARS and
PITSH [29], respectively.

Table 7 shows the comparison between SARS and PITSH [29] for each instance. The
table shows that, in terms of solution quality, the proposed SARS outperforms PITSH
for 34 of the 56 instances (italic font). Moreover, SARS generates six new BKSs (in bold
font) in instances R204, R207, R208, RC202, RC204, and RC208. Furthermore, in terms of
computational time, the proposed SARS also outperforms PITSH. Note that Cordeau and
Maischberger [29] reported only average computational times of PITSH as presented in
Table 6.

The third experiment compares the results of SARS and CPLEX. In addition, since SARS is
modified from SA, this experiment also compares results of SARS and SA. Tables 8–10 show
the comparison of the PCPTW datasets with 25, 50, and 100 customers, respectively. Each
table contains the results of the three methods. Each method consists of columns NV, TD,
and CT representing the number of vehicles, objective value, and computational time (s),
respectively. Columns Gap1 and Gap2 show the gap between CPLEX with SA and SARS,
respectively. Gap1 is calculated by ((TD of SA − TD of CPLEX)/TD of CPLEX) × 100%,
whereas Gap2 is calculated by ((TD of SARS − TD of CPLEX)/TD of CPLEX) × 100%.

In Table 8, CPLEX generated an optimal solution for 37 instances and ran for 5 h
to generate the upper bound for 19 instances. Both SA and SARS could also achieve all
optimal solutions provided by CPLEX in significantly shorter computational time. CPLEX
could not solve the remaining instances to optimality, while our SARS yielded a better
solution for three instances and the same solutions for 16 other instances. The average gap
of SARS is −0.01%.

Table 9 shows that CPLEX achieved optimal solution for 12 instances and ran for 5 h
to generate the upper bound for 44 instances. The proposed SARS achieved an optimal
solution for eight instances and produced equal or better results compared with those
of the upper bounds for 33 instances. The average gap is −0.48%. Table 10 shows that
CPLEX also achieved an optimal solution for 8 instances, and ran for 5 h to generate upper
bounds for the remaining 48 instances. The proposed SARS obtained optimal solutions for
6 instances, and the average gap is −3.33%.

The three tables report that the proposed SARS is advantageous in improving SA. The
proposed SARS does not appear superior to solve PCPTW with 25 customers. As the size
of the problem increases, the algorithm shows its superiority compared with SA heuristic.
This phenomenon is shown in Table 8 for PCPTW with 25 customers, where averages of
Gap1 and Gap2 are equal at −0.01%. The values are different in Tables 9 and 10 for PCPTW
with 50 customers and 100 customers, respectively. In these two tables, average Gap2 is
larger than average Gap1, implying that SARS is better than SA in terms of solution quality.
In terms of computational time, SARS needs more time to implement the restart strategy.
The higher computational time of SARS is still acceptable since the results of SARS are
better than those obtained by SA.
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Table 8. Comparison among CPLEX, SA, and SARS on the PCPTW dataset with 25 customers.

