
mathematics

Article

Efficient Implementations of Sieving and Enumeration
Algorithms for Lattice-Based Cryptography

Hami Satılmış 1 , Sedat Akleylek 1,* and Cheng-Chi Lee 2,3,*

����������
�������

Citation: Satılmış, H.; Akleylek, S.;

Lee, C.-C. Efficient Implementations

of Sieving and Enumeration

Algorithms for Lattice-Based

Cryptography. Mathematics 2021, 9,

1618. https://doi.org/10.3390/

math9141618

Academic Editor: Luis Hernández

Encinas

Received: 2 June 2021

Accepted: 5 July 2021

Published: 8 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering, Ondokuz Mayıs University, Samsun 55200, Turkey;
hami.satilmis@bil.omu.edu.tr

2 Department of Library and Information Science, Research and Development Center for Physical Education,
Health, and Information Technology, Fu Jen Catholic University, New Taipei City 242, Taiwan

3 Department of Photonics and Communication Engineering and Department of Computer Science and
Information Engineering, Asia University, Taichung 413, Taiwan

* Correspondence: sedat.akleylek@bil.omu.edu.tr (S.A.); cclee@mail.fju.edu.tw (C.-C.L.)

Abstract: The security of lattice-based cryptosystems is based on solving hard lattice problems such
as the shortest vector problem (SVP) and the closest vector problem (CVP). Various cryptanalysis
algorithms such as (Pro)GaussSieve, HashSieve, ENUM, and BKZ have been proposed to solve
these hard problems. Several implementations of these algorithms have been developed. On the
other hand, the implementations of these algorithms are expected to be efficient in terms of run
time and memory space. In this paper, a modular software package/library containing efficient
implementations of GaussSieve, ProGaussSieve, HashSieve, and BKZ algorithms is developed. These
implementations are considered efficient in terms of run time. While constructing this software
library, some modifications to the algorithms are made to increase the performance. Then, the run
times of these implementations are compared with the others. According to the experimental results,
the proposed GaussSieve, ProGaussSieve, and HashSieve implementations are at least 70%, 75%, and
49% more efficient than previous ones, respectively.

Keywords: lattice-based cryptography; sieving algorithms; efficient software implementations; SVP

1. Introduction

Traditional public key cryptosystems such as RSA and (EC)DSA are based on the
hardness of the integer factorization and the discrete logarithm problem [1]. However,
due to the Shor algorithm in [2], they are insecure in the quantum era. For this reason,
new cryptosystems are needed to avoid vulnerability in communication networks after the
widespread use of quantum computers. The family of lattice-based cryptosystems is one
of the candidates in the quantum era due to the efficiency and security reasons [1]. The
lattice-based cryptography can be used in different security areas, such as identification
and authentication [3,4]. The basis of the difficulty of lattice-based cryptography consists
of lattice problems such as SVP and CVP, for which the solution is unknown in polynomial-
time, even in the quantum computer era. To solve hard problems such as SVP and CVP,
i.e., to break the lattice-based cryptography, many sieving-based and enumeration-based
algorithms and their implementations of these algorithms are proposed in [5–10].

1.1. Previous Works

The main idea in the sieving algorithms such as the GaussSieve and the ProGaussSieve
is to store the list data structure in memory, where vectors with larger sizes are held, and to
continue processing by finding vectors close to the size of the intended shortest vector [9].
The efficiency of sieving algorithms is evaluated according to memory usage and the run
times [5,6]. Therefore, sieving algorithms such as the GaussSieve and the ProGaussSieve,
working with the same main idea of having only a few structural or technical modifica-

Mathematics 2021, 9, 1618. https://doi.org/10.3390/math9141618 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6611-7549
https://orcid.org/0000-0001-7005-6489
https://orcid.org/0000-0002-8918-1703
https://doi.org/10.3390/math9141618
https://doi.org/10.3390/math9141618
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9141618
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9141618?type=check_update&version=2


Mathematics 2021, 9, 1618 2 of 19

tions, have been proposed in [5,6,10]. In [11], the AKS, the first exponential-time sieving
algorithm, has the asymptotic run time complexity 22.465n+o(n) and the space complexity
21.233n+o(n), where n is the lattice size. With the sieving algorithm of Nguyen–Vidick, which
is the heuristic version of the AKS algorithm, the implementation of the AKS algorithm
was developed in [12]. It was noted that memory problems in the AKS might occur as
the size grows in [12]. The ListSieve algorithm in [5], in which the main operation is
to start processing with an empty list data structure and to add a shorter vector to the
list each time until it contains the shortest vector, operates with the asymptotic run time
complexity 23.199n+o(n) and the space complexity 21.325n+o(n). Micciancio and Voulgaris
suggested the ListSieve algorithm and proposed the GaussSieve algorithm in [5] run with
the ListSieve in the same idea except with a few changes. The GaussSieve algorithm in [5]
works asymptotically with the run time 20.48n+o(n) complexity and the space complexity
20.18n+o(n). Applying a progressive approach to the GaussSieve algorithm, Laarhoven and
Mariano introduced the ProGaussSieve sieving algorithm in [6], which has the asymptotic
run time complexity 20.42n+o(n) and the space complexity 20.21n+o(n). The HashSieve sieving
algorithm in [10] was revealed by carrying out Charikar’s angular locality-sensitive hash
(angular-LSH) family [13] to the GaussSieve algorithm, was proven to be faster than the
GaussSieve algorithm, and found the shortest vector in the asymptotic run time complexity
20.3366n+o(n) and the space complexity 20.3366n+o(n). In [14], a new algorithm was proposed
by combining the k-means LSH function with the HashSieve.

The standard implementation of the GaussSieve algorithm was first developed by Mic-
ciancio and Voulgaris in [5] by using the NTL library [15]. In 2014, the first known parallel
implementation of the GaussSieve algorithm was developed in [16]. The parallel version of
the GaussSieve algorithm in [17] was implemented using the distributed-memory method
on a CPU. Later, another parallel GaussSieve implementation using enhanced lock-free list
data structure was introduced in [18]. Using the parallel GaussSieve algorithm method of
Ishugura et al., the parallel implementation of the GaussSieve algorithm was developed
on a GPU in [19]. The implementation of the ProGaussSieve algorithm, the progressive
version of the GaussSieve algorithm, was developed by Laarhoven and Mariano in [6].
In 2015, the first known standard version of the HashSieve algorithm was implemented
by Laarhoven in [10]. In [20], an SVP solver by using the Voronoi cell of a lattice was
implemented. They gave a real performance of this method, although there are some
limitations such as increasing memory requirements with the number of dimensions.

The enumeration algorithms are designed to enumerate all lattice points (vectors)
in a bounded area to have a solution (finding the shortest vector) with better memory
requirements. The first examples of enumeration algorithms are Kannan [21], Fincke and
Pohst [22], and Schnorr and Euchner [7]. In 2010, the enumeration algorithms were made
more efficient by using the “extreme pruning” technique in [23]. Dağdelen and Schneider
introduced the parallel implementation of the enumeration algorithm in [24]. In 2016,
the parallel implementation of Schnorr and Euchner’s enumeration algorithm SE++ was
revealed in [25].

The sieving and the enumeration algorithms need to perform reduction algorithms
such as the Gram–Schmidt [26], the LLL [26], and the BKZ [8,27] to reduce the size of
the lattices before starting their basic operations. The LLL algorithm has several usages
in cryptography. For instance, the LLL has an important role in solving the knapsack
problem efficiently, the integer factorization [28]. The LLL algorithm and the enumeration
algorithms are used as subprocesses in the BKZ algorithm, which is the block width version
of the LLL reduction algorithm [29]. The BKZ algorithm provides the most efficient results
among the reduction algorithms, which was first introduced by Schnorr in [30], and its im-
plementation was developed in [8]. The BKZ 2.0 version of the BKZ algorithm, which uses
methods such as pruning enumeration [23], early termination, and progressive reduction,
was introduced and implemented in [31]. In 2014, the parallel implementation of the BKZ
algorithm was revealed in [32]. Later, the ACBKZ algorithm and its implementation were



Mathematics 2021, 9, 1618 3 of 19

introduced in [33], which is the version of the BKZ algorithm that operates in different
blocks in parallel.

