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Abstract: The new adaptive fault estimation scheme is proposed for a class of hyperbolic partial
differential equations in this paper. The multiplicative actuator and sensor faults are considered. There
are two cases that require special consideration: (1). only one type of fault (actuator or sensor) occurs;
(2). two types of faults occurred simultaneously. To solve the problem of fault estimation, three
challenges need to be solved: (1). No prior information of fault type is known; (2). Unknown faults are
always coupled with state and input; (3). Only one boundary measurement is available. The original
plant is converted to Observer canonical form. Two filters are proposed and novel adaptive laws are
developed to estimate unknown fault parameters. With the help of the proposed update laws, the
true state of the faulty plant can be estimated by the proposed observers composed of two filters. By
selecting a suitable Lyapunov function, it is proved that under unknown external disturbance, the
estimation errors of state parameters and fault parameters decay to arbitrarily small value. Finally,
the validity of the proposed observer and adaptive laws is verified by numerical simulation.

Keywords: observer canonical form; actuator fault; sensor fault; fault estimation; parameter adaptive
laws; partial differential equations

1. Introduction

Process monitoring involving the fault detection and estimation is crucial to process
safety. The existing technology can be divided into three categories: based on mathematical
model, based on data-driven empirical model and fault detection technology combining
empirical model and plant prior information. Data driven method can refer to system iden-
tification areas [1–4], etc. While the mathematical model method has better extrapolation,
and empirical model is more convenient to design. Many works have made important
contributions in the aspect of fault detection: see [5–12]. Those contributions contain
adaptive observer [13,14], sliding mode observer [15]. The recent works [16,17] present
full-order and reduced-order sliding mode observer (SMO) for Markov jump systems.
In [18], the linear matrix inequality (LMI) theory is used to realize the fault estimation of
synchronous actuator and sensor for Markov jump system. On this basis, the stochastic
process model is established, the approximate fault estimation is made, and the time to
failure (TTF) estimation is achieved in [19,20] .

In practical application, robust fault estimation is the key to realize real-time moni-
toring, diagnosis and fault-tolerant control. Many contributions have been made to solve
the related problems. In [21], the augmented system is first configured to contain the
plant state of interest and the augmented state of the fault. An optimization method of
unknown input observer (UIO) based on LMI is proposed to minimize the stability of
the estimation error dynamic and the influence of disturbance. Aiming at the problem of
state estimation and fault estimation for discrete time systems, in [22], a robust estimation
method based on linear matrix inequality (LMI) technique and generalized systems theory
is proposed. An observer design method is proposed in [23] for Takagi-Sugeno fuzzy
systems in the presence of process uncertainties and unexpected failures. Concretely, a
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robust state estimation and fault estimation for all controlled objects are realized by using
UIO technology, augmented system theory and sliding mode control method.

A lot of industrial systems, such as fluid flow and chemical reaction processes, all
exhibit spatio-temporal dynamics, that is, the state of the system is spatial-varying and time-
varying. Hence, the temporal dynamic representation is not suitable for displaying their
behavior, and the observer design is a challenging problem. Moreover, the fault detection
and estimation of space-time systems are more challenging. Most of the existing fault
detection methods are based on modal analysis. For example, [24] uses the modal analysis
technique based method to develop a fault detection observer. Similarly, the work [25]
designs a robust observer to solve the problem of fault detection and state estimation.

The above techniques make use of the model approximation, which results in false
alarm due to model reduction. In [26], an adaptive PDE observer is developed for positive
system to realize fault accommodation. In our recent work [27], two filters are proposed
based on the Luenberger observer, and then novel parameter adaptation laws were pro-
posed to address boundary fault estimation issues.

In this paper, we propose a scheme for state and fault estimation of a linear hyper-
bolic PDE system with unknown disturbances based on the plant observer canonical form.
Unlike [28], where additive faults are considered and some real positive conditions need to
be satisfied, this article considers multiplicative faults. Especially, when the actuator and
sensor fail at the same time, the estimation problem becomes more challenging.

The contributions are as follows:

• The problem of state and fault estimation in two cases is solved: (1). only one type of
fault (sensor or actuator) occurs; (2). the sensor and actuator failed simultaneously.

• By proposing novel transformation, the observer canonical form of the system of interest
is obtained. Consequently, two auxiliary filters are designed, and based on which the
novel adaptation laws are proposed.

• We show that in sense of Lyapunov stability fault parameter estimation converges
exponentially fast.

This paper is organized as follows: Section 2 introduces the system considered and
multiplicative boundary faults. Section 3 describes the design of fault parameter adaptation
law based on the observer canonical form. In Section 4, numerical simulations are performed
to illustrate the validity of the proposed results.

