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Abstract: In the present paper, we examine Ising systems on d-dimensional hypercube lattices and
solve an inverse problem where we have to determine interaction constants of an Ising connection
matrix when we know a spectrum of its eigenvalues. In addition, we define restrictions allowing
a random number sequence to be a connection matrix spectrum. We use the previously obtained
analytical expressions for the eigenvalues of Ising connection matrices accounting for an arbitrary
long-range interaction and supposing periodic boundary conditions.
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1. Introduction

In papers [1–3], we calculated eigenvalues of Ising connection matrices defined on
d-dimensional hypercube lattices (d = 1, 2, 3 . . .). To provide the translation invariance we
imposed periodic boundary conditions. In our calculations, we accounted for interactions
not only with the nearest spins but with distant spins, as well. In papers [1,2], we analyzed
isotropic interactions, while in paper [3], we discussed the general case of anisotropic
interactions. We succeeded to obtain analytical expressions for the eigenvalues of the
above-described Ising connection matrices. For the d-dimensional system, the eigenvalues
are polynomials of the degree d in the eigenvalues for the one-dimensional system with
long-range interaction (see [2,3]). The coefficients of these polynomials are the constants of
interaction between spins.

In the present paper, we solve an inverse problem formulated as follows. Suppose
that we need an Ising connection matrix with a given spectrum of its eigenvalues. Two
questions arise. Firstly, can any sequence of random numbers be the spectrum of some
connection matrix? Secondly, how to restore the interaction constants that define the
connection matrix whose spectrum matches the given one? In Section 2, we obtain the
answers to these questions for the one-dimensional Ising system. In Sections 3 and 4, we
extend the obtained results to the two- and three-dimensional systems, respectively. The
discussion and conclusions are in Section 5.

The eigenvalues of Ising connection matrices became of interest, since in recent times,
the problems have appeared where it is necessary to generate an Ising connection matrix
with a given spectrum [4]. Moreover, the eigenvalues of Ising connection matrix are closely
related to the calculation of the partition function. Indeed, let A be an (N × N) Ising
connection matrix and si, i = 1, 2, . . . 2N are N-dimensional configuration vectors whose
coordinates are ±1. In the absence of a magnetic field, the partition function is:

ZN =
2N

∑
i=1

eβ(Asi ,si) = eβ(As1,s1) + eβ(As2,s2) + . . . + eβ(As2N ,s2N )
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Let us expand each exponential here into a formal Taylor series, and rearrange the
summands, combining in one sum the terms with the same power β. Then, we have:

ZN ≡ 2N + β ·
2N

∑
i=1

(Asi, si) +
β2

2!

2N

∑
i=1

(Asi, si)
2 +

β3

3!

2N

∑
i=1

(Asi, si)
3 + . . .

In [5], we showed that the first three coefficients of this expansion are:

1
2N

2N

∑
i=1

(Asi, si) = Tr A,
1

2N

2N

∑
i=1

(Asi, si)
2 = 2 · Tr A2,

1
2N

2N

∑
i=1

(Asi, si)
3 = 8 · Tr A3

Here, Tr means the trace of the matrix: Tr Ak = ∑N
i=1 λk

i , where {λi}N
1 are eigenvalues

of the matrix A. Note, beginning from k = 4 the expressions for the sums ∑i=1(Asi, si)
k

become more complex including not only Tr Ak but also some additional terms. We verified
that up to k = 6 these additional terms are defined by Tr Al , l < k. We hope that the same
is also true for larger values of k. These arguments show that the eigenvalues of the Ising
connection matrix may be useful when calculating the partition function.

In concluding the introduction, we would like to briefly discuss the place of the Ising
model in the modern science. This model describes a system of interacting particles that
are placed at the nodes of a multidimensional regular lattice. The Ising model appeared
almost a hundred years ago. Its purpose was to analytically describe a collective behavior
of a large number N >> 1 of interacting binary spins and to define thermodynamics
properties of such system. W.L. Bragg and E.J. Williams were the first who succeeded in
describing a phase transition with the aid of the Ising model. However, they made an
unreal supposition that all the spins interacted in the same way (see the mean-field model
described in [6]). Finally, in the late forties, L. Onsager et al. found an exact solution for
the planar Ising system, when the spins were at the nodes of the plane square lattice and
only the nearest spins interacted. Sometimes such a short-range interaction describes real
systems. With regards to the Ising problem, this result is one of the most significant.

