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Abstract: We investigate a generalization of the equation curl ~w = ~g to an arbitrary number n of
dimensions, which is based on the well-known Moisil–Teodorescu differential operator. Explicit
solutions are derived for a particular problem in bounded domains of Rn using classical operators
from Clifford analysis. In the physically significant case n = 3, two explicit solutions to the div-curl
system in exterior domains of R3 are obtained following different constructions of hyper-conjugate
harmonic pairs. One of the constructions hinges on the use of a radial integral operator introduced
recently in the literature. An exterior Neumann boundary-value problem is considered for the
div-curl system. That system is conveniently reduced to a Neumann boundary-value problem for
the Laplace equation in exterior domains. Some results on its uniqueness and regularity are derived.
Finally, some applications to the construction of solutions of the inhomogeneous Lamé–Navier
equation in bounded and unbounded domains are discussed.
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1. Introduction

In this work, we use Clifford analysis and, for the case n = 3, quaternionic analysis in
the study of inhomogeneous Moisil-Teodorescu systems defined on bounded or unbounded
domains of Rn, n ≥ 3. For higher dimensions, our main goal is to provide an explicit
general solution to the n-dimensional generalization of the equation curl~w = ~g under
certain conditions imposed on the data ~g over bounded Lipschitz domains. Thereafter,
restricting ourselves to the three-dimensional case, we will analyze the div-curl system
without boundary conditions on different classes of exterior domains. When the normal
component of the vector field is also known, one speaks of a Neumann problem; one of
the first papers to address this boundary-value problem was [1] using the fundamental
theorem of vector calculus. Later, the results were extended to exterior domains in [2]
under the condition that |div ~w| and | curl ~w| decay faster that 1/|x|2 as |x| → ∞.

Historically, one of the first works on the application of quaternionic analysis for
elliptic systems in unbounded domains was the article [3]. In that work, weighted Banach
spaces L2,α, Wk,2,α were employed in order to guarantee a good behavior at infinity of
the Teodorescu transform and the Cauchy operator, which are some classical operators in
quaternionic analysis. Unfortunately, the main disadvantage of considering the Teodorescu
transform on unbounded domains in the usual form (that is, using the same Cauchy kernel
En(x) = −x/(σn|x|n) as in the bounded case) is that boundedness is lost in the classical
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integrable spaces Lp(Ω). A different approach was presented in the articles [4–6]. This
approach relies on the use of a perturbation of the Teodorescu transform through the
addition of a monogenic term whose singularity lies outside of the unbounded domain
under consideration. More precisely, the studies in those papers employed modified
Cauchy kernels. Unlike those works, we will employ the usual kernel in the present
manuscript. Moreover, in spite of the fact that the integrability of the integral operators is
not improved, the operators exhibit a good asymptotic behavior at infinity for our purposes.
To that end, we will employ results from [4–6] with modified Cauchy kernels. Indeed, they
are still valid for the present case, only the integrability ranges will be different.

One of the main results presented in this work (Theorem 5) establishes that a weak
solution of the div-curl system in exterior domains star-shaped with respect to (w.r.t.)
infinity has the form

~w(x) = −
∫

Ω−

y− x
4π|y− x|3 div ~w(y) dy +

∫
Ω−

y− x
4π|y− x|3 × curl ~w(y) dy

+
∫ ∞

1
tx× grad ψ0(tx) dy, x ∈ Ω−,

(1)

where

ψ0(x) = −
∫

Ω−

y− x
4π|y− x|3 · curl ~w(y) dy, x ∈ Ω−, (2)

is harmonic in Ω−. In fact, it is this property together with the asymptotic condition
lim|x|→∞ |x|2 grad ψ0(x) = 0 which allow us to construct a general solution with no bound-
ary conditions. The non-uniqueness of the solution is clear. Indeed, if we add the gradient
of a harmonic function in Ω− to Equation (1), then it will have the same divergence
and rotational over all Ω−. Moreover, the solution Equation (1) admits the following
Helmholtz-type decomposition in exterior domains (Corollary 3):

~w = − grad v0 + curl~v, in Ω−. (3)

Here,

v0(x) =
∫

Ω−

div ~w(y)
4π|x− y|dy, (4)

~v(x) =
∫

Ω−

curl ~w(y)
|x− y| dy +

1
2

∫ ∞

1
t|x|2 grad ψ0(tx) dt, (5)

with ψ0 defined in Equation (2). In addition, we obtained a second Helmholtz-type de-
composition for the class of strong local Lipschitz exterior domains in terms of the layer
potentials (Corollary 2):

~w = − grad v0 + curl~v∗, in Ω−, (6)

where v0 is as in Equation (4),

~v∗(x) =
∫

Ω−

curl ~w(y)
|x− y| dy−

∫
∂Ω

2α0(y)η(y)
|x− y| dsy, x ∈ Ω−, (7)

and α0 satisfies

α0(x)− 2 P.V.
∫

∂Ω

y− x
4π|y− x|3 · η(y) α0(y) dsy = tr ψ0(x), x ∈ ∂Ω. (8)

where ψ0 defined in Equation (2). Moreover, div~v∗ = 0.
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Note that in the solenoidal part of both the Helmholtz-type decompositions
Equations (3) and (6), the following operator appears:

curl
∫

Ω−

curl ~w(y)
|x− y| dy =

∫
Ω−

curl ~w(y)× (x− y)
|x− y|3 dy. (9)

Moreover, it coincides with the Biot–Savart operator defined over Ω−. In particular,
when curl ~w = ~j represents the current density, we obtain the Biot–Savart law in electro-
magnetism. This important Biot–Savart operator is also part of a strategic decomposition of
the Teodorescu transform Equations (52) and (53), in which much of our Clifford analysis
is based. More precisely, the operator Equation (9) coincides with the vector part of the
Teodorescu transform T2,Ω applied to curl ~w, that is,

T2,Ω[curl ~w] = curl
∫

Ω−

curl ~w(y)
|x− y| dy =

∫
Ω−

curl ~w(y)× (x− y)
|x− y|3 dy. (10)

Interestingly, the non-uniqueness of these general solutions Equations (3) and (6)
allows us to transform the associated Neumann BVP for the div-curl system into a Neuman
BVP for the Laplacian, with results available in the literature on its existence, regularity
and uniqueness. This gives rise to the main result of Section 6, Theorem 7.

It is worth pointing out that each of the operators appearing in the expression of the
general solution Equation (1) is important an operator from quaternionic analysis. In the
present work, we will frequently employ an important decomposition of the Teodorescu
operator used in [7–9] for bounded domains of R3. In turn, the radial operator appearing in
the last term of Equation (1) was defined in [10,11] as a generalization to exterior domains
of an important family of radial operators. We will talk briefly about this operator at the
beginning of Section 5. In this work, we will express the general solution following a
quaternionic approach. More precisely, we will embed the div-curl system in the algebra
of quaternions and then project this quaternionic solution to a purely vector one without
affecting the system.

The outline of the paper is as follows. In Section 2, we present the notation with
basic theory of Clifford analysis as well as some facts about the regularity of the domain.
In Section 3, a general weak solution of the generalization to n-dimensions of the equation
curl ~w = ~g is provided using an appropriate embedding argument to the Clifford algebra
C l0,n. In Section 4, we present the construction of hyper-conjugate harmonic pairs in
unbounded domains in terms of certain layer potentials and give explicit formulas for a
solution of the div-curl system without boundary conditions for exterior domains satisfying
the strong local Lipschitz condition. In Section 5, we derive another explicit solution of
the div-curl system in exterior domains now under the geometric condition that Ω− is
star-shaped w.r.t. infinity. The construction of this second solution relies on the properties
of a family of radial integral operators restricted to a family of harmonic functions with
good behavior at infinity. In Section 6, we analyze in detail the regularity and asymptotic
behavior of the solution of the div-curl system Equation (1). Thereafter, we adjust this
solution to construct a weak solution of the Neumann BVP of the div-curl system in exterior
domains. Due to the easy handling of the radial operator that appears in the construction
of the general solution (Equation (1)) of the exterior div-curl system, we will thoroughly
analyze and adjust this general solution instead of the other general solution Equation (3)
found in this work (see Theorem 3 for more details).