Notation

Given the vector variables v(ξ), ∀ξ ∈ [0, 1] which is spatially varying and continuous,
the following operator is defined:

Hβ[v(ξ)] =
∫ 1

0
eβξ v(ξ)dξ, (1)

where β is a real number, with the derived norm

‖v‖2
β = Hβ

[
vTv

]
=
∫ 1

0
eβξ vT(ξ)v(ξ)dξ. (2)

The integral operator (1) has the following property

2Hβ

[
vvξ

]
= eβv2(1)− v2(0)− β‖v‖2

β, (3)

where vξ represents the derivative of v(ξ) w.r.t the spatial variable ξ. In subsequent sections,

we will write ∂tv(ξ, t) (or vt(ξ, t)) and ∂ξ v(ξ, t) (or vξ(ξ, t)) to stand for ∂v(ξ,t)
∂t and ∂v(ξ,t)

∂ξ ,
respectively.

The norm ‖v‖β is equivalent to the standard L2-norm, namely, there exist positive
constants κ1, κ2 such that

κ1‖v‖β ≤ ‖v‖0 ≤ κ2‖v‖β. (4)
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For brevity, the argument in time and space are often omitted, i.e., ‖u‖ = ‖u(t)‖,
v = v(ζ, t).

2. Problem Statement

We consider the following PDEs:

vt(ξ, t) = vξ(ξ, t) + g(ξ)v(0, t) + φ(t)

+
∫ ξ

0 f (ξ, ζ)v(ζ, t)dζ

+
∫ 1

ξ h(ξ, ζ)v(ζ, t)dζ,

(5)

v(1, t) = u(t), (6)

y(t) = v(0, t) (7)

defined on the domain {t ∈ R+, ξ ∈ (0, 1)}, where g, f and h denote system coefficient
functions, v(ξ, t) ∈ L2(0, 1), ∀(ξ, t) ∈ [0, 1] × R+ stands for the system state, L2(0, 1)
denotes a real Hilbert space with the inner product 〈v1, v2〉 =

∫ 1
0 v1(z)v2(z)dz, ∀v1, v2 ∈

L2(0, 1). As shown in Figure 1, and the sensor output is denoted by y(t), and u(t) stands
for actuator input. φ(t) is an external unknown disturbance satisfying:

Assumption 1. The disturbance φ(t) is bounded:

|φ(t)| ≤ φ̄, ∀t ∈ R+ (8)

where φ̄ is a known constant.

Figure 1. Actuator and sensor fault occurrences.

From Figure 1, the boundary condition and the output can be defined according to
fault occurrence (at t = T0):

Actuator Fault:

v(1, t) =
{

u(t), t < To,
θau(t), t ≥ To,

(9)

Sensor Fault:

y(t) =
{

v(0, t), t < To,
θsv(0, t), t ≥ To,

(10)

where θa and θs denote actuator and sensor faults, respectively, θs ∈ R+ and θa ∈ R.

In practice, due to the obstacle of unknown faults, the information of boundary conditions
v(1, t) and v(0, t) is not available.

In this work, the objective is to estimate the unknown fault during the following fault
occurrences:

[p1]. Actuator fault occurrence (9) after time t = To;
[p2]. Sensor fault occurrence (10) after time t = To;
[p3]. Simultaneous sensor and actuator fault occurrence at time t = To.
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Assumption 2. Fault parameters are assumed to be time-invariant and bounded:

|θa| ≤ θ̄am (11)

θsl ≤ θs ≤ θ̄sm, (12)

with θ̄am > 0, θsl > 0, θ̄sm > 0 as known parameters.

3. Adaptive Estimation Laws

Since the available information is the sensor output y(t) and the input u(t), it is
challenging to address the fault estimation problems. To this end, different strategies will
be proposed based on the cases [p1] , [p2] and [p3].

We define the triangles

TL = {(z, ζ) ∈ [0, 1]× [0, 1], z ≥ ζ}

TU = {(z, ζ) ∈ [0, 1]× [0, 1], z ≤ ζ}

and the spaces VL = C(TL;R) and VU = C(TU ;R).
The considered real process system (called as plant) (5)–(7) is first converted into the

following form:

∂tvo(ξ, t) = ∂ξ vo(ξ, t) + Φ(ξ)vo(0, t) + Ψ(ξ)vo(1, t) +T(φ(t)),
vo(1, t) = θau(t),
y(t) = θsvo(0, t)

(13)

by performing the following transformation and inverse transformation:

v(ξ, t) =
(
Qpo ,qo + IL2

)
[vo(·, t)](ξ) (14)

and
vo(z, t) =

(
Qko ,lo + IL2

)
[v(·, t)](ξ) (15)

with ko, po ∈ VL and lo, qo ∈ VU , IL2 denoting the identity operator on L2(0, 1) and the
operator Qψ1,ψ2 defined by:

Qψ1,ψ2 [m](ξ) =
∫ ξ

0
ψ1(ξ, ζ)m(ζ)dζ +

∫ 1

ξ
ψ2(ξ, ζ)m(ζ)dζ (16)

for all m ∈ L2(0, 1), and ξ ∈ [0, 1] given ψ1 ∈ VL and ψ2 ∈ VU .
In (13), T(φ(t)) =

(
IL2 +Qko ,lo

)
[φ(t)](1), and Φ(ξ) and Ψ(ξ) give the flexibility

to make transformation successful. Here, variables ko, lo satisfy the following set of
kernel equations:

∂ξ ko(ξ, ζ) + ∂ζko(ξ, ζ) = f (ξ, ζ)−Φ(ξ)l(0, ζ)

+
∫ 1

ξ lo(ξ, s) f (s, ζ)ds +
∫ ξ

ζ ko(ξ, s) f (s, ζ)ds

+
∫ ζ

0 ko(ξ, s)h(s, ζ)ds
∀ξ, ζ ∈ [0, 1] s.t. ζ ≤ ξ, ξ 6= 1,

(17)

∂ξ lo(ξ, ζ) + ∂ζ lo(ξ, ζ) = h(ξ, ζ)−Φ(ξ)lo(0, ζ)

+
∫ 1

ζ lo(ξ, s) f (s, ζ)ds +
∫ ζ

ξ lo(ξ, s)h(s, ζ)ds

+
∫ ξ

0 ko(ξ, s)h(s, ζ)ds
∀ξ, ζ ∈ [0, 1] s.t. ξ ≤ ζ

(18)
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with boundary conditions:
lo(0, ζ) = 0, ko(1, ζ) = 0. (19)

From (15) and (19), it follows that

v(0, t) = vo(0, t),
v(1, t) = vo(1, t).

(20)

During the transformation, the terms Φ(ζ) and Ψ(ζ) can be computed:

Ψ(ζ) = lo(ξ, 1), (21)

Φ(ξ) =
(
IL2 +Qko ,lo

)
[g(·)](ξ)− ko(ξ, 0). (22)

Remark 1. Transformations in (14) and (15) is bounded, and let us define k̄o = max
ξ,ζ∈[0,1]

ko(ξ, ζ)

and l̄o = max
ξ,ζ∈[0,1]

lo(ξ, ζ), then we can obtain T(φ(t)) ≤ T̄φ, where T̄φ =
(
1 + k̄o + l̄o

)
φ̄.

3.1. Filters and Non-Adaptive Estimate

We design the following filters:

Λt(ξ, t) = Λξ(ξ, t), Λ(ξ, 0) = Λ0(ξ), ξ ∈ [0, 1], (23)

Λ(1, t) = y(t) (24)

and
Γt(ξ, t) = Γξ(ξ, t), Γ(ξ, 0) = Γ0(ξ), ξ ∈ [0, 1], (25)

Γ(1, t) = u(t), (26)

where Λ0 and Γ0 are the initial conditions of the proposed filers. The explicit solutions to
the filters (23)–(24) and (25)–(26) can be obtained:

Λ(ξ, t) = y(t + ξ − 1), (27)

Γ(ξ, t) = u(t + ξ − 1), (28)

Corresponding to different cases of fault occurrence, we consider the following non-
adaptive state estimates:

c1. (Actuator fault estimation) For the problem [p1]:

v̄o(ξ, t) = θa

(
Γ(ξ, t) +

∫ 1
ξ Ψ(ζ)Γ(1− (ζ − ξ), t)dζ

)
+
∫ 1

ξ Φ(ζ)Λ(1− (ζ − ξ), t)dζ.
(29)

c2. (Sensor fault estimation) For the problem [p2]:

v̄o(ξ, t) = Γ(ξ, t) +
∫ 1

ξ Ψ(ζ)Γ(1− (ζ − ξ), t)dζ

+ 1
θs

∫ 1
ξ Φ(ζ)Λ(1− (ζ − ξ), t)dζ.

(30)

c3. (Simultaneous fault estimation) For the problem [p3]:

v̄o(ξ, t) = θa

(
Γ(ξ, t) +

∫ 1
ξ Ψ(ζ)Γ(1− (ζ − ξ), t)dζ

)
+ 1

θs

∫ 1
ξ Φ(ζ)Λ(1− (ζ − ξ), t)dζ.

(31)
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Lemma 1. We consider the plant (5)–(7) with different fault occurrence, the filters (23)–(26) and
the state estimate v̄o in (29), (30) and (31). After a finite time T = 1, with φ ≡ 0, one will have

v̄o ≡ vo. (32)

Proof. Let us define eµ = vo − v̄o, then we have:

∂teµ(ξ) = ∂ξ eµ(ξ), eµ(1) = 0, (33)

the solution of which is

eµ(ξ, t) =

{
eµ(1− ξ − t, 0), t ≤ 1− ξ

0, t > 1− ξ,
(34)

which directly shows that after T = 1 the eµ ≡ 0, and therefore this completes the proof.