At first, the Ising model described systems of interacting spins. However, the universal
formalism makes it possible to use this model in different scientific fields where the
interacting neurons, agents, and other objects are defined by binary variables. Now the
scientists use the Ising model when solving the problems of the spin glass theory [7]
and the neural network theory [8]. They use it in the theory and applications of the
global minimization [9,10], in socio- and econophysics [11], and in many other problems.
The calculation of the partition function ZN is the main and the most difficult part of all
these problems.

There is extensive literature on the inverse Ising problem, see, for example, a rather full
review published in [12]. When solving the inverse Ising problems, the authors examine
how with the aid of the statistical inference method they can estimate the parameters of
the Ising system—interaction constants and external magnetic fields—when they know
empirical characteristics of a large number of random spin configurations. We would like
to emphasize that although, as in the papers cited in [12], we also restore the parameters
of the Ising systems, the setting of the problem and the method of its solution differ
significantly. In our approach, we inverse the exact formulas that express the connection
matrix eigenvalues in terms of its matrix elements. However, when using the statistical
inference method the input data are the observables such as magnetizations, correlations,
etc. The solution tools are also different. They are the Boltzmann equilibrium distribution,
the principle of the maximal likelihood, the Bayes theorem, etc.
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2. One-Dimensional Ising Model

(1) A one-dimensional Ising system is a linear chain of L interacting spins. To provide
a translation invariance, let us close the chain in a ring. Then, the last spin is also the
nearest neighbor of the first spin. This means that each spin has two (on the left and right)
nearest neighbors, two next nearest neighbors (the distance to which is twice as large),
two next-next nearest neighbors, etc. To be specific, we suppose that L is odd: L = 2l + 1.
Consequently, each spin has l pairs of the neighbors. Since we have in mind to discuss
multidimensional lattices, we use the term “coordination spheres” to describe these pairs:
First coordination sphere, second coordination sphere, . . . , l-th coordination sphere. In the
beginning of the next Section, we will give a general definition of the coordination spheres.

By J(k), we denote a connection matrix that defines the interaction of each spin only
with the spins from the k-th coordination sphere. For example, it is easy to see that the
matrices J(1) and J(2) have the following form:

J(1) =



0 1 0 0 . . 1
1 0 1 0 . . 0
0 1 0 1 . . 0
.
0
1

.
0
0

.

.
0

.

.

.

. .
1 0
. 1

.
1
0

, J(2) =



0 0 1 0 . 1 0
0 0 0 1 . . 1
1 0 0 0 . . 0
.
1
0

.
0
1

.

.
0

.
1
.

. .
0 0
1 0

1
0
0


J(k) is a symmetric matrix with the ones at the k-th and (L − k)-th diagonals that

are parallel to the main diagonal. We use the set of matrices {J(k)}l
1 to write down

the Ising connection matrix A0 that accounts for interactions with spins belonging to all
the coordination spheres. Let wk be a constant of interaction with spins from the k-th
coordination sphere. Then:

A0 = w1 · J(1) + w2 · J(2) + . . . + wl · J(l). (1)

When there is no interaction with the spins from the k-th coordination sphere, the
corresponding constant wk in Equation (1) is equal to zero.

(2) The matrices J(k) are circulants: Each next row of such a matrix is obtained by a
cyclic shift of the previous row one position to the right. All the circulants have the same
set of the eigenvectors that may have complex coordinates [13,14]. In the general case, the
eigenvalues of the circulant matrices can also be complex. However, since in our problem
the matrices J(k) are symmetric, their eigenvalues are real. By {λα(k)}L

α=1, we denote the
eigenvalues of these matrices. It can be shown that [2,3]:

λα(k) = 2 · cos(kϕα), whereϕα =
2π

L
(α− 1), α = 1, 2, . . . , L, and k = 1, 3, . . . , l.