1.2. Motivation and Contribution

Sieving, enumeration, and reduction algorithms consist of many common components.
Therefore, these components are needed for the implementations of sieving, enumeration,
and reduction algorithms. However, the implementations of sieving, enumeration, and
reduction algorithms can be efficiently developed by using a software library that includes
common components. Note that there is a lack of a modular software library that is used as
the infrastructure in developing efficient implementations of these algorithms [34]. In this
paper, a modular structured software library is designed to be used as the infrastructure
while developing implementations of these algorithms to fill this gap. The developed
implementation is designed to be efficient in terms of the run time and the space com-
plexity. In addition to using a modular software infrastructure library, the performance
of implementations can be increased through implementation-based improvements that
can be made on the algorithms [6]. Furthermore, the proposed modular software library
and the efficient implementations can also be used for efficient implementations of other
lattice-based schemes. The contributions of this paper are as follows:

• The modular software infrastructure library is developed to be used as an infrastruc-
ture to have the efficient implementations of the algorithms.

• With the modular software library containing the commonly used components in the
algorithms, the efficient implementations of GaussSieve and ProGaussSieve are provided.

• In order to achieve performance improvements in the implementations of the GaussSieve
and the ProGaussSieve algorithms, it is proposed to make changes to the termination
criterion of these algorithms.

• By making novel modifications to the HashSieve implementation developed by
Laarhoven [10] and by using the modular software infrastructure library, a faster
implementation of HashSieve is achieved.

• Efficient implementations of the ENUM and the BKZ algorithms are developed using
the modular software infrastructure library.

• The proposed solution in [8] for the zero vector problem encountered in the LLLFP
algorithm (a subprocess in the BKZ) is implemented in the LLLFP module.

The efficient implementations of GaussSieve and ProGaussSieve are compared with
the GaussSieve and the ProGaussSieve implementations in [6] with regard to the asymp-
totic run time complexities. For the same lattice samples, HashSieve implementations
are compared with that in [10]. In addition, the accuracy of the outputs of the efficient
implementations of ENUM and BKZ are checked by comparing them with the outputs of
the SageMath [35].

1.3. Organization

The rest of this paper is organized as follows. In Section 2, the mathematical back-
ground of the lattice-based cryptosystems; the lattice algorithms; and the GaussSieve,
the ProGaussSieve, the HashSieve, the ENUM, and the BKZ algorithms are recalled with
possible improvements. The software features of the modular software infrastructure
library used to develop the efficient implementations of these algorithms are mentioned in
Section 3. In addition to this section, the efficient implementations of these algorithms are
detailed with novel modifications. In Section 4, the run times of efficient implementations
are compared with those of the implementations in the literature. Finally, the results
obtained in this paper and the future studies are given in Section 5.

2. Preliminaries

In this section, the main computationally hard problems in the lattice-based cryptogra-
phy are recalled. Then, the common subcomponents and the algorithms developed to solve
these hard problems are mentioned. Finally, the basic working order of the algorithms



Mathematics 2021, 9, 1618 4 of 19

developed for solving hard problems is explained through the pseudo-codes. Table 1
shows some special notations that are often used in the mathematical descriptions and
the algorithms.

Table 1. Notations.

Notations Definitions

‖v‖ Euclidean norm of the vector v

|x| Absolute value of the number x

dxc Rounding the number x to the nearest integer

S ∪ {v} Adding vector v to set S

S/{v} Removing the vector v from the set S

v∗ Vector v reduced by Gram-Schmidt

v′ Converting vector v ∈ Z to v ∈ R

cl Number of collisions in sieving algorithms

T Hash tables in the HashSieve algorithm

β Local lattices size in the BKZ algorithm

δ Floating-point error value for the LLLFP algorithm

2.1. Mathematical Background

Mathematical definitions of the lattice structure and the hard problems in these cryp-
tosystems are given below.

Definition 1 (Lattice). In Rn, the set of points consisting of linear independent integer vectors
{v1, . . . , vn} of the basis B is called the lattice.

L = L(B) =

{
n

∑
i=1

civi : ci ∈ Z
}

(1)

Definition 2 (SVP). Let the shortest lattice vector be λ1(L) = min||v||, provided that it is v ∈ L
and v 6= 0. SVP is the problem of finding the lattice vector v ∈ L, in ||v|| = λ1(L) equality. In
other words, SVP is the problem of finding the vector with the shortest Euclidean norm from the
lattice basis vectors [36].

Definition 3 (CVP). Let t ∈ Rn be a target point, and the smallest distance between the lattice
vector v and t is defined as d(t, L) := min||v− t||. CVP is the problem of finding the lattice vector
v ∈ L, in ||v|| = d(t, L) equality. In other words, CVP is the problem of finding the lattice vector
closest to the chosen target point [37].

2.2. Common Submodules in Algorithms

Many mathematical operation structures and algorithms are common in the sieving,
enumeration, the BKZ reduction algorithms. These common mathematical operation struc-
tures and algorithms, called common submodules, are carried out as subprocesses in the
sieving, enumeration, and BKZ reduction algorithms. Among these common algorithms,
the GaussReduce reduction [5], the Gram–Schmidt reduction [26], the LLL reduction [26],
the LLLFP reduction [8], and the Klein’s Nearest Neighbor [38] are used for the following
purposes and operations. In addition, the mathematical operation structures that are
commonly used with algorithms are given below.

• The GaussReduce Algorithm: This reduction algorithm is used in the Gauss-based
sieving algorithms to reduce the size of a lattice vector by other lattice vectors.



Mathematics 2021, 9, 1618 5 of 19

• The Gram–Schmidt Algorithm: This reduction algorithm obtains the Gram–Schmidt
constants and the reduced lattice consisting of vectors perpendicular to each other
as much as possible. The resulting reduced lattices and constants are given as input
parameters to the sieving, enumeration, and reduction algorithms such as the BKZ
and the LLL.

• The LLL and The LLLFP Algorithms: These algorithms produce lattices consisting
of vectors orthogonal to each other and that are reduced. The reduced lattice is given
as an input parameter to the sieving algorithms and is used as a subprocess in the
BKZ. The only difference between the LLLFP algorithm and the LLL algorithm is that
the LLLFP algorithm minimizes the floating-point errors in the LLL algorithm.

• The Klein’s Nearest Neighbor Algorithm: It produces new sample vectors to be
used in the sieving algorithms. This new sample vector is used in the reduction
operations in the sieving algorithms. The Klein’s algorithm is composed of the nearA
algorithm [38] as the main algorithm and the Randomized Rounding algorithm [39]
as a submodule.

• The Mathematical Operations: Vector arithmetic is needed in the sieving, the enumer-
ation, the BKZ, and the subcomponents of these algorithms such as the GaussReduce
and the Gram–Schmidt submodules. These operations are the Euclidean norm of a
vector, the vector addition/subtraction, and the inner product.

2.3. The GaussSieve and the ProGaussSieve Algorithms

The main idea in the GaussSieve algorithm, solving the shortest vector problem, is to
add shorter new lattice vectors for each iteration to the list data structure. In addition, the
GaussSieve algorithm is to reduce the new lattice vector with the list vectors while at the
same time reducing all list vectors with the new lattice vector.