Instance
CPLEX SA SARS

Gap1 Gap2
NV TD CT NV TD CT NV TD CT

C101 3 368.92 0.31 3 368.92 1.6 3 368.92 44.0 0.00 0.00
C102 3 368.92 0.64 3 368.92 1 3 368.92 10.1 0.00 0.00
C103 3 365.31 18,000 3 365.31 1 3 365.31 9.8 0.00 0.00
C104 3 365.31 18,000 3 365.31 1.6 3 365.31 10.2 0.00 0.00
C105 3 368.92 0.34 3 368.92 2.5 3 368.92 10.4 0.00 0.00
C106 3 368.92 0.94 3 368.92 1.3 3 368.92 10.6 0.00 0.00
C107 3 368.92 1.37 3 368.92 1.1 3 368.92 10.6 0.00 0.00
C108 3 368.92 119.15 3 368.92 2 3 368.92 10.5 0.00 0.00
C109 3 367.50 5503.9 3 367.50 1.2 3 367.50 10.8 0.00 0.00
C201 2 353.14 0.61 2 353.14 1.3 2 353.14 9.7 0.00 0.00
C202 1 301.65 16.38 1 301.65 1.3 1 301.65 9.3 0.00 0.00
C203 1 301.15 174.59 1 301.15 1.6 1 301.15 8.9 0.00 0.00
C204 1 283.99 18,000 1 283.99 1.9 1 283.99 9.0 0.00 0.00
C205 2 353.14 0.45 2 353.14 1.8 2 353.14 9.5 0.00 0.00
C206 2 353.14 1.08 2 353.14 1.9 2 353.14 9.3 0.00 0.00
C207 1 347.98 72.2 1 347.98 1.5 1 347.98 8.9 0.00 0.00
C208 1 307.38 129.51 1 307.38 2.1 1 307.38 9.4 0.00 0.00
R101 8 1025.13 0.36 8 1025.1 1.2 8 1025.13 11.0 0.00 0.00
R102 7 912.14 461.09 7 912.14 1.7 7 912.14 10.3 0.00 0.00
R103 4 682.44 4536.54 4 682.44 15.5 4 682.44 41.3 0.00 0.00
R104 4 652.59 18,000 4 652.59 14.7 4 652.59 45.0 0.00 0.00
R105 5 815.75 1565.75 5 815.75 2 5 815.75 7.1 0.00 0.00
R106 4 769.45 3736.85 4 769.45 1.2 4 769.45 15.5 0.00 0.00
R107 4 654.27 14,010.3 4 654.27 14.3 4 654.27 41.5 0.00 0.00
R108 3 578.18 18,000 3 578.18 22.6 3 578.18 47.0 0.00 0.00
R109 4 673.54 6.93 4 673.54 15 4 673.54 43.3 0.00 0.00
R110 4 662.34 18,000 4 660.37 1.5 4 660.37 42.6 −0.30 −0.30
R111 4 652.33 18,000 4 652.33 2.1 4 652.33 7.7 0.00 0.00
R112 4 636.84 18,000 4 635.47 1.7 4 635.47 8.7 −0.22 −0.22
R201 2 614.01 5.08 2 614.01 0.9 2 614.01 5.7 0.00 0.00
R202 2 541.13 398.13 2 541.13 1.8 2 541.13 6.7 0.00 0.00
R203 2 505.41 18,000 2 505.35 1.6 2 505.35 8.7 −0.01 −0.01
R204 1 448.92 18,000 1 448.92 1 1 448.92 10.0 0.00 0.00
R205 2 516.48 274.89 2 516.48 13.9 2 516.48 42.3 0.00 0.00
R206 1 457.37 3007.72 1 457.37 14.3 1 457.37 33.2 0.00 0.00
R207 1 437.33 18,000 1 437.33 2.1 1 437.33 7.4 0.00 0.00
R208 1 384.78 18,000 1 384.78 2.4 1 384.78 5.9 0.00 0.00
R209 1 470.49 1049.65 1 470.49 1.4 1 470.49 7.4 0.00 0.00
R210 2 507.99 5321.04 2 507.99 1.3 2 507.99 13.1 0.00 0.00
R211 1 417.45 18,000 1 417.45 29.9 1 417.45 29.9 0.00 0.00

RC101 4 560.32 1.12 4 560.32 1.3 4 560.32 11.8 0.00 0.00
RC102 3 418.82 38.51 3 418.82 1.6 3 418.82 10.6 0.00 0.00
RC103 3 403.59 6683.77 3 403.59 1 3 403.59 11.1 0.00 0.00
RC104 3 383.39 18,000 3 383.39 1.4 3 383.39 9.4 0.00 0.00
RC105 4 516.61 715.43 4 516.61 1.8 4 516.61 9.3 0.00 0.00
RC106 3 406.66 7.1 3 406.66 1.8 3 406.66 8.8 0.00 0.00
RC107 3 386.53 18,000 3 386.53 1.9 3 386.53 12.9 0.00 0.00
RC108 3 382.39 18,000 3 382.39 2.3 3 382.39 12.6 0.00 0.00
RC201 2 477.54 1.53 2 477.54 2.5 2 477.54 12.0 0.00 0.00
RC202 3 406.92 307.53 3 406.92 12.3 3 406.92 37.1 0.00 0.00
RC203 2 397.47 18,000 2 397.47 1.6 2 397.47 11.3 0.00 0.00
RC204 1 347.98 18,000 1 347.98 1.6 1 347.98 14.5 0.00 0.00
RC205 3 408.82 6.01 3 408.82 1.6 3 408.82 13.3 0.00 0.00
RC206 2 393.43 55.05 2 393.43 1.9 2 393.43 13.3 0.00 0.00
RC207 2 358.21 8019.47 2 358.21 1.1 2 358.21 15.8 0.00 0.00
RC208 2 320.42 18,000 2 320.42 1.5 2 320.42 12.7 0.00 0.00