3.2. Adaptive Laws

Motivated by the above results, the following adaptive observers are constructed:

c1. (Healthy State estimation) Healthy case:

v̂o(ξ, t) = Γ(ξ, t) +
∫ 1

ξ Ψ(ζ)Γ(1− (ζ − ξ), t)dζ

+
∫ 1

ξ Φ(ζ)Λ(1− (ζ − ξ), t)dζ,
(35)

ŷ(t) = v̂o(0, t), (36)

ey(t) = y(t)− ŷ(t) (37)

where, ey(t) is the detection residual. v̂o(ξ, t) and ŷ(t) denote estimates of vo(ξ, t) and
y(t), respectively.

c2. (Actuator fault estimation) For the problem [p1]:

v̂o(ξ, t) = θ̂a(t)
(

Γ(ξ, t) +
∫ 1

ξ Ψ(ζ)Γ(1− (ζ − ξ), t)dζ
)

+
∫ 1

ξ Φ(ζ)Λ(1− (ζ − ξ), t)dζ,
(38)

ey(t) = y(t)− ŷ(t) = vo(0, t)− v̂o(0, t) (39)

where θ̂a(t) is the estimate of θa.
c3. (Sensor fault estimation) For the problem [p2]:

v̂o(ξ, t) = Γ(ξ, t) +
∫ 1

ξ Ψ(ζ)Γ(1− (ζ − ξ), t)dζ

+ 1
θ̂s(t)

∫ 1
ξ Φ(ζ)Λ(1− (ζ − ξ), t, )dζ

(40)

ey(t) = y(t)− ŷ(t) = θsvo(0, t)− θ̂s(t)v̂o(0, t), (41)

where θ̂s(t) denotes the estimate of θs.
c4. (Simultaneous fault estimation) For the problem [p3]:

v̂o(ξ, t) = θ̂a(t)
(

Γ(ξ, t) +
∫ 1

z Ψ(ζ)Γ(1− (ζ − ξ), t)dζ
)

+ 1
θ̂s(t)

∫ 1
ξ Φ(ζ)Λ(1− (ζ − ξ), t)dζ,

(42)

ey(t) = y(t)− ŷ(t) = θsvo(0, t)− θ̂s(t)v̂o(0, t). (43)
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3.3. Single Type of Fault Estimation

In this subsection, the adaptive law and the adaptive observer will be proposed to
address the problem of the single type fault estimation, i.e, [p1] and [p2] respectively. In
particular, the output residual ey(t) can be calculated: for actuator fault estimation [p1]
ey(t) = vo(0, t)− v̂o(0, t); for sensor fault estimation [p2] ey(t) = θsvo(0, t)− θ̂s(t)v̂o(0, t).

It is given that only one type of fault happens. In the problem [p1], the following
adaptation law is employed:

˙̂θa(t) = proj[−θ̄am ,θ̄am ]

{
βG[Γ(t)](0)ey(t)−γθ̂a(t)

1+d2 , θ̂a(t)
}

,

θ̂a(0) ∈ [−θ̄am, θ̄am]
(44)

with design parameters β > 0 and γ > 0, where the operator G is defined by

G[Γ(t)](ξ) = Γ(ξ, t) +
∫ 1

ξ
Ψ(ζ)Γ(1− (ζ − ξ), t)dζ (45)

to estimate vo(ξ, t) and y(t). In the problem [p2], the following adaptation law is applied:

˙̂θs(t) = proj[θsl ,θ̄sm ]

{
βG[Γ(t)](0)ey(t)−γθ̂s(t)

1+d2 , θ̂s(t)
}

,

θ̂s(0) ∈ [θsl , θ̄sm]
(46)

to estimate the plant state, with

d2 = µ2(0) + θ2
smµ2(0) + (G[Γ](0))2 (47)

and the projection operator given as:

proj[a,b](η, ω) =


0 if ω = a and η ≤ 0,
0 if ω = b and η ≥ 0,
η otherwise.

(48)

Theorem 1. The adaptive laws (44) and (46) corresponding to actuator and sensor faults, respec-
tively, provide the following properties:∣∣θ̂a(t)

∣∣ ≤ θ̄am, θsl ≤ θ̂s(t) ≤ θ̄sm, t ≥ 0, (49)∣∣θ̃a
∣∣, ∣∣θ̃s

∣∣ ∈ L∞, (50)∣∣∣ ˙̂θa

∣∣∣, ∣∣∣ ˙̂θs

∣∣∣ ∈ L∞ ∩ L2, (51)

ρ ∈ L∞ ∩ L2, (52)

where θ̃a(t) = θa − θ̂a(t) and θ̃s(t) = θs − θ̂s(t) and

ρ =
ey√

1 + d2
(53)

with d2 defined in (47).

Proof. We define a new error signal for actuator and sensor faults, respectively:

µ(ξ) = vo(ξ)−
∫ 1

ξ Φ(ζ)Λ(1− (ζ − ξ))dζ

−θa

(
Γ(ξ) +

∫ 1
ξ Ψ(ζ)Γ(1− (ζ − ξ))dζ

) (54)
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and

µ(ξ) = vo(ξ)−
∫ 1

ξ Φ(ζ)Λ(1−(ζ−ξ))dζ

θs

−Γ(ξ)−
∫ 1

ξ Ψ(ζ)Γ(1− (ζ − ξ))dζ.
(55)

Therefore,
µt(ξ) = µξ(ξ) +T(φ), µ(1) = 0. (56)

(a) Proof part of Actuator fault:

Construct a Lyapunov function candidate:

V1 =
1
ε
‖µ‖2

b +
1

2η
θ̃2

a , (57)

where the design parameters b, ε and η are positive constants. Taking time derivative
of (57) gives:

V̇1 = 2
ε Hb

[
µ∂ξ µ

]
+ 2

ε Hb[µ]T(φ) + θ̃a
˙̃θa

η , (58)

where |T(φ)| ≤ T̄φ. Applying the property (3) and Young’s inequality, plugging the
parameter adaptation law (44), and using −θ̃proj[θ,θ̄](τ, ρ̂) ≤ −θ̃τ yield

V̇1 ≤ 2
ε

(
ebµ2(1)− µ2(0)− b‖µ‖2

b

)
− θ̃a

˙̂θa
η + 2

ε Hb[|µ|]T̄φ

≤ − 2
ε µ2(0)− 2

ε b‖µ‖2
b +

1
ε ‖µ‖

2
b +

1
ε

(
T̄φ

)2

− β
η θ̃a

G[Γ(t)](0)ey(t)
1+d2 + γ

η θ̃a
θ̂a

1+d2

(59)

therein the identity ˙̃θa = − ˙̂θa is employed. Moreover, the inequality

2
ε

Hb[|µ|]T̄φ ≤
1
ε
‖µ‖2

b +
1
ε

(
T̄φ

)2

was used. By combining (38)–(39) and (54), for the actuator fault, one gets:

ey = vo(0)− v̂o(0) = µ(0) + θ̃aG[Γ](0). (60)

Based on the equation (60), one can replace θ̃aG[Γ(t)](0) in (59), inserting θ̂a = θa − θ̃a
and using Cauchy-Schwartz inequality give:

V̇1 ≤ − 2
ε µ2(0)− 1

ε (2b− 1)‖µ‖2
b

− β
η

1
1+d2 e2

y +
β

2η
1

1+d2 µ2(0) + β
2η

1
1+d2 e2

y

− γ
2η

1
1+d2 θ̃2

a +
γ
2η

1
1+d2 θ2

a +
1
ε

(
T̄φ

)2

= −
(

2
ε −

1
1+d2

β
2η

)
µ2(0)− 1

ε (2b− 1)‖µ‖2
b

− 1
1+d2

γ
2η θ̃2

a − 1
1+d2

β
2η e2

y(t) +
1

1+d2
γ
2η θ2

a +
1
ε

(
T̄φ

)2

≤ −2c1V1 + ∆1

(61)

with the positive constant: c1 = 1
2 min{(2b− 1), γ} and

∆1 =
1

1 + d2
γ

2η
θ̄2

am +
1
ε

(
T̄φ

)2, (62)

where we choose the design parameters satisfying

2
ε
>

1
1 + d2

β

2η
, 2b > 1. (63)
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From (62), by choosing large values of η and ε, a small value of γ, then ∆1 becomes
an arbitrarily small positive constant. Based on the inequality (61), when V1(t0) > ∆1

c1

and V1(t) > ∆1
c1

for all t > t0, then V̇1(t) ≤ −c1V1(t), which means V1(t) ≤ V1(t0)e−c1t.

Hence, V1(t) is exponentially decreasing. Then, after a finite time t f =
1
c1

ln
(

c1V1(t0)
∆1

)
, we

get V1(t) ≤ ∆1
c1

, for all t > t f . Integrating (61) from zero to infinity gives ρ ∈ L2. From (60),
we get for t > 1 ∣∣ey

∣∣
√

1 + d2
=
|µ(0)|√
1 + d2

+

∣∣θ̃aG[Γ](0)
∣∣

√
1 + d2

≤ 1 +
∣∣θ̃a
∣∣ |G[Γ](0)|√

1 + d2
(64)

which shows ρ ∈ L∞. From the adaptive law (44), we get

∣∣∣ ˙̂θa

∣∣∣ ≤ β

∣∣ey
∣∣

√
1 + d2

|G[Γ](0)|√
1 + d2

≤ βρ. (65)

(b) Proof part of Sensor fault:

Construct the following Lyapunov candidate

V2 =
1
ε
‖µ‖2

b +
θ̃2

s
2ηθ̄2

sm
(66)

with parameters b > 0, ε > 0 and η > 0. Differentiating V2 w.r.t time along the dynamics
(56), one obtains:

V̇2 = 2
ε Hb

[
µ∂ξ µ

]
+ 2

ε Hb[µ]T(φ) + θ̃s
˙̃θs

ηθ̄2
sm

. (67)

Applying the property (3) and Young’s inequality, substituting the parameter adapta-
tion law (44), and applying−θ̃proj[θ,θ̄](τ, ρ̂) ≤ −θ̃τ, and inserting the parameter adaptation
law (46), one gets:

V̇2 ≤ 2
ε ebµ2(1)− 2

ε µ2(0)− 2
ε b‖µ‖2

b

+ 2
ε Hb[|µ|]T̄φ − θ̃s

˙̂θs
ηθ̄2

sm

≤ − 2
ε µ2(0)− 1

ε (2b− 1)‖µ‖2
b

− βθ̃sG[Γ(t)](0)ey(t)
ηθ̄2

sm

1
1+d2 +

γθ̃s θ̂s
ηθ̄2

sm

1
1+d2 +

1
ε

(
T̄φ

)2,

(68)

where ˙̃θs = − ˙̂θs is used. From (40)–(41) and (55), one obtains:

ey = θsvo(0)− θ̂sv̂o(0) = θsµ(0) + θ̃sG[Γ](0). (69)

Using (69) to replace the nonlinear term θ̃s(t)G[Γ(t)](0) and employing Cauchy-
Schwartz inequality give:

V̇2 ≤ − 2
ε µ2(0)− 1

ε (2b− 1)‖µ‖2
b +

1
ε

(
T̄φ

)2

− 1
1+d2

βe2
y(t)

ηθ̄2
sm
− 1

1+d2
βθsµ(0)ey(t)

ηθ̄2
sm

+ 1
1+d2

γθ̃s(θs−θ̃s)
ηθ̄2

sm

≤ −2c2V2 + ∆2

(70)

with the positive constant c2 = 1
2 min{γ, (2b− 1)} and

∆2 =
1

1 + d2
γ

2η
+

1
ε

(
T̄φ

)2, (71)
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where we choose the design parameters

2
ε
>

1
1 + d2

β

2η
, 2b > 1. (72)

From the inequality (70) and for V2(t0) > K2∆
c2

and V2(t) > K2∆
c2

, ∀t > t0, we have
V̇2(t) ≤ V2(t0)e−c2t, which implies that V2(t) is decreasing exponentially and there exists a
finite time t f =

1
c2

ln
(

c2V2(t0)
K2∆

)
such that V2(t) ≤ K2∆

c2
, ∀t > t f .

Integrating (70) from zero to infinity gives ρ ∈ L2. From (69), we get for t > 1∣∣ey
∣∣

√
1 + d2

=

∣∣θ̄smµ(0)
∣∣

√
1 + d2

+

∣∣θ̃sG[Γ](0)
∣∣

√
1 + d2

≤ 1 +
∣∣θ̃s
∣∣ |G[Γ](0)|√

1 + d2
(73)

which shows ρ ∈ L∞. From the adaptive law (46), we get

∣∣∣ ˙̂θs

∣∣∣ ≤ β

∣∣ey
∣∣

√
1 + d2

|G[Γ](0)|√
1 + d2

≤ βρ. (74)

This completes the proof.

3.4. Simultaneous Faults Estimation

We turn to the most challenging estimation problem [p3]. The problem [p3] includes
cases [p1] and [p2]: [p1] is equivalent to [p3] with θs = 1 while [p2] can be regarded as
[p3] with θa = 1. To solve the problem [p3], it is required to develop coupled parameter
adaptation laws for estimating θa and θs simultaneously.

Let us consider that actuator and sensor faults simultaneously occur to the plant
(5)–(7). We construct the adaptive observer (42) and (43) and the following parameter
adaptation laws:

˙̂θa(t) = proj[−θ̄am ,θ̄am ]

{
βG[Γ(t)](0)ey(t)−γa θ̂a(t)

1+d2 , θ̂a(t)
}

,

θ̂a(0) ∈ [−θ̄am, θ̄am],
(75)

˙̂θs(t) = proj[θsl ,θ̄sm ]

{
βθ̂a(t)G[Γ(t)](0)ey(t)−γs θ̂s(t)

1+d2 , θ̂s(t)
}

,

θ̂s(0) ∈ [θsl , θ̄sm]
(76)

with design parameters β > 0, γa > 0 and γs > 0.

Theorem 2. (Simultaneous fault estimation) The adaptive laws (75) and (76) provide the
following properties: ∣∣θ̂a(t)

∣∣ ≤ θ̄am, θsl ≤ θ̂s(t) ≤ θ̄sm, t ≥ 0, (77)∣∣θ̃a
∣∣, ∣∣θ̃s

∣∣ ∈ L∞, (78)∣∣∣ ˙̂θa

∣∣∣, ∣∣∣ ˙̂θs

∣∣∣ ∈ L∞ ∩ L2, (79)

ρ ∈ L∞ ∩ L2. (80)

Proof. By following the similar steps in Theorem 1, we introduce the following variable:

µ(ξ) = vo(ξ)−
∫ 1

ξ Φ(ζ)Λ(1−(ζ−ξ))dζ

θs

−θa

(
Γ(ξ) +

∫ 1
ξ Ψ(ζ)Γ(1− (ζ − ξ))dζ

)
.

(81)
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Based the equations (42), (43) and (81), the error signal ṽ(ξ) can be expressed:

ṽo(ξ) = vo(ξ)− v̂o(ξ)

= µ(ξ) + θ̃s
θs θ̂s

∫ 1
ξ Φ(ζ)Λ(1− (ζ − ξ))dζ + θ̃aG[Γ](ξ).