The reduced lattice basis B and the termination criterion c (the total number of col-
lisions) are sent to the GaussSieve algorithm as the inputs. The GaussSieve algorithm
first takes a vector v from the stack data structure S where the sample vectors are stored
or generates a new sample vector v in the Klein’s Nearest Neighbor algorithm (line 5
in Algorithm 1). The new sample vector v is given as input to the GaussReduce reduction
algorithm. In this reduction algorithm, the vector v is reduced by using all list vectors w
(line 6 in Algorithm 1). The reduced new sample vector v reduces all list vectors w if the
vector v satisfies the conditions (line 7 in Algorithm 1). Later, the GaussSieve algorithm
compares the Euclidean norm of the reduced new sample vector v with the Euclidean norm
of its previous state (line 9 in Algorithm 1). As a result of the comparison, if there is no
change in the length of the new sample vector v, the GaussSieve algorithm adds the vector
v to the list data structure L (line 10 in Algorithm 1). If the reduced new sample vector v
has a change in length and its length is different from zero, the GaussSieve algorithm adds
the reduced vector v to the stack data structure S (line 13 in Algorithm 1). If the reduced
new sample vector v has a change in length (the length is zero), the GaussSieve algorithm
increases the number of collisions cl by one (line 15 in Algorithm 1). The GaussSieve
algorithm, which consists of these process steps in general, iterates all of these steps and
terminates operations when it reaches (the termination criterion c) a certain number of
collisions cl (zero vector state). The GaussSieve algorithm, which terminates the pro-
cess, outputs the shortest lattice vector in the list L. In Algorithm 1, which shows the
pseudo-code of the ProGaussSieve algorithm, if the lines, written in red, are removed, the
pseudo-code of the GaussSieve algorithm is given with slight modifications.

The ProGaussSieve algorithm, a different version of the Gauss-based sieving algorithm,
operates in the same manner and procedure as in the GaussSieve algorithm. The main
difference between the ProGaussSieve algorithm and the GaussSieve algorithm is that the
ProGaussSieve algorithm divides the lattice into smaller subparts and starts operating with
the smallest one, although the GaussSieve algorithm starts operating on the whole lattice.



Mathematics 2021, 9, 1618 6 of 19

Algorithm 1 ProGaussSieve Algorithm [6].
Input: Reduced lattice basis B, termination criterion c and progressive= min{10, n} constant
Output: The shortest vector on the basis of lattice B

1: L = ∅
2: S = ∅
3: cl = 0
4: while true do
5: Taking a new vector v sampled from Klein’s algorithm or the stack S
6: GaussReduce(v, w ∈ L)
7: GaussReduce(w ∈ L, v)
8: Move the reduced vectors w ∈ L from list L to the stack S
9: if v has not changed then

10: L = L ∪ {v}
11: else
12: if v 6= 0 then
13: S = S ∪ {v}
14: else
15: cl = cl + 1
16: if cl = c then
17: if progressive =n then
18: return argminv∈L||v||
19: else
20: progressive++
21: cl = 0

The ProGaussSieve algorithm in Algorithm 1 takes the constant progressive as an
input parameter, which determines the size of the lattice subparts, as well as the input
parameters of the GaussSieve algorithm. The ProGaussSieve algorithm starts the operation
by dividing the lattice into subparts according to the constant progressive and does the
same operations as the GaussSieve algorithm on the smallest lattice subpart. When the
ProGaussSieve algorithm reaches a certain number of collisions cl (zero vector state), it
increases the constant progressive. Then, the ProGaussSieve algorithm continues to operate
on the following lattice subpart. After the ProGaussSieve algorithm operating over the
whole lattice and the number of collisions cl reaches the value of the termination criterion
c, it halts the operation and outputs the shortest vector of the lattice.

2.4. The HashSieve Algorithm

The main idea and the operation procedure in the HashSieve algorithm, which uses
Charikar’s angular-LSH (locality sensitive hashing) family, is almost the same as the
GaussSieve algorithm. The GaussSieve algorithm stores the vectors and uses them to
reduce in a list data structure. In contrast, the HashSieve algorithm stores the vectors and
uses them to reduce the hash tables and the list data structure. Note that LSH is not a
cryptographic hash function approach and is helpful to see whether the distance between
vectors are small enough.

In the angular-LSH family, given a target vector v and a hash vector a, the hash value
consists of a single bit ha(v) ∈ {0, 1} and is calculated as

ha(v) =
{

1 if 〈a, v〉 ≥ 0;
0 if 〈a, v〉 < 0.

}
(2)

The angular-LSH family consists of functions H = {ha} in the randomly drawn
a ∈ Rn from an n-dimensional Gaussian distribution. These hash functions have the
property that vectors mapped to the same bucket have a higher probability of being closer
than the “average” list vectors [40].



Mathematics 2021, 9, 1618 7 of 19

The pseudo-code of the HashSieve algorithm, which receives the reduced lattice B
and the termination criterion c (the total number of collisions) as input parameters, is
given in Algorithm 2. The HashSieve algorithm starts to operate with the empty hash
tables T and the empty stack data structure S containing the sample vectors. In each
iteration, the HashSieve algorithm first takes either the sample vector v from stack S or
the new sample vector v generated by the Klein’s Nearest Neighbor algorithm (line 5
in Algorithm 2). The HashSieve algorithm reduces the vector v to the closest candidate
vectors in hash tables T. Then, the HashSieve algorithm reduces the vector w by using
the reduced vector v (line 10 in Algorithm 2). After moving the nonzero reduced vectors
w to stack S, the HashSieve algorithm inserts the nonzero reduced vector v into the hash
tables T at the end of the iteration (line 16 and 20 in Algorithm 2). If the reduced vector
v is a zero vector, the HashSieve algorithm increases the collision number cl (line 18 in
Algorithm 2). The HashSieve algorithm, which iteratively performs these operations until
the collision number cl reaches the termination criterion c, gives the shortest vector of the
lattice as an output.

Algorithm 2 HashSieve Algorithm [10].
Input: Reduced lattice basis B, termination criterion c
Output: The shortest vector on the basis of lattice B

1: S = ∅
2: cl = 0
3: T empty hash tables H1, . . . , HT
4: while cl < c do
5: Taking a new vector v sampled from Klein’s algorithm or the stack S
6: while ∃w ∈ H1[h1(v)], . . . , HT [hT(v)] : ||v± w|| < ||v|| do
7: for each Hash table Hi, . . . , HT do
8: Find the closest candidate vectors C = Hi[hi(v)]
9: for each w ∈ C do

10: Reduce vector v with vector w and reduce vector w with vector v
11: if w has changed then
12: Hi = Hi/{w}
13: if w = 0 then
14: cl = cl + 1
15: else
16: S = S ∪ {w}
17: if v = 0 then
18: cl = cl + 1
19: else
20: Hi = Hi ∪ {v}

2.5. The ENUM Algorithm

Although the primary purpose of the ENUM algorithm working with the enumeration
idea is to solve the SVP problem, it is intended to be used as a subprocess in Schnorr and
Euchner’s BKZ reduction algorithm. The ENUM enumeration algorithm is used to calculate
the smallest area of the local lattice blocks found in the BKZ algorithm.