The first eigenvalue of each matrix J(k) is equal to 2, and other eigenvalues are
twice degenerate:

∀ k = 1, 2, .., l :λ1(k) = 2, and λα(k) = λL+2−α(k), where α = 2, 3, . . . , l + 1 (2)

Consequently, for each k (if we do not take into account the first eigenvalue), the
sequence λ2(k), λ3(k), ..λl+1(k), λl+2(k), .., λL−1(k), λL(k) is mirror-symmetrical about
its middle (see Figure 1). In what follows, we repeatedly use this symmetry property.
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Figure 1. Eigenvalues {λα(k)}, α = 1, 2, . . . , L = 41 of matrices J(k) when k = 1 (∗) and k = 20 (∆).
The vertical line in the middle shows explicitly the mirror symmetry of graphs.

The eigenvector f(1) with equal coordinates corresponds to the first eigenvalue λ1(k) = 2:

J(k) · f(1) = λ1(k) · f(1), where f(1) =


1
1
...
1

/
√

L

We can choose the two eigenvectors f(α) and f(L+2−α) corresponding to a degenerate
eigenvalue λα(k) = λL+2−α(k) to be real. It is convenient to write them as follows:

f(α) =


f (α)1

f (α)2
...

f (α)L

, f (α)j =
√

2
L cos((j− 1)ϕα)

f(L+2−α) =


f (L+2−α)
1

f (L+2−α)
2

...
f (L+2−α)
L

, f (L+2−α)
j =

√
2
L sin((j− 1)ϕα)

, where α = 2, 3, . . . , l + 1

(3)
Since the eigenvectors of all the matrices J(k) are the same, it is easy to write down

the eigenvalues of the connection matrix (1):

λα(A0) = w1 · λα(1) + w2 · λα(2) + . . . + wl · λα(l), α = 1, 2, . . . , L (4)

Expression (4) is a generalization of the formula obtained previously in [15].
The spectrum of the eigenvalues of the connection matrix A0 cannot be a set of arbitrary

numbers. It has a structure defined by the properties of the summands in Equation (4).
First, since the Equation (2) hold for each k, the spectrum of the eigenvalues {λα(A0)}L

α=1
has to be mirror-symmetrical about its middle (without accounting for the first eigenvalue).
Then, we have the equalities:

λα(A0) = λL+2−α(A0), α = 2, 3, . . . , l + 1 (5)
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Second, due to the zero-valued elements at the diagonals of all the matrices J(k) the
sum of the eigenvalues of the matrix A0 has to be equal to zero. This means that:

λ1(A0) = −2
l+1

∑
α=2

λα(A0) (6)

Consequently, only l numbers λ2(A0), λ3(A0), . . . λl+1(A0) of the set (4) can be
arbitrary. The other eigenvalues are expressed through these numbers with the aid of the
Equations (5) and (6).

(3) Let us analyze the inverse problem. Suppose we know a spectrum
{

λ̃α

}L

α=1
of

a connection matrix of a one-dimensional Ising system (for example, obtained experi-

mentally). Of course, the sequence
{

λ̃α

}L

α=1
satisfies equalities (5) and (6). What are the

connections wk between the spins that provide this spectrum?
To determine the unknowns wk, we have to solve the system (4) with the known

left-hand side:

λ̃α = w1 · λα(1) + w2 · λα(2) + . . . + wl · λα(l), α = 1, 2, . . . , L (7)

We can obtain the answer in an explicit form. Let us generate an L-dimensional vector

Λ̃ whose coordinates are the eigenvalues of the experimental spectrum
{

λ̃α

}L

α=1
. We

also generate L-dimensional vectors Λ(k) whose coordinates are the eigenvalues of the
matrices J(k):

Λ̃ =



λ̃1
λ̃2
...

λ̃l+1
λ̃l+2

...
λ̃L


, Λ(k) =



λ1(k)
λ2(k)

...
λl+1(k)
λl+2(k)

...
λL(k)


, k = 1, 2, .., l (8)

Then, we can rewrite the system of Equation (7) in the vector form:

Λ̃ = w1 ·Λ(1) + w2 ·Λ(2) + . . . + wl ·Λ(l)

It is evident that the vectors Λ(k) and the eigenvectors f(k+1) are collinear: Λ(k) ∼
f(k+1), k = 1, 2, . . . , l. Consequently, we can calculate the weights wk as scalar products of
the vectors Λ̃ and Λ(k):

wk =

(
Λ̃, Λ(k)

)
√

2L
, k = 1, 2, . . . , l (9)

By doing that, we solve the inverse problem in the one-dimensional case.