(82)

A direct calculation shows that µ also satisfies

µt(ξ) = µξ(ξ) +T(φ), µ(1) = 0. (83)

In addition, the detection residual ey(t) is expressed as:

ey = θsvo(0)− θ̂sv̂o(0)

= θsµ(0) +
(
θs θ̃a + θ̃s θ̂a

)
G[Γ](0).

(84)

We consider a Lyapunov candidate:

V3 =
1
ε
‖µ‖2

b +
θs θ̃2

a
2ηΘ̄2

sm
+

θ̃2
s

2ηΘ̄2
sm

(85)

with parameters b > 0, η > 0 and ε > 0, where Θ̄sm = max
(
θ̄sm, θ̄am

)
. The sensor fault

parameter θs is positive and hence V3 is positive definite. Taking the time derivative of
V3 gives:

V̇3 = 2
ε Hb

[
µ∂ξµ

]
+ 2

ε Hb[µ]T(φ) + θ̃s
˙̃θs

ηΘ̄2
sm

+ θs θ̃a
˙̃θa

ηΘ̄2
sm

. (86)

We use property (3) and Young’s inequality, the adaptation law (75) and (76), and
−θ̃proj[θ,θ̄](τ, ρ̂) ≤ −θ̃τ to obtain:

V̇3 ≤ − 2
ε µ2(0)− (2b−1)

ε ‖µ‖2
b +

1
1+d2

θsγa θ̃a θ̂a
ηΘ̄2

sm
+ 1

1+d2
γs θ̃s θ̂s
ηΘ̄2

sm

− 1
1+d2

β(θs θ̃a+θ̃s θ̂a)G[Γ(t)](0)ey(t)
Θ̄2

sm
+ 1

ε

(
T̄φ

)2.
(87)

According to (84), one can replace
(
θs θ̃a(t) + θ̃s(t)θ̂a(t)

)
G[Γ(t)](0) and apply Cauchy-

Schwartz inequality to obtain:

V̇3 ≤ − 2
ε µ2(0)− (2b−1)

ε ‖µ‖2
b − 1

1+d2
θsγa θ̃2

a
ηΘ̄2

sm
− 1

1+d2
γs θ̃2

s
ηΘ̄2

sm

+ 1
1+d2

γs θ̃sθs
ηΘ̄2

sm
+ 1

1+d2
θsγa θ̃aθa

ηΘ̄2
sm
− 1

1+d2
β(e2

y(t)−θsµ(0)ey(t))
Θ̄2

sm
+ 1

ε

(
T̄φ

)2

≤ −2c3V3(t) + ∆3

(88)

with c3 = 1
2 min{2b− 1, γa, γs} and ∆3 = θ̄smγa

2η
1

1+d2 +
γs
2η

1
1+d2 +

1
ε

(
T̄φ

)2, where θ̄sm/Θ̄sm ≤
1 and θ̄am/Θ̄sm ≤ 1 are used. The design parameters can be chosen:

2
ε
>

1
1 + d2

β

2η
, 2b > 1. (89)

Repeating the similar steps as Theorem 1, we see that after a finite time t f , V3(t) ≤ ∆3
c3

holds. Hence, θ̃s(t) and θ̃a(t) become arbitrarily small.

4. Simulation Results

In this section, we will examine the performance of the proposed method by simulating
the occurrence of different faults [p1], [p2] and [p3].
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We use the system in [29] as a representative system, which is a Korteweg-de Vries
(KdV)-like equation typically describing the dynamics of shallow water wave. The func-
tions in the system are given by

g(ξ) = q +
pl√

o cosh(
√

o)
sinh(

√
o(1− ξ)), (90)

f (ξ, ζ) = − pl cosh(
√

oz) cosh(
√

o(1−ζ))
cosh(

√
o)

+pl cosh(
√

o(ξ − ζ)),
(91)

h(ξ, ζ) = − pl cosh(
√

oξ) cosh(
√

o(1− ζ))

cosh(
√

o)
(92)

with q = 1.25, p = o = 0.1 and l = 10. We formulate the boundary control:

u(t) = Us +
∫ 1

0
ps(1, ζ)v(ζ)dζ (93)

with Us = 50, and the second term is a stabilization term. ps(z, ζ) satisfies the kernel
equation (14) in [30]. Moreover, the initial condition is v(ξ, 0) = 10 sin(πξ) for z ∈ [0, 1].
The actuator and sensor faults are as follows:

θa =


3.5, t > 8,
1 + 2.5(1− e−2(t−5)), t ∈ [5, 8],
1, t ≤ 5,

(94)

θs =


2, t > 6,
1 + (1− e−3(t−5)), t ∈ [5, 6],
1, t ≤ 5.

(95)

Different occurrences with different exogenous disturbance φ(t) are shown in Table 1,
where ‘?’ indicates the fault occurrences and ‘-’ shows no faults.

Table 1. Cases [p1], [p2], [p3] with disturbances φ(t).