The ENUM algorithm, the pseudo-code of which is given in Algorithm 3 and devel-
oped specifically for Schnorr and Euchner’s BKZ algorithm, takes the indices j and k as
input parameters. For the smallest c̃j in the function cj, the ENUM algorithm performs an in-
depth search on all integer vectors {ũt, . . . , ũk}, providing the condition c̃j > ct(ũt, . . . , ũk)
(between 7 and 17 lines in Algorithm 3). The ENUM algorithm, which calculates the
operation c̃t = ct(ũt, . . . , ũk), assigns the value 1 to the ∆t and variables ũt at the level t
(lines 23 and 24 in Algorithm 3). The algorithm, which always assigns the maximum value
of t to s, assigns one of the sequential values 1,−1, 2,−2, 3,−3, . . . to the variable ∆t when
the condition c̃t ≥ c̄j is satisfied (line 23 in Algorithm 3). The ENUM algorithm, running
iteratively, increases the variables s and t by 1 in each iteration (line 19 in Algorithm 3). The



Mathematics 2021, 9, 1618 8 of 19

algorithm, which continues to operate at the level t− 1, assigns the result of the operation
−yt + d−ytc to the variable δt and the value 0 to the variable ∆t (line 10 in Algorithm 3).
The algorithm, which begins to operate at level t again, sets one of the sequential values
1,−1, 2,−2, 3,−3, . . . or −1, 1,−2, 2,−3, 3, . . . to the value ∆t (line 23 in Algorithm 3). The
ENUM algorithm, performing iteratively, returns the smallest area {uj, . . . , uk} ∈ Zk−j+1

as an output when it reaches the termination criterion.

Algorithm 3 ENUM Algorithm [7].
Input: j and k for 1 ≤ j < k ≤ m
Output: The smallest field {uj, . . . , uk} ∈ Zk−j+1

1: Values ci = ‖v∗
′

i ‖
2

and local lattice basis vectors {vj, . . . , vk} for j ≤ t < i ≤ k in the
BKZ algorithm

2: c̄j = cj, ũj = uj = 1, yj = ∆j = 0, s = t = j, δj = 1
3: for i = j + 1 to k + 1 do
4: c̃i = ui = ũi = yi = ∆i = 0, δi = 1
5: while t ≤ k do
6: c̃t = c̃t+1 + (yt + ũt)

2ct
7: if c̃t < c̄j then
8: if t > j then
9: t = t− 1, yt = ∑s

i=t+1 ũiµi,t
10: ũt = wt = d−ytc, ∆t = 0
11: if ũj > −yt then
12: δt = −1
13: else
14: δt = 1
15: else
16: c̄j = c̃j
17: ui = ũi for i = j, . . . , k
18: else
19: t = t + 1, s = max(s, t)
20: if t < s then
21: ∆t = −∆t
22: if ∆tδt ≥ 0 then
23: ∆t = ∆t + δt
24: ũt = wt + ∆t
25: return The smallest field {uj, . . . , uk} ∈ Zk−j+1

2.6. The BKZ Algorithm

Schnorr and Euchner’s BKZ algorithm is used for lattice reduction. The operation is
to perform on local sublattices in which the sizes are determined by the parameter β. In
Schnorr and Euchner’s BKZ algorithm, in which the reduction quality varies according to
parameter β, the LLLFP reduction and the ENUM enumeration algorithms developed by
Schnorr and Euchner are used as a subprocess.

In Algorithm 4, the pseudo-code of Schnorr and Euchner’s BKZ algorithm is de-
tailed. It takes the basis B = {v1, . . . , vn} of the n-sized lattice L, the local lattice size
value β, the floating-point error value δ (for the LLLFP reduction algorithm), the Gram–
Schmidt constants µ, and the Euclidean norms of the reduced Gram–Schmidt lattice vectors
‖v∗1‖

2, . . . , ‖v∗n‖
2 as input parameters. The BKZ algorithm, as the first operation, uses

the LLLFP algorithm (to be Fc = f alse), reduces the basis B, and updates the Gram–
Schmidt constants µ (line 4 in Algorithm 4). The algorithm, which reduces the local
lattice blocks B[j,min(j+β−1,n)] for j = 1, . . . , n by iteratively them, assigns the index j a
value of 1 as the initial value (line 6 in Algorithm 4). The BKZ algorithm, which needs
the vector u = (u1, . . . , un) (the smallest field), operates the lattice L[j,k] in the index
k = min(j + β− 1, n) in the ENUM enumeration algorithm in each iteration so that it finds



Mathematics 2021, 9, 1618 9 of 19

the vector (line 9 in Algorithm 4). The algorithm, which sets the latest index of the new
local lattice block to h = min(k + 1, n), produces the new lattice vector vnew = ∑k

i=j uivi

(line 10 in Algorithm 4) if the condition ‖v∗j ‖ > λ1(L[j,k]) is satisfied and includes this
vector between the lattice vectors vj−1 and vj. By including the new lattice vector, the BKZ
algorithm forms the set of vectors (v1, . . . , vj−1, vnew, vj, . . . , vh), sends this set of vectors
to the LLLFP algorithm (to be Fc = true), and then produces the new reduced local lattice
{v1, . . . , vh}. Finally, it updates the constants µ (line 14 in Algorithm 4). If the condition
‖v∗j ‖ > λ1(L[j,k]) is not satisfied, the BKZ algorithm sends the local lattice block v1, . . . , vh
to the LLLFP algorithm and updates the constants µ (line 17 in Algorithm 4). Thus, the
algorithm, which produces the LLLFP reduced lattice basis {v1, . . . , vh}, assigns the value
1 to the index j if none of the enumeration operations are successful when the value of the
index j reaches the number n. The BKZ algorithm, which is iteratively performing all of
these operations, uses the failed enumeration process counter z as a termination criterion.
After reducing the whole lattice and when the termination counter z is also n− 1, the BKZ
algorithm returns the BKZ-reduced lattice {v1, . . . , vn} as an output.

Algorithm 4 BKZ Algorithm [8].

Input: Lattice basis B = {v1, . . . , vn} ∈ Zn, block size 2 < β < n, 1
2 < δ < 1 with the

condition δ, constants µ ve ‖v∗1‖
2, . . . , ‖v∗n‖

2

Output: The BKZ-reduced basis {v1, . . . , vn}
1: z = 0
2: j = 0
3: Fc = f alse
4: LLLFP(v1, . . . , vn, δ, Fc)
5: while z < n− 1 do
6: j = (j mod(n− 1)) + 1
7: k = min(j + β− 1, n)
8: h = min(k + 1, n)
9: u = ENUM(j, k)

10: vnew = ∑k
i=j uivi B‖πj(∑k

i=j uivi)‖ = λ1(L[j,k])

11: if ‖v∗j ‖ > λ1(L[j,k]) then
12: z = 0
13: Fc = true
14: LLLFP((v1, . . . , vj−1, vnew, vj, . . . , vh), δ, Fc)
15: else
16: z = z + 1
17: LLLFP((v1, . . . , vh), δ, Fc)
18: return The BKZ-reduced basis {v1, . . . , vn}

3. Modular Software Library

A modular software library to solve SVP in lattice-based cryptography is developed.
This library is structured with a divide-and-conquer approach, i.e., submodules/sub-
components commonly used in the sieving, enumeration, and reduction cryptanalysis
algorithms are determined and firstly implemented. Then, the connection/relation of
these submodules is defined. Adhering to the algorithmic framework emerging from the
analysis, common subcomponents required by the algorithms are added to the software
library as modules. Then, these modules are the core parts of the efficient implementations
of algorithms. The algorithmic framework in Figure 1 shows the dependency relationship
between all algorithms and the submodules needed by the algorithms such as the sieving,
the ENUM, and the BKZ. The direction of the arrows in Figure 1 means that the algorithm
is a subprocess in the target algorithm. For example, the LLLFP algorithm is used as a
subprocess in the BKZ algorithm.



Mathematics 2021, 9, 1618 10 of 19

Figure 1. The algorithmic framework of the sieving and enumeration methods.