3. Two-Dimensional Ising Model

(1) In this case, the spins are in the nods of a square lattice of the size L × L. As
previously shown, we set L = 2l + 1 and assume periodic boundary conditions. Then, each
spin has l pairs of neighbors along both the horizontal and the vertical axes. In addition,
there are neighbors that are not on the same horizontal or vertical axes as the given spin.

The set of spins equally interacting with the given spin belongs to the same coordina-
tion sphere. In the case of an isotropic interaction, the coordination spheres consist of spins
equally distant from the given spin. Then, we can enumerate the coordination spheres in
the ascending order of distances to the given spin. In the anisotropic case, the interaction
constants but not the distances define the spins belonging to the given coordination sphere.
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When analyzing multidimensional Ising systems, we first have to distribute spins
between the coordination spheres. This step is simple in the one-dimensional case: The pair
of spins that are equidistant from the given spin belongs to the same coordination sphere.
In the case of two-dimensional lattice, to describe the interaction between the spins spaced
by m steps along the vertical axis and by k steps along the horizontal axis we introduce
the interaction constant w(m, k). The values of m and k change independently from 0 to l.
If the interaction is anisotropic w(m, k) 6= w(k, m), in the isotropic case w(m, k) ≡ w(k, m).
The difference between the coordination spheres in the isotropic and anisotropic cases
influences the symmetry properties of the spectrum.

Let us make a few necessary comments. Since there is no self-action in the system,
we always have w(0, 0) = 0. It is convenient to introduce a unit (L × L)-dimensional
matrix J(0) = diag(1, 1, .., 1). This matrix completes the set of matrices {J(k)}l

k=1. All the
eigenvalues of the matrix J(0) are equal to one. With the aid of these eigenvalues, we define
the L-dimensional vector:

Λ(0) =


1
1
...
1

,

which completes the set (8) of the vectors Λ(k): {Λ(k)}l
k=0.

In the next item, we solve the inverse problem in the case of anisotropic interaction.
The isotropic interaction is a subject of the last item of this Section.

(2) In paper [3], we showed that a
(

L2 × L2)-dimensional matrix B0 that described the
interactions {w(m, k)}l

k,m=0 between spins had a block-circulant form and its eigenvectors

were the pairwise Kronecker products of the eigenvectors f(α) defined by Equation (3).
Exactly as in the one-dimensional case, the set of the eigenvectors of the matrix B0 does not
depend on the interaction constants and the eigenvalues of this matrix obtained in [3] are:

µαβ =
l

∑
m=0

l

∑
k=0

w(m, k) · λα(m) · λβ(k), α, β = 1, 2, . . . , L (10)

Let us write Equation (10) in the vector form using the above-introduced L-dimensional
vectors Λ(k) (see Equation (8)). With the aid of these vectors, we generate L2-dimensional
vectors Λ(m, k) that are the Kronecker products of the vectors Λ(m) and Λ(k):

Λ(m, k) = Λ(m)⊗Λ(k) =



λ1(m)Λ(k)
λ2(m)Λ(k)

...
λl+1(m)Λ(k)
λl+2(m)Λ(k)

...
λL(m)Λ(k)


, m, k = 0, 1, .., l (11)

The vectors Λ(m, k) are mutually orthogonal. Let us define an L2-dimensional vector
M whose coordinates are the eigenvalues µαβ defined by Equation (10):

M = (µ11..µ1L, µ21..µ2L, . . . , µl+11..µl+1L, µl+21..µl+2L, . . . , µL1..µLL)
+ (12)

Now, we can rewrite the set of equalities (10) in the vector form:

M =
l

∑
m=0

l
∑

k=0
w(m, k) ·Λ(m, k) = w(0, 1) ·Λ(0, 1) + . . . + w(0, l) ·Λ(0, l)+

+w(1, 0) ·Λ(1, 0) + . . . + w(l, 0) ·Λ(l, 0) + . . . . . .+w(l, 0) ·Λ(l, 0) + . . . + w(l, l) ·Λ(l, l).
(13)
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Since w(0, 0) = 0, in this equation the term w(0, 0) ·Λ(0, 0) is absent.
Equation (13) allows us to easily solve the two-dimensional inverse problem. Namely,

we have to determine the interaction constants {w(m, k)} that provide a known eigenvalues
spectrum

{
µ̃αβ

}L
α,β=1. For example, it might be an experimental spectrum.