Average 2.7 473.19 7127.43 2.7 473.13 4.07 2.7 473.13 16.2 −0.01 −0.01
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Table 9. Comparison among CPLEX, SA, and SARS on the PCPTW dataset with 50 customers.

Instance
CPLEX SA SARS

Gap1 Gap2
NV TD CT NV TD CT NV TD CT

C101 5 641.76 0.1 5 641.76 20.3 5 641.76 59.8 0.00 0.00
C102 5 641.15 18,000 5 641.15 20.4 5 641.15 59.0 0.00 0.00
C103 5 638.15 18,000 5 638.15 20.5 5 638.15 64.4 0.00 0.00
C104 5 637.16 18,000 5 637.00 23.4 5 637.00 104.7 −0.03 −0.03
C105 5 641.37 1.1 5 641.37 20.3 5 641.37 58.3 0.00 0.00
C106 5 641.37 0.3 5 641.37 20.4 5 641.37 58.5 0.00 0.00
C107 5 641.37 0.4 5 641.37 20.1 5 641.37 58.5 0.00 0.00
C108 5 641.37 486.79 5 641.37 20.7 5 641.37 59.6 0.00 0.00
C109 5 640.77 18,000 5 640.77 20.6 5 640.77 58.9 0.00 0.00
C201 3 557.57 0.1 3 557.57 19.7 3 557.57 55.4 0.00 0.00
C202 2 532.59 18,000 2 532.59 19.1 2 532.59 59.9 0.00 0.00
C203 2 534.47 18,000 2 532.33 22.9 2 532.33 60.8 −0.40 −0.40
C204 2 475.16 18,000 2 500.34 23.1 2 499.17 103.0 5.30 5.05
C205 2 530.13 2.7 3 557.19 19.3 3 557.19 76.7 5.10 5.10
C206 2 529.57 18,000 3 557.19 20.7 3 557.19 76.7 5.22 5.22
C207 2 526.34 18,000 2 550.77 20.3 3 556.98 102.2 4.64 5.82
C208 2 504.56 18,000 2 504.56 24.4 2 504.56 73.3 0.00 0.00
R101 11 1634.31 0.5 12 1638.94 22.8 12 1638.94 75.3 0.28 0.28
R102 10 1423.39 18,000 10 1423.40 24 10 1423.4 92.4 0.00 0.00
R103 8 1226.01 18,000 8 1230.56 25.1 8 1223.73 90.8 0.37 −0.19
R104 6 988.75 18,000 6 989.55 22.7 6 988.75 76.4 0.08 0.00
R105 8 1366.16 30.0 9 1375.38 34.5 9 1375.38 86.1 0.67 0.67
R106 7 1191.89 18,000 8 1225.30 41.5 8 1224.34 110.3 2.80 2.72
R107 7 1111.03 18,000 7 1127.02 22.6 6 1065.79 115.7 1.44 −4.07
R108 6 988.86 18,000 6 977.91 50.4 6 977.91 155.8 −1.11 −1.11
R109 8 1228.97 18,000 8 1232.27 26 7 1187.81 97.6 0.27 −3.35
R110 8 1194.47 18,000 7 1122.37 30.9 7 1122.62 103.6 −6.04 −6.02
R111 7 1127.79 18,000 7 1108.90 41 7 1109.35 92.2 −1.67 −1.64
R112 7 1076.95 18,000 7 1068.80 42.1 7 1068.8 128.7 −0.76 −0.76
R201 3 1017.19 11.3 4 1053.60 25.1 4 1035.53 112.4 3.58 1.80
R202 3 908.92 18,000 4 931.10 21.2 3 909.71 85.5 2.44 0.09
R203 3 790.54 18,000 3 790.54 21 3 790.54 103.4 0.00 0.00
R204 2 658.69 18,000 2 642.62 27.4 2 641.97 108.5 −2.44 −2.54
R205 2 853.59 18,000 3 924.28 19.2 3 876.29 81.8 8.28 2.66
R206 3 848.88 18,000 2 793.24 19.1 2 788.30 77.3 −6.55 −7.14
R207 3 779.05 18,000 2 704.68 24 2 704.68 79.0 −9.55 −9.55
R208 2 637.89 18,000 2 637.93 29.1 2 636.2 85.5 0.01 −0.26
R209 2 772.45 18,000 3 798.81 23.2 3 776.25 94.8 3.41 0.49
R210 3 845.74 18,000 3 825.93 25.5 3 816.23 92.9 −2.34 −3.49
R211 3 779.77 18,000 3 744.04 33.9 2 688.53 88.8 −4.58 −11.7