The software library, developed using the C programming language, includes the
Gram–Schmidt, the LLL, the LLLFP, the ENUM enumeration, the Klein’s Nearest Neigh-
bor (nearA and Randomized Rounding algorithms), and the GaussReduce algorithms in
modules. The software library also contains the modular forms of the vector Euclidean
norm calculation, the vector addition/subtraction, and the inner product mathematical
operations structures, which are commonly used by all algorithms given in Section 2.
These modules, which are used as subcomponents by the efficient implementations of
sieving, enumeration, and reduction algorithms, are available in different data types (such
as long long int, and double) in the software library. Since these modules are used as
subcomponents in the efficient implementations, they directly affect the run time of the
implementations. For this reason, the variables or the parameters in the modules are
defined with a structure pointer or double− pointer. Due to the structure pointer, the speed
of accessing data in the memory during the processing of subcomponents increases. Thus,
the run time of efficient implementations is reduced.

Codes 1 and 2 are examples for the modules. The Gram–Schmidt modules that return
the reduced lattice output in the data type double is given as an example in Code 1. Code 2
shows an example of an inner product module that produces an output of the data type
long long int.

Code 1. The Gram–Schmidt module.

double∗∗ GramSchmidt ( long long i n t ∗∗ B , i n t N)
{

double∗∗ mu=( double∗∗ ) malloc ( s i ze of ( double∗ ) *N) ;
for ( i n t l =0 ; l <N; l ++){
mu[ l ] = ( double∗ ) malloc ( s i ze of ( double ) *N) ;

}
double∗∗ Bs =( double∗∗ ) malloc ( s i ze of ( double∗ ) *N) ;
for ( i n t l =0 ; l <N; l ++){

Bs [ l ] = ( double∗ ) malloc ( s i ze of ( double ) *N) ;
}
i n t i , j , k ;
for ( i =0 ; i <N; i ++){

for ( j =0 ; j <N; j ++){
mu[ i ] [ j ] = 0 ;
Bs [ i ] [ j ] = ( double ) B [ i ] [ j ] ;

}
for ( k =0;k< i ; k ++){
mu[ i ] [ k]= inner_product ( B [ i ] , Bs [ k ] ,N)/Norm( Bs [ k ] ,N) ;
for ( j =0 ; j <N; j ++){

Bs [ i ] [ j ]−=mu[ i ] [ k ] * Bs [ k ] [ j ] ;
}

}
}
return Bs ;

}



Mathematics 2021, 9, 1618 11 of 19

Code 2. The inner product module.

long long i n t inner_product ( long long i n t ∗ v , long long i n t ∗ w, i n t N)
{

long long i n t r e s u l t =0;
for ( i n t i =0 ; i <N; i ++){

r e s u l t +=v [ i ] *w[ i ] ;
}
return r e s u l t ;

}

The modular software library is developed by following the 64-bit architecture to
perform operations without any overflow problem. The modular software infrastructure
library’s source codes and efficient implementations are available at https://github.-com/
hsatilmis/modular-_software_library (accessed on 2 July 2021).

Section 3.1 provides the software features and structures of the efficient implementa-
tions of GaussSieve, ProGaussSieve, ENUM, and BKZ developed using the software library.

3.1. The GaussSieve and the ProGaussSieve Implementations

The efficient implementations of the GaussSieve and the ProGaussSieve algorithms,
which are developed by using the modular software library as an infrastructure, are
constructed by using the C programming language. In the developed implementations,
variables pointer or double− pointer are used frequently to minimize the delay to access
the data in the memory. The data structures struct provided by the C programming
language are preferred in these implementations for the variables that contain many values,
such as lattice. Since the software library is used as an infrastructure for the efficient
implementations, they are developed under the 64-bit architecture to be compatible with
this library. Therefore, the integer variables are defined in the data type long long int.
Code 3 shows the data structure struct, which defines the array variable (Coord) where
the coordinate values of the basis vectors of the lattice consisting of the integer vectors are
stored, and the variable of the Euclidean norms (Norm2) of these vectors.

Code 3. The data structure for the basis vectors.

s t r u c t vect {
long long i n t Coord [N] ;
unsigned long long i n t Norm2 ;

} ;

The GaussSieve and the ProGaussSieve algorithms frequently compute the vectorial
mathematical operations for each iteration. For this reason, to have efficient implemen-
tations, mathematical operation modules in the modular software infrastructure library
are used. The Gram–Schmidt module in the software library is used in the efficient imple-
mentations to obtain the reduced lattice that the other implementations receive as input
parameters. In Observations 1 and 2, more details are given on the termination crite-
rion and the number of collisions. These are helpful to understand the main idea of the
performance improvements.

Observation 1. In the GaussSieve implementation developed by Micciancio and Voulgaris in [5],
the lattices given as input parameters are randomly generated. In this implementation, it is difficult
to estimate the total number of collisions (the termination criterion) where the shortest vectors of the
randomly generated lattices are found. Furthermore, the shortest vectors of the randomly generated
lattices are unknown, and the accuracy of the shortest vector found by the implementation cannot be
theoretically proven.

Observation 2. It is not easy to determine the total number of collisions, which is the termination
criterion of sieving algorithms [41]. In other words, when a small value is chosen as the termination
criterion, the implementations of sieving algorithms may stop working before they find the shortest
lattice vector. On the other hand, when an enormous value is chosen as the termination criterion,

https://github.-com/hsatilmis/modular-_software_library
https://github.-com/hsatilmis/modular-_software_library


Mathematics 2021, 9, 1618 12 of 19

implementations can continue their work even after finding the shortest lattice vector. As a result,
the implementations can cause unnecessary resource usage.

In Remark 1, the comparison details are given.

Remark 1. To make a logical comparison of the efficient implementations of GaussSieve and
ProGaussSieve with the GaussSieve and the ProGaussSieve implementations in [6] about the run
time complexities, the memory space is used as a termination criterion in this paper. On the other
hand, the use of memory space as a termination criterion provides a different perspective to the
solution of the termination criterion determination problem in sieving algorithms. The memory space
values that implementations in the literature expend upon when they find the shortest vectors are
set as the termination criterion for the efficient implementations of GaussSieve and ProGaussSieve
developed in this paper.

The lattices generated by using the SageMath application are given as the input param-
eters to the efficient implementations in this paper. The efficient implementations return
the shortest vectors as output when consuming the memory spaces are selected as a termi-
nation criterion. Both the efficient implementations in this paper and the implementations
in the literature give the shortest vectors of the input lattices as output within the same
memory spaces.

3.2. The HashSieve Implementation

The efficient implementation of the HashSieve algorithm was developed based on the
HashSieve implementation in [10]. Unlike the HashSieve implementation in [10], the effi-
cient implementation of HashSieve, which uses the modular software infrastructure library,
was built by using the C programming language and by following the 64-bit architecture.

While the efficient implementation of HashSieve was developed, the variables were
defined in structures pointer and double− pointer to reduce the run time of an implemen-
tation. In an efficient implementation, data structures struct are used for variables such as
lattices with different properties. In addition to the data structures struct in the HashSieve
implementation in [10], the structures struct shown in Code 4 are used. The variables in
the data structures struct in Code 4 are defined in structures pointer or double− pointer
to provide faster access to data in the memory. On the other hand, in the HashSieve
implementation in [10], the same variables are defined as standard arrays. This difference
in the defining variables is one of the factors that allow the efficient implementation of
HashSieve to perform better than the HashSieve implementation in [10] regarding the run
time. The data structures struct in Code 4 define the coordinates (matrix, dmatrix) and the
Euclidean norms (matrixNorm, dmatrixNorm) of the data type long long int and double
lattices. As input parameters for the efficient implementation of HashSieve, the lattices
used in the HashSieve implementation in [10] are given. The efficient implementation
of HashSieve outputs the same shortest lattice vectors as the HashSieve implementation
in [10] for the same lattice samples.