Let us write an L2-dimensional column vector M̃ of the form (12) using the “ex-
perimental” spectrum components

{
µ̃αβ

}L
α,β=1 and let us take into account the mutual

orthogonality of the vectors Λ(m, k) (11). Then, the desired interaction constants are the
scalar products of the L2-dimensional vectors:

w(m, k) =

(
M̃, Λ(m, k)

)
‖Λ(m, k)‖ , m, k = 0, 1, . . . l (14)

Now, let us discuss another question. In the same way as in the one-dimensional
problem, not any sequence of the numbers

{
µαβ

}L
α,β=1 can be a spectrum of a connection

matrix: The symmetry properties of the L2-dimensional vectors Λ(m, k) impose rather
severe restrictions on the values of these numbers.

Firstly, from Equation (13) it follows that the sum of the numbers µαβ has to be equal
to zero:

L

∑
α=1

L

∑
β=1

µαβ = 0. (15)

Secondly, in the one-dimensional problem the set of the eigenvalues (excluding the
first eigenvalue) is mirror-symmetrical about its middle for each m = 0, 1, .., l:

λi(m) = λL+2−i(m), where i = 2, 3, . . . , l + 1

From Equation (11), which defines the L2-dimensional vectors Λ(m, k) as the products
of the eigenvalues λi(m) by the vectors Λ(k), it is evident that their last l · L coordinates
copy the preceding l · L ones. Consequently, the same has to be true for the sequence of the
numbers

{
µαβ

}L
α,β=1. Then, it is necessary that the numbers that constitute the spectrum

satisfy the equalities:

µαβ = µL+2−αβ, where α = 2, . . . , l + 1, β = 1, L

In other words, the last l · L terms of the sequence of the numbers µαβ are not free parameters.
Thirdly, since the last l coordinates of each L-dimensional vector Λ(k) are a mirror

image of the preceding l coordinates, not all the first (l + 1) · L coordinates of any vec-
tor Λ(m, k) are different. Consequently, the same has to be true for the given sequence{

µαβ

}L
α,β=1: The last l terms of the first group of its L terms have to be a mirror image

of the preceding l terms. The last l terms of the second group of its L terms have to be a
mirror image of the preceding l terms, etc. Finally, for the last (l + 1)-th group consisting

of L terms of the sequence
{

µl+1,β

}L

β=1
, the equalities µl+1,i = µl+1,L+2−i, i = 2, 3, . . . , l + 1

have to be fulfilled. This means that by symmetry reasons only (l + 1)2 numbers

{
µ1β

}l+1
β=1,

{
µ2β

}l+1
β=1,

{
µ3β

}l+1
β=1, . . . .,

{
µl+1β

}l+1

β=1
(16)

of the sequence
{

µαβ

}L
α,β=1 may be independent parameters.

We can rewrite Equation (15) using only the terms of sequence (16):

µ11 + 2

(
l+1

∑
β=2

µ1β +
l+1

∑
α=2

µα1

)
+ 4

l+1

∑
α=2

l+1

∑
β=2

µαβ = 0 (17)
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This equation allows us to express µ11, through the other l(l + 2) independent numbers
µαβ from sequence (16). Consequently, the number of the independent values µαβ equals
exactly the number of the orthogonal vectors Λ(n, m) taking part in the expansion (13).

(3) Finally, let us discuss briefly a two-dimensional Ising system with an isotropic
interaction. Evidently, we again can use Equations (13), (14) and (17). However, now the
number of various interaction constants w(m, k) is not l(l + 2) but l(l + 3)/2. This means
that the same has to be the number of independent terms in the given sequence

{
µαβ

}L
α,β=1

that represents the spectrum of an isotropic connection matrix. Let us without proving
write down the formulas that replace Equations (16) and (17) when the interaction between
spins is isotropic.