In Section 7, we found an equivalence between the solutions of the inhomogeneous
Lamé-Navier Equation (113) in elasticity and the solutions of a inhomogeneous div-curl
system (Lemma 1). Later, we apply the results obtained in the previous sections and
provide a weak general solution of the inhomogeneous Lamé-Navier Equation (113).
Moreover, we give explicit solutions in appropriate interior or exterior domain in R3.
We close the section showing that these weak solutions are in fact strong solutions through
an embedding argument.



Mathematics 2021, 9, 1609 4 of 25

2. Preliminaries
2.1. Clifford Algebras

Throughout, we will let δij be the Kronecker delta function. Let us consider the real
Clifford algebra C l0,n generated by the elements e0, e1, e2, · · · , en and e0 = 1, together with
the relation eiej + ejei = −2δij, for i, j = 1, 2, . . . , n. Then, a basis for C l0,n is the set{

e0 = 1, eA = ei1 ei2 · · · eik : A = {i1, i2, · · · ik}, 1 ≤ i1 < i2 < · · · < ik ≤ n
}

. (11)

Define conjugation in C l0,n as ab = ba, ∀a, b ∈ C l0,n. Denote the elements in the real
Clifford algebra as a = ∑A aAeA ∈ C l0,n and define the following projections:

[a]k = ∑
|A|=k

aA eA, 0 ≤ k ≤ n. (12)

As a consequence, an arbitrary element a ∈ C l0,n can be written as

a = [a]0 + [a]1 + · · ·+ [a]n. (13)

Define the scalar, non-scalar, vector, paravector and non-paravector parts of a through
Sc a = [a]0, NSc a = a − Sc a = a − [a]0, Vec a = [a]1 = ∑n

i=1 aiei, Pa a = [a]0 + [a]1,
and NPa a = [a]2 + · · ·+ [a]n, respectively.

Let us embed the (n + 1)-dimensional Euclidean space Rn+1 in C l0,n by identifying
each vector x∗ = (x0, x1, · · · , xn) ∈ Rn+1 with the Clifford paravector x∗ = x0 + ∑n

i=1 xiei.
Sc x∗ = x0 and Vec x∗ = x = ∑n

i=1 eixi ∈ Rn denote the scalar and the vector part of any
arbitrary paravector x∗. In the sequel, Ω = Ω+ ⊂ Rn will be a domain with a sufficiently
smooth boundary ∂Ω, its exterior domain will be denoted by Ω− := R3 \ Ω, and the
elements x ∈ Ω± will be called vectors. We will say that w : Ω± → C l0,n is a C l0,n-valued
function defined in Ω± if

w(x) = ∑
A

wA(x) eA, x ∈ Ω±. (14)

Here, the coordinates wA are real-valued functions defined in Ω±. In particular, para-
vector-valued functions are denoted by g(x) = ∑n

i=0 gi(x)ei. For further information on
Clifford analysis, we refer to the monographs in [12–14]. Meanwhile, for quaternionic
analysis we suggest the monographs in [15,16].

Recall that the Moisil–Teodorescu differential operator is defined as

D =
n

∑
i=1

ei ∂i, (15)

where ∂i represents the partial derivative operator with respect to the variable xi. We say
that w ∈ C1(Ω, C l0,n) is monogenic in Ω if D w = 0 in Ω. Similarly, w ∈ C1(Ω−, C l0,n) is
monogenic in Ω− if D w = 0 in Ω− and |w(x)| → 0 as |x| → ∞.

If 1 < p < ∞, then we let Lp(Ω±,A) be the subspace of integrable functions defined
in Ω± and taking values in A, with the usual norm given by

‖w‖p
Lp(Ω±) =

∫
Ω±
|w|p dσ < ∞. (16)

In particular, in this work we will let A = R,R3,H, C l0,n, with H ∼= C l0,2 the algebra
of quaternions. We define the Clifford version of the Teodorescu transform as (see [14])

TΩ± [w](x) = −
∫

Ω±
En(y− x)w(y) dy, x ∈ Rn, (17)
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where σn is the surface area of the unit sphere in Rn, w ∈ Lp(Ω±, C l0,n) and the Cauchy
kernel En is given by

En(x) = − x
σn|x|n

, x ∈ Rn \ {0}. (18)

In the bounded case, the function TΩ is defined as TΩ : Lp(Ω, C l0,n)→W1,p(Ω, C l0,n),
for each 1 < p < ∞ (see [13,14]). Meanwhile, TΩ− : Lp(Ω−, C l0,n) → W1,p(Ω−, C l0,n) in
the unbounded case, for each 3/2 < p < ∞ (see [4,6]). Moreover, TΩ± is a right inverse of
the Moisil–Teodorescu operator D in Ω±, that is, DTΩ± = I in Ω±. Furthermore, TΩ± is
monogenic in Ω∓. Finally, if w ∈ Lp(∂Ω), then the Cauchy operator is defined by

F∂Ω[w](x) =
∫

∂Ω
En(y− x)η(y)w(y) dsy, x ∈ Rn \ ∂Ω, (19)

where ~η is the outward normal vector to ∂Ω.

2.2. Geometric Properties of the Domain

It is well known that many properties of Sobolev spaces depend on the regularity
of the domain. In the present study, we will require some classical Sobolev embedding
theorems and the trace theorem for bounded and unbounded domains. Following [17] [Par.
4.9], we will impose the following condition on the geometry of the domain.

Strong local Lipschitz condition: We say that Ω± satisfies the strong local Lipschitz
condition if there exist positive numbers δ and M, a locally finite open covering Uj of ∂Ω,
a real-valued function f j of n− 1 variables for each j, such that the following conditions
are satisfied:

(i) There exists some R ∈ N with the property so that every collection consisting of R + 1
of the sets Uj has an empty intersection.

(ii) Let Ω±δ = {x ∈ Ω± : dist(x, ∂Ω) < δ}. For every pair of points x, y ∈ Ω±δ such that
|x− y| < δ, there exists j such that

x, y ∈ Vj = {x ∈ Uj : dist(x, ∂Uj) > δ}. (20)

(iii) Each function f j satisfies a Lipschitz condition with constant M.
(iv) For some Cartesian coordinate system (ζ j,1, · · · , ζ j,n) in Uj, the set Ω± ∩Uj is repre-

sented by the inequality
ζ j,n < f j(ζ j,1, · · · , ζ j,n). (21)

For the bounded domain Ω = Ω+, the above requirements reduce to the simpler
condition that Ω has a locally Lipschitz boundary.

Theorem 1 (Trace Theorem [18] [Th. 1.5.1.10]). Let Ω ⊂ Rn be a bounded Lipschitz domain
and 1 ≤ p ≤ ∞. For every u ∈W1,p(Ω,A), the trace of u exists. The trace operator

tr : W1,p(Ω,A)→ Lp(∂Ω,A), tr u = u|∂Ω, (22)

is bounded. Moreover, tr : W1,2(Ω,A) → H1/2(∂Ω,A) is a surjective bounded linear operator
with a continuous right inverse.

In the following, we will always specify the regularity assumptions on ∂Ω which will
be required to employ standard results from the theory of Sobolev spaces. Note that if
Ω− satisfies the strong local Lipschitz condition, then the Sobolev embedding theorem
[17] [Th. 4.12, Part II] assures that Wm,p(Ω−) ⊂ C0(Ω−), for mp > n. In particular,
the strong local Lipschitz condition implies the cone condition (see [17] [Par. 4.6]). Again
by the Sobolev embedding theorem [17] [Part. I], it follows that Wm,p(Ω−) ⊂ C0

B(Ω
−),
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for mp > n. Here, C0
B(Ω

−) is the space of bounded and continuous functions in Ω−.
In particular, if w is harmonic in Ω− and |w(x)| → 0 as |x| → ∞, then

max
x∈Ω−

|w(x)| = max
x∈Ω−∪∂Ω

|w(x)|. (23)

In addition, if w ∈ Wm,p(Ω−), then the trace of w is well defined; moreover, for
all mp > n, it follows that tr w = w|∂Ω ∈ Lp(∂Ω). In summary, in order to ensure the
existence of the trace of functions in unbounded domains, we will work with strong local
Lipschitz domains.