RC101 8 1084.02 37.61 9 1119.86 22.9 8 1084.02 92.6 3.31 0.00
RC102 7 916.34 18,000 7 916.39 24.2 7 916.34 105.8 0.01 0.00
RC103 6 805.26 18,000 6 805.26 31.9 6 805.26 65.6 0.00 0.00
RC104 5 664.57 18,000 5 663.20 37.1 5 663.2 106.7 −0.21 −0.21
RC105 8 1044.16 18,000 8 1041.06 28.2 8 1041.06 89.3 −0.30 −0.30
RC106 6 820.24 18,000 6 820.24 20.8 6 820.24 86.5 0.00 0.00
RC107 6 770.92 18,000 6 770.92 20.9 6 770.92 69.4 0.00 0.00
RC108 6 745.42 18,000 6 744.37 39 6 744.37 97.7 −0.14 −0.14
RC201 5 754.00 2.1 5 754.00 20.2 5 754 60.1 0.00 0.00
RC202 4 708.04 18,000 5 712.51 23 5 713.51 93.3 0.63 0.77
RC203 4 651.65 18,000 4 653.65 32.1 4 653.65 96.0 0.31 0.31
RC204 3 528.02 18,000 2 523.42 36.7 2 520.29 93.5 −0.87 −1.46
RC205 4 727.39 18,000 5 732.96 20.7 5 732.96 57.4 0.77 0.77
RC206 4 705.16 18,000 5 716.49 20.8 4 705.16 72.6 1.61 0.00
RC207 4 662.88 18,000 4 654.51 33.6 4 654.51 82.5 −1.26 −1.26
RC208 3 578.67 18,000 3 568.70 35.1 3 560.41 98.2 −1.72 −3.16

Average 4.8 813.80 14,153.1 4.9 814.67 26.0 4.84 808.44 85.57 0.19 −0.48
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Table 10. Comparison among CPLEX, SA, and SARS on the PCPTW dataset with 100 customers.