After removing all the numbers µαβ that due to the symmetry reasons copy the
coordinates of the vector M (see Equation (12)), in place of (16) we obtain the sequence:

{
µ1β

}l+1
β=1,

{
µ2β

}l+1
β=2,

{
µ3β

}l+1
β=3, . . . .,

{
µlβ

}l+1

β=l
, µl+1l+1 (18)

that includes only (l + 1)(l + 2)/2 numbers. Next, when the interaction is isotropic we can
rewrite the general requirement (15) as follows:

µ11 + 4

(
l+1

∑
β=2

µ1β +
l+1

∑
α=2

µαα

)
+ 8

l

∑
α=2

l+1

∑
β=α+1

µαβ = 0

and calculate µ11 with the aid of this equation. As a result, we obtain the correct answer: In
sequence (18), the number of independent values is equal to l(l + 3)/2.

4. Three-Dimensional Ising Model

(1) We consider a system of spins at the nods of a cubic lattice of the size L× L× L
(L = 2l + 1) assuming periodic boundary conditions. Then, each spin has l pairs of
neighbors that are situated along the three independent coordinate axes. In addition, the
spins have neighbors that are not on the same coordinate axes as the given spin. The spins
equally interacting with the given spin constitute a coordination sphere.

Let w(n, m, k) be a constant of interaction between spins shifted with respect to each
other by a distance n along the first axis, by a distance m along the second axis, and by a
distance k along the third axis. When the interaction is anisotropic, there are (l + 1)3 − 1
independent interaction constants {w(n, m, k)}l

n,m,k=0, where −1 appears since there is no
self-interaction and w(0, 0, 0) = 0. In the case of an isotropic interaction, the number of
various constants w(n, m, k) is equal to (l + 1)(l + 2)(l + 3)/6− 1.

In paper [3], we showed that the
(

L3 × L3)-dimensional connection matrix C0 defined
by the interaction constants {w(n, m, k)}l

n,k,m=0 is a block-circulant. Its eigenvectors Fαβγ

are the Kronecker products of the eigenvectors f(α) (see Equation (3)):

Fαβγ = f(α) ⊗ f(β) ⊗ f(γ), α, β, γ = 1, 2, . . . , L

The vectors Fαβγ constitute a full set of the eigenvectors of any connection matrix of
the three-dimensional Ising system and they do not depend on the type of the interaction
constants {w(n, m, k)}l

n,k,m=0. Let us write down the eigenvalues of the matrix C0 obtained
in [3]:

µαβγ =
l

∑
n=0

l

∑
m=0

l

∑
k=0

w(n, m, k) · λα(n) · λβ(m) · λγ(k), α, β, γ = 1, 2, . . . , L (19)



Mathematics 2021, 9, 1624 9 of 11

We use the above-introduced L2-dimensional vectors Λ(m, k) (see Equation (11)) to
generate L3-dimensional vectors Λ(n, m, k) that are the Kronecker products of the vectors
Λ(n) and Λ(m, k):

Λ(n, m, k) = Λ(n)⊗Λ(m, k) =



λ1(n)Λ(m, k)
λ2(n)Λ(m, k)

...
λl+1(n)Λ(m, k)
λl+2(n)Λ(m, k)

...
λL(n)Λ(m, k)


, n, m, k = 0, 1, . . . , l (20)

The vectors Λ(n, m, k) are mutually orthogonal.
Let us define an L3-dimensional vector M whose coordinates are the eigenvalues (19):

M = (µ111..µ1LL, µ211..µ2LL, . . . , µl+111..µl+1LL, µl+211..µl+2LL, . . . , µL11..µLLL)
+ (21)

Then, we can rewrite the set of Equation (19) in the vector form:

M =
l

∑
n=0

l
∑

m=0

l
∑

k=0
w(n, m, k) ·Λ(n, m, k) = w(0, 0, 1) ·Λ(0, 0, 1) + . . . + w(0, l, l) ·Λ(0, l, l)+

+w(1, 0, 0) ·Λ(1, 0, 0) + . . . + w(1, l, l) ·Λ(1, l, l) + . . . .+w(l, 0, 0) ·Λ(l, 0, 0) + . . . .+w(l, l, l) ·Λ(l, l, l).
(22)

Equation (22) allows us to solve the inverse problem and calculate the interaction
constants w(n, m, k) that define the given set of the eigenvalues

{
µ̃αβγ

}L
α,β,γ=1 of the con-

nection matrix. Indeed, let us transform this “experimental” spectrum
{

µ̃αβγ

}L
α,β,γ=1 into

an L3-dimensional column-vector M̃ of the form (21) and use the mutual orthogonality
of the vectors Λ(n, m, k). Then, we obtain the required interaction constants as the scalar
products of the L3-dimensional vectors:

w(n, m, k) =

(
M̃, Λ(n, m, k)

)
‖Λ(n, m, k)‖ , n, m, k = 0, 1, . . . l (23)

This formula solves the problem of restoring the interaction constants corresponding
to the given spectrum.