2.3. Clifford Integral Operators

Following the notation of the decomposition used in [7] for the case n = 3, we denote
the component operators of the Teodorescu transform TΩ acting over a Clifford-valued
function w = Sc w + NSc w = w0 + NSc w as follows:

TΩ± [w] = T0,Ω± [NSc w] + T1,Ω± [w0] + T2,Ω± [NSc w]. (24)

Here, the component operators are given by

T0,Ω± [NSc w](x) = Sc TΩ± [w](x) =
∫

Ω±
En(y− x) ·NSc w(y) dy, (25)

T1,Ω± [w0](x) = NSc TΩ± [w0](x) = −
∫

Ω±
En(y− x)w0(y) dy, (26)

T2,Ω± [NSc w](x) = NSc TΩ± [NSc w](x) = −NSc
∫

Ω±
En(y− x)NSc w(y) dy. (27)

Observe that the scalar product in the identity Equation (25) is the product of vectors
in R2n

. Additionally, recall that Sc(ab) = Sc(ab) = a · b, for all a, b ∈ C l0,n. On the other
hand, if n = 3 and w = w0 + ~w is a quaternion-valued function, then the integrand of
T2,Ω reduces to the cross product between En and ~w [7,8]. A similar decomposition of
Equation (24) was also used in [9] for the perturbed Teodorescu transform, whose analysis
allowed to give the explicit form of a right inverse of curl + λ, with λ ∈ C.

The next proposition is a direct consequence of differentiating under the integral sign
and of the standard identity

∇x

(
1

|x− y|n−2

)
=

y− x
|y− x|n . (28)

See [7] [Prop. 3.2] for details of the proof in the particular case n = 3.

Proposition 1. Let w ∈ Lp(Ω±, C l0,n), then

T0,Ω± [NSc w](x) = Sc Dx

∫
Ω±

NSc[w](y)
σn|x− y|n−2 dy (29)

T1,Ω± [w0](x) = Dx

∫
Ω±

w0(y)
σn|x− y|n−2 dy, (30)

T2,Ω± [NSc w](x) = Nsc Dx

∫
Ω±

NSc[w](y)
σn|x− y|n−2 dy. (31)

3. An N-Dimensional Generalization of the Div-Curl System

In this section, we are interested in the analysis of an n-dimensional inhomogeneous
Moisil–Teodorescu system, whose component equations give rise to an n-dimensional
generalization of the div-curl system

D~w = g, in Ω, (32)
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where ~w = ∑n
i=1 wiei is a paravector-valued function with a vanishing scalar part and

g = ∑A gAeA is a C l0,n-valued function. More precisely, we will assume that Sc g = g0 and
NSc g = ∑|A|=2 gA eA = ∑i,j gi,jeiej when n > 3 and g = ∑3

i=0 giei is paravector-valued
when n = 3. By applying the operator D in both sides of Equation (32), we can check that
the condition Sc D[NSc g] = NPa NSc D[NSc g] = 0 is necessary for Equation (32) to have
a solution. On the other hand, observe that ~w solves Equation (32) if and only if ~w is a
solution of

−
n

∑
i=i

∂iwi = g0, (33)

∂iwj − ∂jwi = gij, 1 ≤ i, j ≤ n, (34)

where g0 = Sc g and gij is the coefficient of eiej in the expression of g. Note that the left-hand
side of Equation (33) is the additive inverse of the divergence of ~w. Meanwhile, the left-
hand side of Equation (34) is the generalization of the curl operator to n-dimensions, which
was previously studied in [19]. It is worth mentioning that the main goal in that article was
to find necessary and sufficient conditions to obtain a unique solution ~w ∈ W1,p

0 (Ω,Rn),
which depends continuously on NSc g.

In the present work, we will follow a different approach. More precisely, our approach
will hinge on solving the embedding of Equations (33) and (34) into the Clifford structure
provided by the equivalent Equation (32). The steps of our construction method are
the following:

• Step 1. Find a C l0,n-valued solution to Equation (32) using the Teodorescu transform,
that is, w = TΩ[g].

• Step 2. Proceed then to describe the kernel of the non-paravector component operator
NPa T2,Ω[NSc g] and restrict the right-hand side of Equation (32) to this class.

• Step 3. In turn, our C l0,n-valued solution becomes a paravector-valued solution after
the restriction in Step 2. Afterwards, we use the theory of hyper-conjugate harmonic
pairs in order to construct a paravector and monogenic function whose scalar part
coincides with the scalar part of w given in Step 1.

Proposition 2. If g = g0 + NSc [g] ∈ Lp(Ω, C l0,n), then

(i) T0,Ω[NSc g] is harmonic if and only if Sc [D[NSc g]] = 0.
(ii) Pa T2,Ω[NSc g] is harmonic if and only if Pa NSc [D[NSc g]] = 0.
(ii) NPa T2,Ω[NSc g] is harmonic if and only if NPa NSc [D[NSc g]] = 0.

Proof. Note that, beforehand, TΩ[NSc g] = T0,Ω[NSc g] + T2,Ω[NSc g]. Since DTΩ = I in
Lp(Ω, C l0,n) and ∆ = −DD, we obtain ∆TΩ[NSc g] = −DNSc g. Finally, taking the scalar
part, the paravector part and the non-paravector part of the above-mentioned equation,
we reach the conclusions.

We say that Sc w = w0 and NSc w are hyper-conjugate harmonic pairs in Ω± if
w = w0 + NSc w is monogenic in Ω±. We will illustrate now a way to generate mono-
genic paravector-valued functions when only the scalar part is known. The idea is the
same as that used for the three-dimensional case in [8] [Cor. A.2]. It is worth pointing
out here that this is not the only procedure. colorredSee, for instance, the radial integral
operator used in reference [7] [Prop. 2.3] for star-shaped bounded domains in R3.

The three-dimensional singular Cauchy integral operator

S∂Ω[ϕ](x) = 2 P.V.
∫

∂Ω
En(y− x)η(y)ϕ(y)dsy, x ∈ ∂Ω, (35)
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satisfies both the identity S2
∂Ω = I and the Plemelj–Sokhotski formulas:

n.t.- lim
y→x

F∂Ω[ϕ](x) =
1
2
(±ϕ(x) + S∂Ω[ϕ](x)). (36)

Here, y ∈ Ω±, Ω+ = Ω and Ω− = Rn \Ω. The notation n.t.- means that the limit
must be taken non-tangential. The scalar component operator of S∂Ω acting over scalar
valued functions will be denoted by K0, and it is of particular interest for the scope of this
work. More precisely,

K0[ϕ](x) := 2 P.V.
∫

∂Ω
−En(y− x) · η(y) ϕ(y) dsy. (37)

This scalar operator is well known in harmonic analysis, and it is fundamental in the
classical Dirichlet problem. Moreover, whenever Ω be a bounded Lipschitz domain, then
I + K0 is invertible in Lp(∂Ω) for 2− ε(Ω) < p < ∞ [20], where the value of ε(Ω) depends
only of the Lipschitz character of ∂Ω. Returning to the construction of hyper-conjugate har-
monic pairs, a natural way to construct them is through the Cauchy operator Equation (19),
which generates monogenic functions. More precisely, F∂Ω : Lp(∂Ω)→ Ker D ∩W1,p(Ω).

Proposition 3. Let Ω be a bounded Lipschitz domain in Rn with 2 − ε(Ω) < p < ∞.
If w0 ∈W1,p(Ω,R) is a scalar harmonic function, then w = F∂Ω[2ϕ0], where (I + K0)ϕ0 = tr w0
is monogenic in Ω and Sc w = w0. In other words, w0 and ~w = Vec F∂Ω[2ϕ0] are hyper-conjugate
harmonic pairs.

Proof. Observe that the Plemelj–Sokhotski formula Equation (36) describes the trace of the
Cauchy operator. As a consequence

tr F∂Ω[2ϕ0] =
1
2
(I + S∂Ω)[2ϕ0] = (I + K0)[h0] + Vec S∂Ω[ϕ0]

= tr w0 + Vec S∂Ω[ϕ0].
(38)

By the maximum principle for harmonic functions, we conclude that Sc F∂Ω[2ϕ0] = w0
in Ω, as desired.