Instance
CPLEX SA SARS

Gap1 Gap2
NV TD CT NV TD CT NV TD CT

C101 10 1306.01 7.3 10 1306.01 36.9 10 1306.01 135.5 0.00 0.00
C102 10 1306.01 18,000 10 1306.01 36.8 10 1306.01 110.7 0.00 0.00
C103 10 1306.01 18,000 10 1303.01 51.7 10 1303.01 125.9 −0.23 −0.23
C104 10 1316.3 18,000 10 1302.24 61.3 10 1302.24 177.2 −1.07 −1.07
C105 10 1305.62 4.6 10 1305.62 38.2 10 1305.62 131.6 0.00 0.00
C106 10 1305.62 17.0 10 1305.62 56.4 10 1305.62 97.4 0.00 0.00
C107 10 1305.62 32.7 10 1305.62 52.7 10 1305.62 146.5 0.00 0.00
C108 10 1305.24 18,000 10 1305.24 42.2 10 1305.24 169.9 0.00 0.00
C109 10 1555.74 18,000 10 1305.24 41.3 10 1305.24 141.0 −16.10 −16.10
C201 3 818.06 13.2 3 818.06 48.9 3 818.06 89.5 0.00 0.00
C202 3 818.06 3191.2 3 818.06 66.9 3 818.06 93.1 0.00 0.00
C203 3 824.39 18,000 3 817.67 47.0 3 817.67 161.3 −0.82 −0.82
C204 3 823.6 18,000 4 899.27 96.8 4 899.27 186.3 9.19 9.19
C205 3 815.38 689.8 3 815.38 46.6 4 904.61 199.0 0.00 10.94
C206 3 814.99 18,000 3 814.99 51.5 3 814.99 191.4 0.00 0.00
C207 3 814.79 18,000 3 814.79 34.1 3 814.79 143.9 0.00 0.00
C208 3 814.82 18,000 4 915.8 64.1 3 814.82 205.9 12.39 0.00
R101 19 2632.3 1.9 20 2700.79 74.8 19 2643.37 153.3 2.60 0.42
R102 17 2378.95 18,000 18 2433.95 110.2 17 2398.52 236.7 2.31 0.82
R103 15 2125.63 18,000 15 2100.26 128.7 14 2040.24 231.9 −1.19 −4.02
R104 11 1719.6 18,000 11 1678.83 108.8 10 1614.76 233.5 −2.37 −6.10
R105 14 2129.27 18,000 16 2265.29 52.1 15 2186.55 190.0 6.39 2.69
R106 14 2080.36 18,000 14 2064.23 72.3 14 2042.94 263.8 −0.78 −1.80
R107 12 1836.13 18,000 12 1835.86 90.6 12 1806.67 300.7 −0.01 −1.60
R108 11 1681.64 18,000 10 1583.57 103.7 10 1577.02 240.9 −5.83 −6.22
R109 13 2011.64 18,000 14 2010.34 64.2 14 2006.66 199.6 −0.06 −0.25
R110 14 2013.51 18,000 13 1880.81 73.1 13 1887.7 198.2 −6.59 −6.25
R111 13 1951.33 18,000 13 1877.2 129.7 12 1812.26 227.1 −3.80 −7.13
R112 13 1898.37 18,000 12 1734.86 79.1 11 1645.18 247.4 −8.61 −13.34
R201 5 1522.33 18,000 8 1652.15 61.4 7 1621.1 219.5 8.53 6.49
R202 6 1511.66 18,000 6 1434.72 119.5 6 1479.13 219.6 −5.09 −2.15
R203 5 1357.32 18,000 5 1280.39 52.1 5 1226.83 190.7 −5.67 −9.61
R204 4 1090.13 18,000 4 1050.44 59.5 4 1048.07 203.3 −3.64 −3.86
R205 5 1406.38 18,000 5 1330.02 67.7 5 1303.99 162.2 −5.43 −7.28
R206 4 1316.52 18,000 5 1255.04 114.7 5 1226.62 283.2 −4.67 −6.83
R207 5 1219.39 18,000 4 1097.45 94.1 4 1097.48 174.0 −10.00 −10.00
R208 4 1055.72 18,000 3 954.69 62.5 3 948.92 218.1 −9.57 −10.12
R209 5 1236.51 18,000 5 1239.73 53.7 5 1234.7 221.3 0.26 −0.15
R210 5 1454.27 18,000 6 1298.12 74.0 4 1183.89 196.7 −10.74 −18.59
R211 5 1325.75 18,000 4 1085.95 60.0 4 1069.47 184.9 −18.09 −19.33

RC101 15 2180.09 18,000 17 2310.51 53.9 16 2266.83 164.1 5.98 3.98
RC102 14 2036.69 18,000 14 2016.92 92.1 14 2040.72 194.4 −0.97 0.20
RC103 12 1835 18,000 12 1784.43 99.3 12 1800.83 219.7 −2.76 −1.86
RC104 11 1628.36 18,000 11 1622.13 99.1 11 1613.02 187.2 −0.38 −0.94
RC105 16 2214.91 18,000 16 2211.38 68.6 15 2154.06 227.1 −0.16 −2.75
RC106 13 1908.64 18,000 14 1969.25 82.9 14 1970.76 204.9 3.18 3.25
RC107 13 1897.3 18,000 12 1727.55 71.6 12 1726.75 189.4 −8.95 −8.99
RC108 13 1815.58 18,000 12 1682.22 85.0 11 1658.12 263.8 −7.35 −8.67
RC201 6 1562.17 18,000 9 1675.84 63.5 7 1612.73 185.4 7.28 3.24
RC202 6 1504.54 18,000 7 1507.28 60.6 7 1495.52 208.4 0.18 −0.60
RC203 5 1330.16 18,000 6 1316.05 102.6 5 1249.11 250.9 −1.06 −6.09
RC204 4 1385.52 18,000 5 1132.91 47.7 4 1083.5 205.3 −18.23 −21.80
RC205 7 1529.79 18,000 7 1528.79 45.4 7 1547.78 188.5 −0.07 1.18
RC206 5 1585.34 18,000 7 1469.66 77.0 7 1448.7 285.0 −7.30 −8.62
RC207 7 1425.75 18,000 7 1397.64 92.6 6 1327.52 145.4 −1.97 −6.89
RC208 6 1247.01 18,000 5 1180.22 91.3 5 1138.13 183.5 −5.36 −8.73