Mathematics 2021, 9, 1618 13 of 19

Code 4. The different data structures in the efficient implementation of HashSieve.

s t r u c t matrix {
long long i n t ∗∗ B ;

} ;

s t r u c t matrixNorm {
unsigned long long i n t ∗ Norm2 ;

} ;

s t r u c t dmatrix {
double∗∗ Bs ;

} ;

s t r u c t dmatrixNorm {
double∗ Norm2 ;

} ;

3.3. The ENUM and The BKZ Implementations

The ENUM algorithm is used as a subprocess to find the smallest vector. This cor-
responds to obtaining the new lattice vector in the BKZ reduction algorithm of Schnorr
and Euchner. While implementing the ENUM, the variables are mostly defined in the
structures pointer or double− pointer so that the implementation can have a low run time.
Since the ENUM implementation uses the software library with the 64-bit architecture
as the infrastructure, the integer variables are defined in the long long int data type in
this implementation. For the vector arithmetic, the arithmetic operations modules in the
software library are used. The developed ENUM implementation is added as a module to
the modular software library for Schnorr and Euchner’s efficient implementation of BKZ.

The efficient and practical version of Schnorr and Euchner’s BKZ algorithm is imple-
mented using the modular software library developed in this paper as the infrastructure.
The module of the LLLFP reduction algorithm in the software library used by the BKZ
algorithm as a subprocess is used in the efficient implementation of BKZ. In Observation 3,
the zero vector problem in LLLFP algorithm is defined.

Observation 3. While testing the module in the software library of the LLLFP algorithm, which is
developed based on the LLL reduction algorithm and designed to minimize floating-point errors, the
zero vector problem is encountered. Given some particular lattice examples as input parameters,
the LLLFP module is calculated as the first lattice vector to be a zero vector during the reduction
process. It is not desired situation in the LLLFP algorithm for the first vector in the lattices to be a
zero vector, as the reduction operation cannot proceed correctly due to the zero vector problem.

In Remark 2, the solution for the zero vector problem in LLLFP algorithm is defined.

Remark 2. In [8], to solve the zero vector problem in the LLLFP reduction algorithm, it is proposed
to remove the zero vector from the lattice and to continue the reduction without the zero vector. This
proposed solution is implemented in the LLLFP module in the software library with a slight difference.

The module of the ENUM algorithm in the software library is used as a subprocess in
the efficient implementation of BKZ and to find the smallest element. The Gram–Schmidt
module in the modular software infrastructure library is used to calculate the Gram–
Schmidt constants and the Euclidean norms of Gram–Schmidt reduced lattice vectors used
in the efficient implementation of BKZ developed using the C programming language.
Since the vectorial arithmetic operations are carried out continuously in the BKZ algo-
rithm, the arithmetic operations module in the software library is developed in the BKZ
implementation. In the BKZ implementation developed in accordance with the 64-bit
architecture, the integer variables are defined in the long long int data type. In addition,



Mathematics 2021, 9, 1618 14 of 19

the data structures struct and the structures pointer or double− pointer are commonly used
in the efficient implementation of BKZ.

4. Experimental Results

In this section, we give the details about the experimental results.

4.1. Settings

The efficient implementations and the modular software library were developed and
tested on the x86 solution platform in Visual Studio Community 2017 version 15.9.11.
The compiler’s default compilation options were selected when running the library. The
average run times of the efficient implementations developed in this paper were measured
on a server computer with 2× Intel Xeon E5-2630V4 (20 Core) processors and 64 GB of
RAM hardware.

4.2. Results

By running each efficient implementation at least 1000 times, the average run times
of the implementation were calculated. In Table 2, the average run times are given. Since
the real run times are used in Table 2, the average run times of the implementations in the
literature are not included in this table for comparison.

Table 2. The comparison of the run times of the efficient implementations (n: lattice size, MS: memory
space, and RT: run time).

Efficient Implementations n MS (mb) RT (sec)

GaussSieve

30 0.450264 0.124030

35 0.890092 0.227235

40 1.780020 0.391660

45 3.565036 0.808455

50 7.130300 1.698730

55 14.260128 3.817835

60 28.505092 8.242560

65 57.020392 17.794480

70 114.050484 37.870260

ProGaussSieve

30 0.450264 0.074120

35 0.890092 0.127470

40 1.780020 0.184480

45 3.565036 0.305690

50 7.130300 0.570365

55 14.260128 1.038980

60 28.505092 1.976725

65 57.020392 3.819100

70 114.050484 7.347520

HashSieve v

30 0.008760 0.004100

35 0.185558 0.242220

40 0.438350 0.978350

45 0.927556 4.487940

50 2.145861 24.607380

55 4.771455 122.636160

60 10.554869 558.496300

65 24.262557 3055.551765

70 54.949216 16,309.201660

BKZ

30 - 0.005524

35 - 0.009241

40 - 0.014419

45 - 0.021529

50 - 0.031721

55 - 0.046587

60 - 0.077366

65 - 0.080678

70 - 0.104639



Mathematics 2021, 9, 1618 15 of 19

The lattices randomly generated by the SageMath application were used as input
parameters to test the efficient implementations of GaussSieve and ProGaussSieve. When
the outputs of the efficient implementations of GaussSieve and ProGaussSieve were eval-
uated, it is observed that implementations find the shorter vectors in each iteration and
return the shortest vector possible. By considering the experimental results, the run time
complexities are computed in a big-O notation using real run times. The linear functions
and the curves representing the exponential values of the run time complexities of the
efficient implementations by the lattice sizes are given in Figure 2.

Figure 2. The exponential values of the run time complexities.

In Remark 3, the computation details of the complexity of the GaussSieve and Pro-
GaussSieve are discussed. Note that the complexities are computed with the experimen-
tal results.

Remark 3. The run time complexities of the efficient implementations of GaussSieve and Pro-
GaussSieve were computed using the curve fitting method using the Linear Regression model [42].
The exponential run time complexities were calculated using the real run times in Table 2. The
exponential values are assumed as a linear function (y = an + b). In this context, the linear
function’s approximate values of the constants a and b are estimated by forming the Linear Regres-
sion model. By estimating the values of the constants a and b, the run time complexities of the
efficient implementations were also obtained (considering 2y = 2an+b). As a result, the run time
complexities of the implementations of GaussSieve and ProGaussSieve were found to be 20.21n−9.5

and 20.17n−9, respectively. The run time complexities of the efficient implementations and the
implementations in [6] are given in Table 3. The source codes of the Linear Regression model,
which was developed using the scikit-learn module [43] on the Python programming language, are
available at https://github.com/hsatilmis/modular_software_library/-blob/master/(pro)gausssieve_
curve_fitt-ing.ipynb (accessed on 2 July 2021).

https://github.com/hsatilmis/modular_software_library/-blob/master/(pro)gausssieve_curve_fitt-ing.ipynb
https://github.com/hsatilmis/modular_software_library/-blob/master/(pro)gausssieve_curve_fitt-ing.ipynb


Mathematics 2021, 9, 1618 16 of 19

Table 3. The comparison of the run time complexities of the implementations.

Algorithms Implementations Run Time Complexity

GaussSieve
This Paper 20.21n−9.5

[6] 20.52n−22

ProGaussSieve
This Paper 20.17n−9

[6] 20.49n−25

In Remark 4, the performance improvements are discussed.

Remark 4. In the efficient implementations of GaussSieve and ProGaussSieve, the space complexity
values obtained from the results in [6] were used as the termination criterion. Therefore, the efficient
implementations of GaussSieve and ProGaussSieve and the implementations in [6] use the same
memory spaces. According to the experimental results with the small lattice sizes to compare the
run times, the developed implementation for GaussSieve is at least 70% faster than the GaussSieve
implementation in [6]. Moreover, the run time of ProGaussSieve is improved by almost 75%
compared to the Laarhoven and Mariano’s ProGaussSieve implementations in [6].