As mentioned at the beginning of the present section, the necessary conditions for the
equivalent system Equation (32) to have a solution coincide with the first two hypotheses
on Ω in the following result. Meanwhile, the third boundary hypothesis imposed on NSc g
is used to ensure that the solution has vanishing non-paravector part.

Theorem 2. Let Ω be a bounded Lipschitz domain in Rn with 2− ε(Ω) < p < ∞, and let
g = g0 + ∑|A|=2 gAeA ∈ Lp(Ω). If Sc D[NSc g] = 0 and NPa NSc D[NSc g] = 0 in Ω,
and NPa NSc [ηNSc g] = 0 on ∂Ω, then a weak solution ~w of the n-dimensional div-curl system
in Equations (33) and (34) is given by

~w = T1,Ω[g0] + Pa T2,Ω[NSc g]−Vec F∂Ω[2ϕ0], (39)

where

(I + K0)ϕ0 = tr T0,Ω[NSc g]. (40)

This solution is unique up to the gradient of a scalar harmonic function in Ω. Moreover, in the
case n > 3, we have ~w = −T1,Ω[g0] + Pa T2,Ω[NSc g].
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Proof. In the proof, we will follow Steps 1, 2 and 3 described above. Using Gauss’ theorem
on C l0,n (see [14] [Rmk. A.2.23]), we obtain

T2,Ω[NSc g](x) = −NSc
∫

Ω
∇x

(
1

σn|x− y|n−2

)
NSc g(y) dy

= NSc
(∫

∂Ω

1
σn|x− y|n−2 η(y)NSc g(y) dsy

−
∫

Ω

1
σn|x− y|n−2 D(NSc g)(y) dy

)
, x ∈ Ω.

(41)

By hypothesis, NPa NSc D[NSc g] = 0 in Ω and NPa NSc [ηNSc g] = 0 on ∂Ω.
It follows that NPa T2,Ω[NSc g] = 0 in Ω, as desired. On the other hand, Proposition 2
guarantees that T0,Ω[NSc g] is a scalar harmonic function in Ω. In turn, Proposition 3
implies that F∂Ω[2ϕ0] is monogenic and its scalar part is T0,Ω[NSc g], where Equation (40)
is satisfied. Let ~w = TΩ[g] − F∂Ω[2ϕ0], and note that it is purely vectorial by virtue of
NPa T2,Ω[NPa g] ≡ 0. As a consequence, Equation (39) is reached. Moreover,

D~w = DTΩ[g0 + NSc g]− D(T0,Ω[NSc g] + Vec F∂Ω[2ϕ0]) = g0 + NSc g. (42)

This means that ~w satisfies the equivalent system, Equation (32). The fact that ~w
belongs to the Sobolev space W1,p(Ω,R3) is a direct consequence of the properties of the
Teodorescu and Cauchy operators. Finally, if n > 3, then [NSc g]1 ≡ 0. In turn, this identity
implies that En(x− y) ·NSc g = 0, which means that T0,Ω vanishes in Ω.

Corollary 1. Let Ω and NSc g be as in Theorem 2. Then, a right inverse of the n-dimensional
generalized curl operator is

RΩ+ [NSc g] := Pa T2,Ω[NSc g]−Vec F∂Ω[2ϕ0], (43)

with (I + K0)ϕ0 = tr T0,Ω[NSc g]. Moreover, RΩ+ [NSc g] is divergence-free in Ω. Furthermore,
if n > 3, then RΩ+ [NSc g] = Pa T2,Ω[NSc g].

Proof. Taking g0 = 0 in Equation (39), we readily obtain the expression for the right
inverse of the generalized curl operator. To see if RΩ+ [NSc g] is divergence-free, we will
use the alternative expression

RΩ+ [NSc g] = TΩ[NSc g]− F∂Ω[2ϕ0]. (44)

Since TΩ is the right inverse of D in Ω and F∂Ω is always monogenic in Ω, then

div RΩ+ [NSc g] = −Sc D(TΩ[NSc g]− F∂Ω[2ϕ0]) = −Sc NSc g = 0, in Ω, (45)

which is what we wanted to prove.

Before closing this section, we must point out that Theorem 2 and Corollary 1 general-
ize to n dimensions those results recorded as [8] [Th. A.1] and [8] [Cor. A.3], respectively,
which were valid for bounded Lipschitz domains in R3. On the other hand, as illustrated
in the last part of Theorem 2, this construction is mathematically much more interesting in
the three-dimensional case, needless to say that this is the physically most relevant. In fact,
if n = 3, then the assumptions on NSc g = ~g in Theorem 2 and Corollary 1 that involve
the non-paravector part disappear, while the hypothesis Sc D[NSc g] = 0 becomes the
irrevocable condition that~g has zero divergence. Finally, we point out that the present work
is not the first to make use of Clifford analysis and the construction of hyper-conjugate
harmonic pairs to address inhomogeneous Moisil–Teodorescu systems. A recent work in
which these tools were employed is [21].
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4. Unbounded Domains

From now on, we will restrict our attention to the case n = 3, and analyze the classical
div-curl system in unbounded domains Ω− = R3 \ Ω. To that end, we require some
hypothesis on ∂Ω to guarantee that the operator I − K0 is invertible in Lp(∂Ω,R).

In Section 3, we use the fact that the operator I + K0 is invertible in Lp(∂Ω) for all
2− ε(Ω) < p < ∞, when ∂Ω is Lipschitz. We are interested now in the inversion of the
operator I − K0 in Lp(∂Ω). To analyze in more detail the range of p for which this operator
is invertible, let us define the boundary averaging operator A as

A[ϕ] =
1

σΩ

∫
∂Ω

ϕ(~y) ds~y, (46)

choosing σΩ in such way that A[1] = 1. This operator induces a natural mapping I − A
from Lp(∂Ω,H) to Lp

0 (∂Ω,H), where Lp
0 (·) is the subspace of functions in Lp(·) with a mean

equal to 0. Using the Banach closed range Theorem, it was established in [8] [Prop. 3.3] that
Ker (I − K0) = R on Lp(∂Ω), for all (2+ ε(Ω))/(1+ ε(Ω)) < p < ∞, when Ω is Lipschitz.
Note also that K0 does not interfere with the averaging process: AK0[ϕ0] = A[ϕ0] because

2 P.V.
∫

∂Ω
E(~y−~x) · η(~x) ds~y = 1. (47)

This and [8] [Prop. 3.3]) show that the operator I − K0 sends Lp
0 (∂Ω,R) into itself.

Moreover, this operator has an inverse

(I − K0)
−1 : Lp

0 (∂Ω,R)→ Lp
0 (∂Ω,R), (48)

with (2 + ε(Ω))/(1 + ε(Ω)) < p < ∞ when Ω is Lipschitz, and 1 < p < ∞ when Ω is C1,γ

Lipschitz and γ > 0.
The following result provides an alternative form to complete a scalar-valued har-

monic function to a paravector-valued monogenic function in the exterior domain Ω−.

Proposition 4. Let Ω− satisfy the strong local Lipschitz condition and let 3/m < p < ∞.
If w0 ∈Wm,p(Ω−,R) is a scalar harmonic function in Ω− such that w0(x) = o(1) as |x| → ∞,
then w = F∂Ω[2 f0], where (I − K0) f0 = − tr w0 is monogenic in Ω− and Sc w = w0. In other
words, w0 and ~w = Vec F∂Ω[2 f0] are hyper-conjugate harmonic pairs in Ω−.