Fault θa θs φ(t)

[p1] ? - φ1 = 0.3(cos(2πt) + sin(πt))
[p2] - ? φ2 = cos(πt) + 0.2 sin(1.5πt)
[p3] ? ? φ3 = cos(πt)

4.1. Adaptive Fault Estimation

According to [p1], [p2] and [p3], we formulated the adaptive observers (38)–(43), re-
spectively. Moreover, initial conditions are θ̂a(0) = 1 and θ̂s(0) = 1. The design parameters
are listed in the following table:

4.1.1. Actuator Fault Estimation

We simulate the system in the case of [p1]. The actuator fault occurs at To = 5s and
becomes constant after T = 8s. In Figure 2, the oscillation arises due to the perturbation
φ(t) = φ1 as shown in Table 1. Applying the adaptation law (44) ensures that in Figure 2
the estimate ŷ(t)(0, t) = v̂ (blue dotted line) converges to the measurement y(t)(solid line).
As shown in Figure 3, the estimate θ̂a(t) is exponentially convergent. We also use the
common Lunberger observer (35)–(37), but the estimate ŷx(t) (black dotted line) deviates
from the measurement. Particularly, the mean square error (MSE) is calculated for the
output estimates to show performance.
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Figure 2. Comparison: the measurement y(t), ŷx(t) generated from (35)–(37)with MSE = 24, and
ŷ(t) from (38) and (39) with MSE = 0.14.
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Figure 3. (Upper): The residual exy(t) from (35)–(37), and residual ey(t) from (38) and (39); (Lower):
θa and the estimate θ̂a(t) by (44).

4.1.2. Sensor Fault Estimation

In this subsection, we investigate the performance of the proposed observer (40) and
(41) and the adaptive law (46). We simulate the situation when the same system fails. Sensor
fault occurs at To = 5s, and is kept unchanging after t = 6s. A new external perturbation
φ = φ2 shown in Table 2 effects the system, where ‘?’ indicates the fault occurrences and ‘-’
shows no faults. A comparison between ŷx(t) and ŷ(t) = θ̂s(t)v̂(0, t), see Figures 4 and 5,
where ŷx(t)is generated by the common Lunberger observer (35)–(37) and ŷ(t) is from the
recommended observer (40) and (41). Apparently, the ŷ(t) (blue dashed line) exponentially
converges to the measurement and the resulting residual ey(t) exponentially decays to a
very small value in Figure 5. However, the common Lunberger observer (35)–(37) fails to
give satisfactory results.

Table 2. Fault occurrences, proposed observers, adaptive laws (AL) and design parameters.

Fault Occurrence θa θs Observer AL β γ

[p1] ? - (38)–(39) (44) 91 0.03
[p2] - ? (40)–(41) (46) 12 0.05

γa γs
[p3] ? ? (42)–(43) (75)–(76) 51 0.02 0.07
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Figure 4. The y(t) (solid line), ŷ(t) (blue dash line) from (40) and (41) with MSE = 0.93, and ŷx(t)
(black dash line) from (35)–(37) with MSE ≈ 58.3.

0 5 10 15 20

-20

-10

0

10

20

0 5 10 15 20

1

2

3

4

5

Figure 5. (Upper): The residual exy(t) by (35)–(37), and residual ey(t) by (40) and (41); (Lower): the
fault θs and estimate θ̂s(t) obtained by (46).

4.1.3. Simultaneous Fault Estimation

In this section, we carry out a simulation with the fault [P3]: both actuator and sensor
faults occur at To = 5s and remain unchanged after T = 8s. φ(t) = φ3 is the external
disturbance defined in Table 1. We apply the adaptive observer (42) and (43) and coupling
parameter adaptive law (75) and (76). Expected state estimates v̂(ξ), θ̂a and θ̂s converge
to v(ξ), θa and θs. The results in Figures 6 and 7 directly show the performance of the
proposed method.The observation error generated by the proposed observer (42) and (43)
ṽ(0, t) = v(z, t)− v̂(z, t) and the residual ey(t) attenuates to a very small value around
zero: see the dashed blue line in the Figure 6. However, the common observer (35)–(37) is
unable to provide acceptable estimates as shown in the black dotted line in the Figure 6.
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Figure 6. The residual exy(t) using (35)–(37) with MSE = 143, and ey(t) from (42) and (43) with
MSE = 2.5.
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Figure 7. The faults θa and θs (solid line), and estimates θ̂a(t) by (75) and θ̂s(t) by (76).

5. Conclusions

We propose a strategy to address the estimation problem of a class of linear hyperbolic
PDE systems with single and simultaneous faults and unknown disturbance. The proposed
observer implements state estimation and fault parameter estimation using the boundary
measurement. The detailed observer design results are presented, and the unknown faults
are estimated with parameter adaptation laws. Through numerical simulations, it is shown
that the proposed parameter adaptation laws ensure arbitrarily small errors in the fault
parameter estimation, despite the presence of unknown external disturbances. However,
the common Lunberger observer fails to provide the exact state estimates when facing the
faulty system. This method has the advantages of easy design and strong portability. Once
the observer canonical form can be obtained, it is possible to extend the results of this work
to more complex PDE systems. In this paper, we obtain that the error of fault parameters
and state estimation is ultimately bounded.
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