Average 8.7 1510.68 15,499.3 8.9 1479.22 71.7 8.6 1458.63 193.0 −2.08 −3.33
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Table 11 compares the performances of CPLEX and the proposed SARS in finding
optimal solutions. The values of the table are summarized from the results presented in
Tables 8–10. The percentage gap in the last column shows that for small size instances, both
methods result in the same number of instances, yielding the optimal solution. The last
row of the Gap column presents the percentage gap between SARS and CPLEX in terms of
solution quality. It shows that the proposed SARS has a gap of less than 1% compared to
that of CPLEX, yet SARS still has faster computational time than CPLEX.

Table 11. Summary of the instances that obtain the optimal solution between CPLEX and SARS.

Instance
Size

CPLEX SARS
Gap *

N-Optimal Total TD Total CT N-Optimal Total TD Total CT

Small 37 17,889.71 56,231.32 37 17,889.71 593.5 0.00
Medium 12 10,150.62 573 9 10,209.87 853.3 0.58

Large 8 10,306.67 3957.7 6 10,406.97 1045.9 0.97
Total 57 38,347.00 60,762.02 52 38,506.55 2492.7 0.42

* Gap = (Total TD of SARS − Total TD of CPLEX)/Total TD of CPLEX × 100%.

5.3.3. Analysis of the Restart Strategy

This subsection analyzes the restart strategy. Figure 6 shows the convergence history
of SA and SARS, which appears in blue and black lines, respectively. Both methods are
executed with one run on instance RC207 of the PCPTW dataset. Based on the figure, both
methods are able to converge during the searching process. However, SARS is able to give
a better solution compared to SA.
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6. Conclusions and Future Research

The scientific novelty of this study is the development of a mathematical programming
model and an effective SARS algorithm for solving PCPTW, which can be implemented to
extend PCP by considering customer time windows in small- and medium-sized enterprises
that hire freelance workers to reduce operational cost. The mathematical model of PCPTW
is developed and solved by using CPLEX. SARS, which is an extended SA that utilizes a
restart strategy, is proposed to tackle PCPTW.

To investigate the effectiveness of the proposed algorithm, we test it on PCP and
well-known VRPTW datasets. The experimental results show that SARS is comparable
with HVTNS in solving PCP instances and with several algorithms on VRPTW datasets.
Moreover, on VRPTW datasets, SARS outperforms another single-solution based algorithm
in terms of the average gap with BKS, and generates new BKSs for six large instances.

In solving the PCPTW dataset, the experimental results show that SARS outperforms
CPLEX in terms of the solution quality and the computational time for all sizes of the
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problem scale. Furthermore, utilizing the restart strategy enables SARS to outperform
SA in terms of solution quality. Although employing the restart strategy needs more
computational time, the results indicate that the longer computational time of SARS is
still reasonable.

The developed formulation and solution techniques can be extended to a practical
strategy for companies in order to reduce operational cost by hiring freelance workers.
However, current studies are limited to considering cost minimization. In practice, the
proposed model might not yet cover several realistic situations that could arise.

Future research can consider other realistic situations and use a more practical dataset.
Factors beyond cost optimization such as customer satisfaction and workers’ preferences
are becoming a social topic that cannot be ignored and should be addressed. Moreover, the
involvement of a heterogeneous fleet, split delivery, and multiple time windows can also
extend the problem. Optimization methods such as particle swarm optimization, genetic
algorithm, and other advanced algorithms can be used further to increase solution quality.
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