Proof. Mimicking the analysis at the end of Section 2.2, we can assure tr w0 ∈ Lp(∂Ω),
for p > 3/m. By using the Plemelj–Sokhotski formula in Ω− Equation (36), we obtain

tr F∂Ω[2 f0] =
1
2
(−2 f0 + S∂Ω[2 f0]) = (K0 − I)[ f0] + Vec S∂Ω[ f0]

= tr w0 + Vec S∂Ω[ f0],
(49)

that is, tr(w0 − Sc F∂Ω[2 f0]) = 0. Moreover,

|F∂Ω[2 f0](x)| =
∣∣∣∣∫

∂Ω
E3(y− x)η(y)2(I − K0)

−1[w0](y) dsy

∣∣∣∣
≤ max

z∈∂Ω

1
|z− x|2

∫
∂Ω
|η(y)2(I − K0)

−1[w0](y)| dsy

≤ 2 max
z∈∂Ω

1
|z− x|2 ‖η‖Lq(∂Ω)‖(I − K0)

−1‖ ‖w0‖Lp(∂Ω),

(50)

where the last inequality comes from the continuity of the operator (I − K0)
−1 in Lp

0 (∂Ω).
Using the asymptotic behavior of w0(x) = o(1) as |x| → ∞ and Equation (50), it follows that
w0 − Sc F∂Ω[2 f0] = o(1) as |x| → ∞. Due to the the uniqueness of the Dirichlet problem
in exterior domains, we readily conclude that Sc F∂Ω[2 f0] = w0. DF∂Ω[2 f0] = 0 in Ω−
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comes from Equation (50) and Cauchy’s integral formula is used for exterior domains [14]
[Th. 7.14].

4.1. Teodorescu Transform over Unbounded Domains

To start with, note that the Teodorescu transform defined previously in Equation (17)
reduces in the three-dimensional case to

TΩ− [w](x) =
∫

Ω−

y− x
4π|y− x|3 w(y) dy, x ∈ R3. (51)

Furthermore, its decomposition is simplified to the expression

TΩ− [w0 + ~w] = T0,Ω− [~w] + T1,Ω− [w0] + T2,Ω− [~w]. (52)

In turn, the operators T0,Ω− , T1,Ω− , T1,Ω− , defined previously in the n-dimensional case
as Equations (25)–(27), respectively, are reduced to the following expressions, respectively:

T0,Ω− [~w](x) = −
∫

Ω−

y− x
4π|y− x|3 · ~w(y) dy = −divx

∫
Ω−

~w(y)
4π|y− x| dy,

T1,Ω− [w0](x) =
∫

Ω−

y− x
4π|y− x|3 w0(y) dy = gradx

∫
Ω−

w0(y)
4π|y− x| dy,

T2,Ω− [~w](x) =
∫

Ω−

y− x
4π|y− x|3 × ~w(y) dy = curlx

∫
Ω−

~w(y)
4π|y− x| dy.

(53)

Note that the last identities in the above expressions of T0,Ω− , T1,Ω− and T2,Ω− are
derived from Proposition 1. Observe that T0,Ω− , T1,Ω− , T2,Ω− are the divergence, gradient and
curl of the Newton potential LΩ− [ϕ](x) =

∫
Ω−(ϕ(y)/|x− y|) dy, respectively. This potential

operator (also known as volume potential) has been extensively studied in various works,
such as [22] [Sec. 2.2] and [23]. In addition to the role that these component operators
have in our construction of solutions for Equation (57), they also provide a lot of analytical
information. For instance, T2,Ω and T2,Ω− are the Biot–Savart operators for bounded and
unbounded domains, respectively.

We recall next some properties of the Teodorescu transform in classical Lp spaces.
As mentioned above, one of the disadvantages of using a kernel without any modification
is that its integrability range is reduced. Indeed, if ε > 0 and Ω−ε = Ω− \ Bε(x), then
E3(x− ·) ∈ Lp(Ω−ε ) for 3/2 < p < ∞ (see [6] [Lem. 2]) in that

|E3(x− y)| ≤ 1
4π|x− y|2 . (54)

Integrating over Ωε yields

∫
Ω−ε
|E3(x− y)|p dy ≤

∫
Ω−ε

(
1

4π|x− y|2

)p
dy ≤ 1

(4π)p

∫ ∞

ε
r−2p+2 dr, (55)

which is finite for p > 3/2. Let w ∈ Lp(Ω−). By utilizing the Fubini–Tonelli theorem,
we obtain ∫

Ω−
|TΩ− [w](x)|p dx ≤

∫
Ω−

∫
Ω−
|E3(x− y)w(y)|p dy dx

≤ Cp

∫
Ω−

∫
Ω−
|w(y)|p |E3(x− y)|p dx dy.

(56)

From the fact that the kernel E3(x − ·) and w belong to Lp(Ω−) for 3/2 < p < ∞,
we readily obtain TΩ− [w] ∈ Lp(Ω−).
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4.2. The Div-Curl System over Unbounded Domains

In this stage, we will give an explicit solution for the Equation (57) on unbounded
domains of R3 satisfying the strong Lipschitz condition with weaker topological constraints.
To that end, we will recall some auxiliary results reported in [7,8,24]. Fortunately, the op-
erator theory needed for the quaternionic integral operators over unbounded domains is
already well developed [4–6]. The novelty now lies in the use of the monogenic completion
method discussed in Proposition 4 via the single layer operators.

Let us consider the div-curl system without boundary conditions

div ~w = g0, in Ω−,

curl ~w = ~g, in Ω−,
(57)

where g0 ∈ Lp(Ω−,R), ~g ∈ Lp(Ω−,R3) and div~g = 0 in Ω−. Note that the equivalence of
the systems in Equations (32)–(34) is readily verified when n = 3. Moreover, the system in
Equation (57) is equivalent to Equation (58)

D~w = −g0 +~g, in Ω−, (58)

Due to the action of the operator D to a vector-valued function, ~w is rewritten in quater-
nionic notation as D~w = −div ~w + curl ~w. In the same way as for the bounded case,
the mentioned equivalence will be the key in the analysis of the exterior div-curl system.

Theorem 3. Suppose that Ω− satisfies the strong local Lipschitz condition and 3/2 < p < ∞.
Let g0 +~g ∈ Lp(Ω−,H) and div~g = 0 in Ω−. Then, a weak solution ~w of the div-curl system
Equation (57) in Ω− is given by

~w = −T1,Ω− [g0] + T2,Ω− [~g] + Vec F∂Ω[2α0], (59)

where (I − K0)α0 = tr T0,Ω− [~g]. This general solution is unique up to the gradient of a harmonic
function in Ω−.

Proof. Proposition 2(i) states that T0,Ω− [~g] is harmonic if and only if div~g = 0. Let us
check first that T0,Ω− [~g] = o(1) as |x| → ∞. Let R > 0 and define Ω−R = Ω− ∩ BR(0).
The restriction of the scalar part of the Teodorescu transform to the bounded domain Ω−R
can be estimated by

|T0,Ω−R
[~g](x)| ≤

(
max
z∈Ω−R

1
4π|x− z|2

)
‖~g‖L1(Ω−R ). (60)

This means that |T0,Ω−R
[~g](x)| → 0 as |x| → ∞. Due to Ω−R → Ω− as R → ∞, we

readily obtain |T0,Ω− [~g](x)| → 0 as |x| → ∞. Now, we will examine the regularity of
T0,Ω− [~g]. To start with, note that

grad T0,Ω− [~g](x) =
∫

Ω−

3

∑
k=1

gk(y)∂xk E3(y− x) dy

=
∫

Ω−

3

∑
k=1

gk(y)
(

ek
|x− y|3 − 3xk

x− y
|x− y|5

)
dy.

(61)

Moreover, for i, j = 1, 2, 3.



Mathematics 2021, 9, 1609 13 of 25

∂j∂iT0,Ω− [~g](x) =
∫

Ω−

(
−3

gi(y)xj

|x− y|5 − 3gj(y)
xi − yi
|x− y|5 −

3δij

|x− y|5
3

∑
k=1

gk(y)xk

)
dy

+
∫

Ω−

(
15

3

∑
k=1

gk(y)xk
(xi − yi)xj

|x− y|7

)
dy.