(2) Not any sequence of the numbers
{

µαβγ

}L
α,β,γ=1 can represent the spectrum of a

three-dimensional Ising connection matrix. To start with, the equality

L

∑
α=1

L

∑
β=1

L

∑
γ=1

µαβγ = 0 (24)

has to be held. As in the two-dimensional problem, the cases of anisotropic and isotropic
interactions differ significantly. When the interaction is anisotropic, it is easy to list the
values µαβγ where we exclude the numbers repeated due the symmetry reasons. This list

contains (l + 1)3 values
{

µαβγ

}l+1
α,β,γ=1 (compare with Equation (16)). Due to Equation (24),

the independent values in this list are one less. For example, we can express µ111 in terms
of the other independent values:

µ111 = −2

(
l+1

∑
β=2

µ1β1 +
l+1

∑
γ=2

µ11γ +
l+1

∑
α=2

µα11

)
− 4

(
l+1

∑
β,γ=2

µ1βγ +
l+1

∑
α,γ=2

µα1γ +
l+1

∑
α,β=2

µαβ1

)
− 8

l+1

∑
α,β,γ=2

µαβγ (25)

The symmetry reasons allow us to restore all the other numbers µαβγ.
Consequently, the number of independent values µαβγ equals exactly the number of the

basic vectors Λ(n, m, k) (see Equation (20)), which enter the sum (22) with nonzero coefficients.
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When the interaction is isotropic, due to symmetry restrictions only (l + 1)(l + 2)(l + 3)/6
values µαβγ may be independent. They are:{

µ1βγ

}l+1
β=2,γ=β+1,

{
µ2βγ

}l+1
β=3,γ=β+1, . . . ., µl+ll+ll+l

In addition, due to Equation (24) this number is less by one. In the same way as we
have done previously (see Equation (25)), we can define, for example, µ111. Then, using
the remaining independent values with the aid of the symmetry reasons we restore all
the other numbers µαβγ. Thus, in the given “experimental” set of eigenvalues there must
be (l + 1)(l + 2)(l + 3)/6− 1 independent values and this number exactly matches the
number of various coefficients w(n, m, k) in expansion (22).

5. Discussion and Conclusions

Connection matrices define the most important characteristics of Ising systems—such
as the energies of the states and their distribution, the free energy, and all the macroscopic
properties defined by the free energy. All these functions are crucially dependent on the
connection matrix whose main characteristics are its eigenvalues and eigenvectors. In
papers [1–3], we obtained the expressions for the eigenvalues of the Ising connection matrix
A =

(
Aij
)N

i,j=1 with an arbitrary long-range interaction. In the present paper, we solve the
inverse problem: We suppose that we know the matrix spectrum and we have to determine
the interaction constants providing this spectrum.

We would like to note that the statement of the problem itself is not obvious. The
point is that usually to calculate matrix elements of a matrix we have to know not only the

eigenvalues but also all its eigenvectors. Indeed, let {λα}α and
{

f(α) =
(

f (α)1 , f (α)2 , . . .
)+}

α
be eigenvalues and eigenvectors of a symmetric matrix A =

(
Aij
)
, respectively. Then, its

matrix elements are [13]:

Aij = ∑
α=1

λα f (α)i f (α)j , i, j = 1, 2, . . . (26)

On the other hand, at the beginning of each Section we recall that all connection
matrices of any d-dimensional Ising model are circulants and, consequently, all these
matrices have the same set of the eigenvectors [14]. In other words, their eigenvectors are
known by default. However, our analysis shows that when calculating the matrix elements
the internal symmetry of the problem allows us to not use Equation (26) but much more
simpler and convenient formulas (see Equations (9), (14) and (23)). In addition, using the
symmetry reasons, we obtain the number and positions of independent values in a given
sequence that allows it to be the spectrum of some connection matrix.

Note that it is easy to generalize all the obtained results to the dimensions d > 3.
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