The lattices used in the HashSieve implementation in [10] are given to the efficient
implementation as input parameters to test the efficient implementation of HashSieve.
The outputs of this efficient implementation were compared with those of HashSieve
implementation, and it is concluded that the efficient implementation works correctly. In
Remark 5, the performance analysis of HashSieve implementation is discussed.

Remark 5. Considering the experimental results for all lattice sizes, the proposed HashSieve
implementation is at least 49% more efficient than Laarhoven’s standard HashSieve implementation
in [10].

The randomly generated lattices using the SageMath application are used as input
parameters to test the efficient implementation of BKZ. Moreover, the same lattice samples
are given as input parameters to the BKZ algorithm in the SageMath. The outputs of the
BKZ algorithm in the SageMath application were compared with those of the efficient
implementation of BKZ. As a result of the comparison, except for some unique lattice
samples given as input, it is observed that the efficient implementation of BKZ gives correct
outputs. In Remark 6, a discussion on the efficiency of run times is given.

Remark 6. There are two main reasons why the efficient implementations of algorithms developed
in this paper have better run times than previous ones.

1. The common subcomponents in the algorithms are used as subprocesses. The algorithms
constantly need common subcomponents during their operations. Hence, the run time of the
implementations is directly affected by the common subcomponents. For this reason, a modular
software library is developed that includes the common subcomponents as modules. During
modular software library development, often, the structures pointer or double− pointer are
used effectively in the variable definitions in the modules. Due to the pointer structures that
provide quick access to the data in the memory, the processing speed of the modules is increased.
Therefore, the run time of efficient implementations, which use the modules as subprocesses,
are improved.

2. In this structure, the vector arithmetic in the lattice is needed. Therefore, the data structures
are needed to define the vectors and the lattice structures in the efficient implementations. To
obtain efficient implementation, the data structures pointer and struct were used. This helps
to quickly access the data and the vector elements.



Mathematics 2021, 9, 1618 17 of 19

5. Conclusions and Future Works

In this paper, a modular software infrastructure library was developed to provide an
infrastructure for efficient implementations of the sieving, enumeration, and reduction
algorithms. Using the modules in this software library, efficient implementations of the
GaussSieve, ProGaussSieve, HashSieve, ENUM, and BKZ algorithms were developed. The
outputs of the efficient implementations developed were compared with those of the im-
plementations in the literature. Moreover, the correctness of the developed implementation
was assessed by comparing the outputs with the previous ones. The run times and the
memory usage of these efficient implementations were provided. The run time complex-
ities of the efficient implementations of GaussSieve and ProGaussSieve were calculated
and compared with examples in the literature. It is concluded that the efficient implemen-
tations of GaussSieve and ProGaussSieve, which use the memory space as a termination
criterion, have better run time complexities than the implementations in the literature.
According to the experimental results, the efficient implementations of GaussSieve and
ProGaussSieve are at least 70% and 75% more efficient in terms of run time than previous
ones, respectively. Finally, the efficient implementation of HashSieve is at least 49% more
efficient in terms of the run time than the sample in the literature that is used as its basis
during the development. In future studies, we aim to develop parallel versions of the
implementations developed in this paper in order to be more efficient.

Author Contributions: Conceptualization, methodology, and investigation: H.S. and S.A., writing—
original draft preparation and writing—review and editing: H.S., S.A. and C.-C.L. All authors have
read and agreed to the published version of the manuscript.

Funding: H. Satılmış and S. Akleylek were partially supported by TÜBİTAK under grant
no.EEEAG-117E636.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The date can be found at https://github.com/hsatilmis/modular_
software_library (accessed on 2 July 2021). https://github.com/hsatilmis/modular_software_
library/blob/master/(pro)gausssieve_curve_fitting.ipynb (accessed on 2 July 2021).

Acknowledgments: We the associate editor and the anonymous reviewers for their suggestions,
which improved not only the readability and organization but also the quality of the paper.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the
manuscript; or in the decision to publish the results.

References
1. Bernstein, D.J. Introduction to post-quantum cryptography. In Post-Quantum Cryptography; Springer: Berlin/Heidelberg,

Germany, 2009; pp. 1–14.
2. Shor, P.W. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings of the 35th Annual

Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 199 ; IEEE: Piscataway, NJ, USA, 1994;
pp. 124–134.

3. Aghili, S.F.; Mala, H. Security analysis of an ultra-lightweight RFID authentication protocol for m-commerce. Int. J. Commun.
Syst. 2019, 32, e3837. [CrossRef]

4. Aghili, S.F.; Mala, H.; Schindelhauer, C.; Shojafar, M.; Tafazolli, R. Closed-loop and open-loop authentication protocols for
blockchain-based IoT systems. Inf. Process. Manag. 2021, 58, 102568. [CrossRef]

5. Micciancio, D.; Voulgaris, P. Faster exponential time algorithms for the shortest vector problem. In Proceedings of the Twenty-First
Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, USA, 17–19 January 2010; SIAM: Philadelphia, PA, USA,
2010; pp. 1468–1480.

6. Laarhoven, T.; Mariano, A. Progressive lattice sieving. In Proceedings of the International Conference on Post-Quantum
Cryptography, Fort Lauderdale, FL, USA, 9–11 April 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 292–311.

7. Schnorr, C.P.; Euchner, M. Lattice basis reduction: Improved practical algorithms and solving subset sum problems. In
Proceedings of the International Symposium on Fundamentals of Computation Theory, Gosen, Germany, 9–13 September 1991;
Springer: Berlin/Heidelberg, Germany, 1991; pp. 68–85.

https://github.com/hsatilmis/modular_software_library
https://github.com/hsatilmis/modular_software_library
https://github.com/hsatilmis/modular_software_library/blob/master/(pro)gausssieve_curve_fitting.ipynb
https://github.com/hsatilmis/modular_software_library/blob/master/(pro)gausssieve_curve_fitting.ipynb
http://doi.org/10.1002/dac.3837
http://dx.doi.org/10.1016/j.ipm.2021.102568


Mathematics 2021, 9, 1618 18 of 19

8. Schnorr, C.; Euchner, M. Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems. Math.
Program. 1994, 66, 181–199. [CrossRef]

9. Laarhoven, T.; de Weger, B. Faster sieving for shortest lattice vectors using spherical locality-sensitive hashing. In Proceedings of
the International Conference on Cryptology and Information Security in Latin America, Guadalajara, Mexico, 23–26 August 2015;
Springer: Berlin/Heidelberg, Germany, 2015; pp. 101–118.

10. Laarhoven, T. Sieving for shortest vectors in lattices using angular locality-sensitive hashing. In Proceedings of the Annual
Cryptology Conference, Santa Barbara, CA, USA, 16–20 August 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–22.

11. Ajtai, M.; Kumar, R.; Sivakumar, D. A sieve algorithm for the shortest lattice vector problem. In Proceedings of the Thirty-Third
Annual ACM Symposium on Theory of Computing, Hersonissos, Greece, 6–8 July 2001; ACM: New York, NY, USA, 2001;
pp. 601–610.

12. Nguyen, P.Q.; Vidick, T. Sieve algorithms for the shortest vector problem are practical. J. Math. Cryptol. 2008, 2, 181–207.
[CrossRef]

13. Charikar, M.S. Similarity estimation techniques from rounding algorithms. In Proceedings of the Thiry-Fourth Annual ACM
Symposium on Theory of Computing, Montreal, QC, Canada, 19–21 May 2002; ACM: New York, NY, USA, 2002; pp. 380–388.