(62)

By Equations (61) and (62), we can conclude that T0,Ω− [~g] ∈ W2,p(Ω−,R). As a
consequence, by Proposition 4, F∂Ω[−2α0] is monogenic in Ω− and T0,Ω− [~g] = ScF∂Ω[−2α0],
where α0 satisfies (I − K0)α0 = tr T0,Ω− [~g]. It follows that

D
(
T0,Ω− [~g] + Vec F∂Ω[−2α0]

)
= 0, in Ω−. (63)

Using this and the decomposition Equation (52), we obtain

~w = TΩ− [−g0 +~g]− T0,Ω− [~g] + Vec F∂Ω[2α0]

= −T1,Ω− [g0] + T2,Ω− [~g] + Vec F∂Ω[2α0], (64)

is a purely vector solution of Equation (58), whence the conclusion of this result follows.

Note that Equation (59) can be rewritten as

~w = TΩ− [−g0 +~g] + F∂Ω[2α0], (65)

where (I − K0)α0 = tr T0,Ω− [~g]. Define the single layer potential [25] as

M[w](x) =
∫

∂Ω

w(y)
|x− y| dsy, x ∈ R3 \ ∂Ω. (66)

It is worth pointing out that the Cauchy operator evaluated in scalar functions pos-
sesses a decomposition in terms of the operators div and curl [8]. More precisely,

Sc F∂Ω[ϕ0](x) = div M[ϕ0η], (67)

Vec F∂Ω[ϕ0](x) = − curl M[ϕ0η]. (68)

Using the last equation with ϕ0 = 2α0 and (I − K0)α0 = tr T0,Ω− [~g] as above, and replacing
the second and third expressions of Equation (53) in Equation (59), we observe that the
solution of the div-curl system can be rewritten in a way similar to the classic Helmholtz
decomposition theorem. More precisely, we have the following result.

Corollary 2. Under the same hypothesis of Theorem 3, the solution, Equation (59), admits a
Helmholtz-type decomposition of the form

~w = − grad v0 + curl~v, in Ω−, (69)

where

v0(x) =
∫

Ω−

g0(y)
4π|x− y| dy, (70)

~v(x) =
∫

Ω−

~g(y)
|x− y| dy−

∫
∂Ω

2α0(y)η(y)
|x− y| dsy, (71)

and (I − K0)α0 = tr T0,Ω[~g]. Moreover, div~v = 0.

Comparing the decomposition Equation (69) with the classical Helmholtz decompo-
sition on the entire three-dimensional space [26] [p. 166] [27] [Lem. 3.1, 3.2], we readily



Mathematics 2021, 9, 1609 14 of 25

observe that they adopt similar forms. Note that the vector field ~v is divergence-free.
This follows from

div~v = −T0,Ω− [~g]− Sc F∂Ω[2α0] = 0, (72)

which is a consequence of the first equation of Equation (53) and the proof of Theorem 3.

5. Div-Curl System in Exterior Domains

In this section, we derive another explicit solution to the div-curl system Equation (57),
this time using another method to generate hyper-conjugate harmonic pairs. The corner-
stone now is a radial integral operator defined on an infinite ray instead of the integral
equation method provided by the layer potentials.

For the remainder of this manuscript and for the sake of convenience, we will suppose
that Ω is star-shaped w.r.t. the origin. It is worth pointing out that if Ω is star-shaped
w.r.t. any other point, then a simple translation would make it star-shaped w.r.t. the origin.
The radial integral operator mentioned above was recently proposed and firstly analyzed
in [10,11]. There exists an important family of radial integral operators in star-shaped
domains, which takes on the form

Iα[w](x) =
∫ 1

0
tαw(tx) dt, ∀x ∈ Ω, (73)

where usually α > −1. Using standard relations such as ∂w0(tx)/∂t = x · grad w0(tx),
one may readily verify the following relations: div Iα = Iα+1 div; grad Iα = Iα+1 grad;
curl Iα = Iα+1 curl; ∆Iα = Iα+2∆; x · Iα+1[~w] = Iα[x · ~w]; x× Iα+1[~w] = Iα[x× ~w]; Iα[(x ·
grad)w] = (x · grad)Iα[w] and Iα[(x · grad)w] = w− (α+ 1)Iα[w]. This family of operators
plays an important role in the theory of special functions as well as in mathematical physics.
Another interesting application appears in quaternionic analysis when α = 0. Indeed, this
radial integral operator generates harmonic functions

UΩ[u0](x) = I0[Vec(x grad u0)](x) =
∫ 1

0
tx× grad u0(tx) dt, ∀x ∈ Ω, (74)

for each u0 which is a harmonic function in Ω [7] [Prop. 2.3]. Moreover, u0 + UΩ[u0] is
a quaternion-valued monogenic function in Ω. This means that the radial operator UΩ
provides an explicit way to generate hyper-conjugate harmonic pairs in the star-shaped
domain with respect to the origin when the scalar part is known. For convenience, we recall
next the main result of [7].

Theorem 4 (Delgado and Porter [7] [Th. 4.4]). Let Ω be a bounded star-shaped domain.
If div~g = 0 in Ω, and if g = g0 + ~g ∈ Lp(Ω) for 1 < p < ∞, then a general weak solu-
tion of the div-curl system is given by

~w = −T1,Ω[g0] + T2,Ω[~g]−UΩ[T0,Ω[~g]], in Ω. (75)

Moreover, this solution is unique up to the gradient of a harmonic function in Ω.

We now turn our attention to unbounded domains. To start with, note that a similar
radial integral operator Jα acting on functions defined on Ω− = R3 \ Ω was defined
in [10,11], for star-shaped domains Ω. Equivalently, Ω− will be star-shaped w.r.t. infinity,
which means that any infinite ray emanating from x ∈ Ω− is entirely contained in Ω−.
In other words, Ω− is star-shaped w.r.t. infinity if λx ∈ Ω− for all x ∈ Ω− and λ > 1. More
precisely, the following operator preserves the above-mentioned properties of the operator
Iα when it is restricted to a class of functions with a suitable behavior at infinity:

Jα[w](x) = −
∫ ∞

1
tαw(tx) dt, ∀x ∈ Ω−. (76)
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Define the class

A∞(Ω−) := {u0 : Ω− → R : ∆u0 = 0 in Ω− and lim
|x|→∞

|x|2 grad u0(x) = 0}. (77)

Note that this class of scalar-valued harmonic functions is non-empty in that E3(x) =
−x/|x|3 belongs to A∞(Ω−) component-wise. The harmonicity in Ω− is straightforward
in that it is monogenic in R3 \ {0}. Meanwhile, the radiation condition at infinity readily
follows. Indeed, observe that

grad
(
−xi
|x|3

)
= 3

xix
|x|5 −

ei
|x|3 = O

(
1
|x|3

)
, as |x| → ∞, ∀i = 1, 2, 3. (78)

Let us define UΩ− : Har(Ω−,R) ∩A∞(Ω−)→ Har(Ω−,R3) by

UΩ− [w0](x) = J0[Vec x grad w0](x) = −
∫ ∞

1
tx× grad w0(tx) dt, ∀x ∈ Ω−. (79)

We will call UΩ− the exterior monogenic completion operator in light of the next result.

Proposition 5. Let Ω− be star-shaped w.r.t. infinity. Then, the operator UΩ− in Equation (79)
sends Har(Ω−,R) ∩A∞(Ω−) to Har(Ω−,R3). Moreover, for every real-valued harmonic func-
tion w0 ∈ Har(Ω−,R) ∩A∞(Ω−),

D(w0 + UΩ− [w0]) = 0 in Ω−. (80)

In other words, there is a monogenic function w in Ω− such that Sc w = w0.

Proof. Beforehand, note that w0 + UΩ− [w0] satisfies Equation (80) if and only if w0 and
UΩ− [w0] satisfy the div-curl system

div UΩ− [w0] = 0,

curl UΩ− [w0] = − grad w0, in Ω−.
(81)

Using the fact that w0 is harmonic in Ω− and some identities from the vector calculus,
it follows that the following is satisfied for x ∈ Ω−:

div UΩ− [w0](x) = −
∫ ∞

1
div(tx× grad w0(tx)) dt

= −
∫ ∞

1
(curl(tx) · grad w0(tx)− curl(grad w0(tx)) · tx) dt = 0.

(82)

The action of the rotational operator to the integrand of UΩ− [w0] is given by

curl(tx× grad w0(tx)) = tx div(grad w0(tx))− grad w0(tx)div(tx)

+ (grad w0(tx) · grad)xt− (tx · grad) grad w0(tx)

= −2t grad w0(tx)− t(x · grad) grad w0(tx).

(83)

As a consequence,

curl UΩ− [w0](x) =
∫ ∞

1
(2t grad w0(tx) + t(x · grad) grad w0(tx)) dt

=
∫ ∞

1
2t grad w0(tx) + t2 d

dt
(grad w0(tx)) dt

=
∫ ∞

1
2t grad w0(tx) dt + t2 grad w0(tx)

∣∣∞
1

−
∫ ∞

1
2t grad w0(tx) dt.

(84)
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However, limt→∞ t2|x|2 grad w0(tx) = 0 by that hypothesis. We conclude finally that
Equation (84) reduces to − grad w0(x), as desired.

We must mention that the operator Jα played a fundamental role in [10] [Th. 2] to
obtain the general solution of the biharmonic equation. It was also crucial to obtain the
general solution of the div-curl system in exterior domains when the known data g0 and
~g belong to the class of functions A∞(Ω−) component-wise [10] [Th. 3]. Our next result
is more general in that we consider arbitrary integrable functions in Ω− and not only
harmonic functions in the class A∞(Ω−).

Theorem 5. Suppose that Ω is a bounded domain and Ω− is star-shaped w.r.t. infinity. Let
3/2 < p < ∞, g0 + ~g ∈ Lp(Ω−,H) and div~g = 0 in Ω−. Then, a weak solution ~w of the
div-curl system Equation (57) in Ω− is given by

~w = −T1,Ω− [g0] + T2,Ω− [~g]−UΩ− [T0,Ω− [~g]]. (85)

This general solution is unique up to the gradient of a harmonic function in Ω−.

Proof. The proof is similar to that of Theorem 3; only the generation of the monogenic
function whose scalar part coincides with the operator T0,Ω− [~g] changes. Consider

~w = TΩ− [−g0 +~g]−
(
T0,Ω− [~g] + UΩ− [T0,Ω− [~g]]

)
. (86)

By Proposition 2, T0,Ω− [~g] is harmonic in Ω−. To check that T0,Ω− [~g] + UΩ− [T0,Ω− [~g]]
is monogenic in Ω−, it only remains to verify that the hypothesis of Proposition 5 holds.
In other words, we will show that T0,Ω− [~g] belongs to the family of functions in A∞(Ω−):
let Ω−R = Ω− ∩ BR(0) for some R > 0. By Equation (61), then

| grad T0,Ω− [~g](x)| ≤
∫

Ω−

3

∑
i=1

∣∣∣∣gi(y)
(

ei
|x− y|3 − 3xi

x− y
|x− y|5

)∣∣∣∣ dy

≤
3

∑
i=1

(
max
z∈Ω−R

∣∣ ei
|x− z|3 − 3

xi(x− z)
|x− z|5

∣∣ ∫
Ω−R
|gi(y)| dy

)

≤
3

∑
i=1

(
max
z∈Ω−R

1
4π|x− z|3 + max

z∈Ω−R

3|xi|
|x− z|4

)
‖gi‖L1(Ω−R ).

(87)

Using the estimation Equation (87) and letting R → ∞, we obtain grad T0,Ω− [~g] =
O(|x|−3) as |x| → ∞ and

lim
|x|→∞

|x|2 grad T0,Ω− [~g](x) = 0, (88)

which means that the harmonic function T0,Ω− [~g] belongs to the classA∞(Ω−). Proposition 5
establishes now that T0,Ω− [~g] + UΩ− [T0,Ω− [~g]] is monogenic in Ω−. Finally, since this mono-
genic function has the same scalar part as the quaternionic solution TΩ− [g] = T0,Ω− [~g]−
T1,Ω− [g0] + T2,Ω− [~g], then we obtain

~w : = TΩ− [~g]−
(
T0,Ω− [~g] + UΩ− [T0,Ω− [~g]]

)
= −T1,Ω− [g0] + T2,Ω− [~g]−UΩ− [T0,Ω− [~g]]

(89)

satisfies the equivalent system Equation (58), which is what we wanted to establish.

In our derivation of the solution to the exterior div-curl problem Equation (57), we fol-
lowed a path different from the classical works by Girault and Raviart [28]. The present so-
lution hinges on the exterior monogenic completion operator UΩ− defined in Equation (79)
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(which was firstly introduced in [10,11]), and on the properties derived in the present work
for the component operators of

TΩ− [−g0 +~g] = T0,Ω− [~g]− T1,Ω− [g0] + T2,Ω− [~g]. (90)

Corollary 3. Under the hypothesis of Theorem 5, the solution Equation (85) admits a Helmholtz-
type decomposition

~w = − grad v∗0 + curl~v∗, in Ω−, (91)

where

v∗0(x) =
∫

Ω−

g0(y)
4π|x− y| dy, (92)

~v∗(x) =
∫

Ω−

~g(y)
|x− y| dy +

1
2

∫ ∞

1
t|x|2 grad T0,Ω− [~g](tx) dt. (93)

Moreover, div~v∗ is harmonic in Ω−.

Proof. By Equation (53), we obtain

T1,Ω− [w0](x) = gradx

∫
Ω−

w0(y)
4π|y− x| dy, (94)

T2,Ω− [~w](x) = curlx

∫
Ω−

~w(y)
4π|y− x| dy. (95)

Meanwhile, a simple computation shows that

UΩ− [grad T0,Ω− [~g]] = curl
∫ ∞

1
t|x|2 grad T0,Ω− [~g](tx) dt, (96)

which yields Equation (91). On the other hand,

div~v∗ = T0,Ω[~g] +
∫ ∞

1
t~x · grad T0,Ω− [~g](t~x) dt (97)

due to T0,Ω− [~g] being harmonic in Ω−. It only remains to prove that the second term of
Equation (97) is also harmonic in the exterior domain, but this fact is derived from the fact
that x grad T0,Ω− [~g](x) is harmonic in Ω−.

Unfortunately, unlike the Helmholtz-type decomposition given in Equation (69),
the new decomposition, Equation (69), is not divergence-free in the exterior domain Ω−.
Later, in Theorem 7, the regularity of the solution Equation (85) will be analyzed as well as
its asymptotic behavior.

6. Neumann Boundary-Value Problems

In this stage, we will analyze an exterior Neumann boundary-value problem associ-
ated with the div-curl system Equation (57). More precisely, we will check that there exists
a Helmholtz-type solution of the boundary-value problem which preserves the optimal
behavior at infinity whenever g = g0 +~g belongs to Lp(Ω−).

Firstly, note that the normal trace of the solution Equation (85) is well defined. As a
consequence, solving for the following exterior Neumann boundary-value problem gives:

div ~w = g0, in Ω−,

curl ~w = ~g, in Ω−,

~w|∂Ω · η = ϕ0, on ∂Ω,

(98)
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which is equivalent to solving the Neumann boundary-value problem for the Laplace
equation in exterior domains

∆u0 = 0, in Ω−,

∇u0|∂Ω · η = ϕ0 − HΩ− [g]|∂Ω · η, on ∂Ω.
(99)

Here, g = g0 +~g and

HΩ− [g] := −T1,Ω− [g0] + T2,Ω− [~g]−UΩ− [T0,Ω− [~g]] (100)

is the general solution provided by Theorem 5. More precisely, ~w = HΩ− [g] + grad u0
solves Equation (98) if and only if u0 solves Equation (99). It is the non-uniqueness of the
solution of the div-curl system without boundary conditions and the fact that the normal
trace of HΩ− [g] is well defined that allow us to formulate the equivalent Neumann problem
Equation (99).

Theorem 6 (Neudert and von Wahl [27] [Th. 2.1]). Let Ω ⊂ R3 be a bounded domain with a
smooth boundary, let Ω− = R3 \Ω and assume ψ ∈ C0(∂Ω,R). Then, the Neumann boundary-
value problem

∆u0 = 0, in Ω−,

∇u0 · η = ψ, on ∂Ω,

|u0| = O(|x|−1), as |x| → ∞,

|∇u0| = O(|x|−2), as |x| → ∞,

(101)

has a unique solution u0 ∈ C2(Ω−,R) ∩ C1(Ω−,R).