14. Qi, J.Y.; Gang, H.H. Using K-Means LSH to Speed up Solving the Shortest Vector Problem. J. Cryptogr. Res. 2020, 7, 473. [CrossRef]
15. Shoup, V.; others. NTL: A Library for Doing Number Theory. 2001. Available online: http://www.shoup.net/ntl (accessed on

2 July 2021).
16. Milde, B.; Schneider, M. A parallel implementation of GaussSieve for the shortest vector problem in lattices. In Proceedings of the

International Conference on Parallel Computing Technologies, Kazan, Russia, 19–23 September 2011; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 452–458.

17. Ishiguro, T.; Kiyomoto, S.; Miyake, Y.; Takagi, T. Parallel Gauss sieve algorithm: Solving the SVP challenge over a 128-dimensional
ideal lattice. In Proceedings of the International Workshop on Public Key Cryptography, Buenos Aires, Argentina, 26–28 March
2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 411–428.

18. Mariano, A.; Timnat, S.; Bischof, C. Lock-free GaussSieve for linear speedups in parallel high performance SVP calculation. In
Proceedings of the 2014 IEEE 26th International Symposium on Computer Architecture and High Performance Computing, Paris,
France, 22–24 October 2014; IEEE: Piscataway, NJ, USA 2014; pp. 278–285.

19. Yang, S.Y.; Kuo, P.C.; Yang, B.Y.; Cheng, C.M. Gauss sieve algorithm on GPUs. In Proceedings of the Cryptographers’ Track at the
RSA Conference, San Francisco, CA, USA, 14–17 February 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 39–57.

20. Falcao, G.; Cabeleira, F.; Mariano, A.; Paulo Santos, L. Heterogeneous Implementation of a Voronoi Cell-Based SVP Solver. IEEE
Access 2019, 7, 127012–127023. [CrossRef]

21. Kannan, R. Improved algorithms for integer programming and related lattice problems. In Proceedings of the Fifteenth Annual
ACM Symposium on Theory of Computing, Boston, MA, USA, 25–27 April 1983; ACM: New York, NY, USA, 1983; pp. 193–206.

22. Fincke, U.; Pohst, M. A procedure for determining algebraic integers of given norm. In Proceedings of the European Conference
on Computer Algebra, London, UK, 28–30 March 1983; Springer: Berlin/Heidelberg, Germany, 1983; pp. 194–202.

23. Gama, N.; Nguyen, P.Q.; Regev, O. Lattice enumeration using extreme pruning. In Proceedings of the Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French Riviera, France, 30 May–3 June 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 257–278.

24. Dagdelen, Ö.; Schneider, M. Parallel enumeration of shortest lattice vectors. In Proceedings of the European Conference on
Parallel Processing, Ischia, Italy, 31 August–3 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 211–222.

25. Correia, F.; Mariano, A.; Proenca, A.; Bischof, C.; Agrell, E. Parallel improved Schnorr-Euchner enumeration SE++ for the CVP
and SVP. In Proceedings of the 2016 24th Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing (PDP), Heraklion, Greece, 17–19 February 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 596–603.

26. Nguyen, P.Q.; Vallée, B. The LLL Algorithm; Springer: Berlin/Heidelberg, Germany, 2010.
27. Gama, N.; Nguyen, P.Q. Predicting lattice reduction. In Proceedings of the Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Istanbul, Turkey, 13–17 April 2008; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 31–51.

28. McGuire, G.; Robinson, O. Lattice Sieving in Three Dimensions for Discrete Log in Medium Characteristic. J. Math. Cryptol. 2020,
15, 223–236. [CrossRef]

29. Hanrot, G.; Pujol, X.; Stehlé, D. Analyzing blockwise lattice algorithms using dynamical systems. In Proceedings of the Annual
Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 447–464.

30. Schnorr, C.P. A hierarchy of polynomial time lattice basis reduction algorithms. Theor. Comput. Sci. 1987, 53, 201–224. [CrossRef]
31. Chen, Y.; Nguyen, P.Q. BKZ 2.0: Better lattice security estimates. In Proceedings of the International Conference on the Theory and

Application of Cryptology and Information Security, Seoul, Korea, 4–8 December 2011; Springer: Berlin/Heidelberg, Germany,
2011; pp. 1–20.

32. Liu, X.; Fang, X.; Wang, Z.; Xie, X. A new parallel lattice reduction algorithm for BKZ reduced bases. Sci. China Inf. Sci. 2014,
57, 1–10. [CrossRef]

33. Correia, F.J.G. Assessing the Hardness of SVP Algorithms in the Presence of CPUs and GPUs. Ph.D. Thesis, Minho University,
Braga, Portugal, 2014.

http://dx.doi.org/10.1007/BF01581144
http://dx.doi.org/10.1515/JMC.2008.009
http://dx.doi.org/10.13868/j.cnki.jcr.000382
http://www. shoup. net/ntl
http://dx.doi.org/10.1109/ACCESS.2019.2939142
http://dx.doi.org/10.1515/jmc-2020-0008
http://dx.doi.org/10.1016/0304-3975(87)90064-8
http://dx.doi.org/10.1007/s11432-013-4967-6


Mathematics 2021, 9, 1618 19 of 19

34. Mariano, A.; Laarhoven, T.; Correia, F.; Rodrigues, M.; Falcao, G. A Practical View of The State-of-The-Art of Lattice-Based
Cryptanalysis. IEEE Access 2017, 5, 24184–24202. [CrossRef]

35. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 8.6). 2019. Available online: https:
//www.sagemath.org (accessed on 2 July 2021).

36. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM (JACM) 2009, 56, 1–40. [CrossRef]
37. Laarhoven, T.; van de Pol, J.; de Weger, B. Solving Hard Lattice Problems and the Security of Lattice-Based Cryptosystems. IACR

Cryptol. EPrint Arch. 2012, 2012, 533.
38. Klein, P. Finding the closest lattice vector when it’s unusually close. In Proceedings of the Eleventh Annual ACM-SIAM

Symposium on Discrete Algorithms, San Francisco, CA, USA, 9–11 January 2000; SIAM: Philadelphia, PA, USA, 2000; pp. 937–941.
39. Raghavan, P.; Tompson, C.D. Randomized rounding: A technique for provably good algorithms and algorithmic proofs.

Combinatorica 1987, 7, 365–374. [CrossRef]
40. Mariano, A.; Bischof, C.; Laarhoven, T. Parallel (probable) lock-free hash sieve: A practical sieving algorithm for the SVP.

In Proceedings of the 2015 44th International Conference on Parallel Processing, Beijing, China, 1–4 September 2015; IEEE:
Piscataway, NJ, USA, 2015; pp. 590–599.

41. Plantard, T.; Schneider, M. Creating a Challenge for Ideal Lattices. IACR Cryptol. EPrint Arch. 2013, 2013, 39.
42. Montgomery, D.C.; Peck, E.A.; Vining, G.G. Introduction to Linear Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 2021.
43. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

http://dx.doi.org/10.1109/ACCESS.2017.2748179
https://www.sagemath.org
https://www.sagemath.org
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1007/BF02579324

	Introduction
	Previous Works
	Motivation and Contribution
	Organization

	Preliminaries
	Mathematical Background
	Common Submodules in Algorithms
	The GaussSieve and the ProGaussSieve Algorithms
	The HashSieve Algorithm
	The ENUM Algorithm
	The BKZ Algorithm

	Modular Software Library
	The GaussSieve and the ProGaussSieve Implementations
	The HashSieve Implementation
	The ENUM and The BKZ Implementations

	Experimental Results
	Settings
	Results

	Conclusions and Future Works
	References