Before introducing the main theorem of this section, we will establish some crucial
results. To start with, we will prove next that the composition of the exterior monogenic
completion operator UΩ− with T0,Ω− [~g] preserves the regularity and asymptotic behavior
of the Teodorescu transform TΩ− .

Proposition 6. Let Ω be a bounded domain and Ω− be star-shaped w.r.t. infinity. Let 3/2 <
p < ∞ and ~g ∈ Lp(Ω−,H). Then UΩ− [T0,Ω− [~g]] ∈ W1,p(Ω−,R3) for each 3/2 < p < ∞,
and UΩ− [T0,Ω− [~g]](x) = O(|x|−2) as |x| → ∞.

Proof. That grad T0,Ω− [~g] = O(|x|−3) as |x| → ∞ follows from Equation (87). This implies
that grad T0,Ω− [~g] ∈ Lp(Ω−), for each 1 < p < ∞. Using Equation (61), we obtain

x× grad T0,Ω− [~g](x) = e1

[
x2

∫
Ω−

(
g3(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x3 − y3

|x− y|5

)
dy

−x3

∫
Ω−

(
g2(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x2 − y2

|x− y|5

)
dy

]

+ e2

[
x3

∫
Ω−

(
g1(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x1 − y1

|x− y|5

)
dy

−x1

∫
Ω−

(
g3(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x3 − y3

|x− y|5

)
dy

]

+ e3

[
x1

∫
Ω−

(
g2(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x2 − y2

|x− y|5

)
dy

−x2

∫
Ω−

(
g1(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x1 − y1

|x− y|5

)
dy

]
.

(102)
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As a consequence, x × grad T0,Ω− [~g](x) = O(|x|−2) as |x| → ∞. By virtue of the
fact that UΩ− [T0,Ω− [~g]] is the radial integral of tx × grad T0,Ω− [~g](tx) in the variable t
over the interval (1, ∞), we readily obtain UΩ− [T0,Ω− [~g]](x) = O(|x|−2) as |x| → ∞.
This implies that UΩ− [T0,Ω− [~g]] ∈ Lp(Ω−,R3), for each 3/2 < p < ∞. The i-th component
of x × grad T0,Ω− [~g] (i = 1, 2, 3) is represented by (x × grad T0,Ω− [~g])i. Without loss of
generality, we will only calculate the asymptotic behavior of grad(x× grad T0,Ω− [~g](x))1.
Taking the e1 component of Equation (102), note that

gradx

[
x2

∫
Ω−

(
g3(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x3 − y3

|x− y|5

)
dy−

x3

∫
Ω−

(
g2(y)
|x− y|3 − 3

3

∑
i=1

xigi(y)
x2 − y2

|x− y|5

)
dy

]

= e1

∫
Ω−

(
−3(x2g3(y)− x3g2(y))

x1

|x− y|5 + 3(x2y3 − x3y2)
g1(y)
|x− y|5

+15
3

∑
i=1

xigi(y)(x3y2 − x2y3)
x1

|x− y|7

)
dy

+ e2

∫
Ω−

(
g3(y)
|x− y|3 + 3(x2y3 − x3y2)

g2(y)
|x− y|5 + 3(x3g2(y)

−x2g3(y))
x2

|x− y|5 + 15
3

∑
i=1

xigi(y)(x2y3 − x3y2)
x2

|x− y|7

)
dy

+ e3

∫
Ω−

(
−g2(y)
|x− y|3 + 3(x2y3 − x3y2)

g3(y)
|x− y|5 + 3(x3g2(y)

−x2g3(y))
x3

|x− y|5 + 15
3

∑
i=1

xigi(y)(x2y3 − x3y2)
x3

|x− y|7

)
dy.

(103)

Thus, grad(x × grad T0,Ω− [~g])i = O(|x|−3) as |x| → ∞, for all i = 1, 2, 3. Since
UΩ− [T0,Ω− [~g]] is the radial integral of tx × grad T0,Ω− [~g](tx) in the variable t over the
interval (1, ∞), we readily obtain grad(UΩ− [T0,Ω− [~g]])i = O(|x|−3) as |x| → ∞, for all
i = 1, 2, 3. We conclude that UΩ− [T0,Ω− [~g]] ∈W1,p(Ω−) for each 3/2 < p < ∞.

Theorem 7. Let Ω be a bounded domain with smooth boundary, let Ω− be star-shaped w.r.t.
infinity, and suppose that Ω− satisfies the strong local Lipschitz condition. Let 3 < p < ∞,
g = g0 + ~g ∈ Lp(Ω−,H), div~g = 0 in Ω− and ϕ0 ∈ C0(∂Ω). Then, the exterior Neumann
boundary-value problem Equation (98) has a unique solution

~w = HΩ− [g] + grad u0, in Ω−, (104)

where HΩ− [g] ∈ W1,p(Ω−,R3) is the general solution described by Theorem 5 and, in turn,
u0 ∈ C2(Ω−,R) ∩ C1(Ω−,R) is the unique solution of the Neumann boundary-value problem
Equation (99). The asymptotic behavior of the solution is ~w(x) = O(|x|−2) as |x| → ∞. Moreover,
if
∫

∂Ω ϕ0 = 0, then u0(x) = O(|x|−2) as |x| → ∞.

Proof. The first part of the proof is reduced to verifying that HΩ− [g]|∂Ω · η ∈ C0(∂Ω) in
light of Theorem 6 and the equivalence between the systems of Equations (98) and (99).
Meanwhile, the uniqueness of solutions of Equation (98) is derived from the uniqueness
of solutions of Equation (99). From Proposition 6, UΩ− [T0,Ω− [~g]] ∈W1,p(Ω−,R3). In turn,
the Sobolev Imbedding Theorem [17] [Th. 4.12, Part II] assures that W1,p(Ω−) ⊂ C0(Ω−),
for p > 3. Consequently, tr UΩ− [T0,Ω− [~g]] ∈ C0(∂Ω), for p > 3. The fact that the remaining
terms of HΩ− [g] in the identity Equation (100) belong to C0(∂Ω) follows from known
properties of the Teodorescu transform—namely, that TΩ− : Lp(Ω−)→W1,p(Ω−).



Mathematics 2021, 9, 1609 20 of 25

Note that grad u0(x) = O(|x|−2) as |x| → ∞ follows from Theorem 6. The fact that
HΩ− [g] = TΩ− [−g0 +~g]− (T0,Ω− [~g] + UΩ− [T0,Ω− [~g]]) satisfies the same decay condition
at infinity results from Proposition 6 (when we obtained that UΩ− [T0,Ω− [~g]](x) = O(|x|−2)
as |x| → ∞) and from the asymptotic behavior of the Teodorescu transform which reads
TΩ− [−g0 + ~g](x) = O(|x|−2) as |x| → ∞. Therefore, ~w(x) = O(|x|−2) as |x| → ∞ as
we desired.

To establish the last part of the proof, note that Vec TΩ− [−g0 + ~g] = −T1,Ω− [g0] +
T2,Ω− [~g] is divergence-free in Ω in that the Teodorescu transform TΩ− is well defined over
all R3 and it is monogenic in Ω. From Equation (82), we have

div UΩ− [T0,Ω− [~g]](x) = −
∫ ∞

1

(
curl(tx) · grad T0,Ω− [~g](tx)

− curl(grad T0,Ω− [~g](tx)) · tx
)

dt

= 0, ∀x ∈ Ω.

(105)

Therefore, HΩ− [g] = −T1,Ω− [g0] + T2,Ω− [~g]−UΩ− [T0,Ω− [~g]] is divergence-free in Ω, and∫
∂Ω

ϕ0 − HΩ− [g]|∂Ω · η = −
∫

Ω
div HΩ− [g] = 0. (106)

By [27] [Lem. 2.2], it follows that u0(x) = O(|x|−2) as |x| → ∞, as needed.

Corollary 4. Under the same hypothesis of Theorem 7, if g0 ≡ 0 and~g ≡ 0 in Ω−, and
∫

∂Ω ϕ0 = 0,
then the solution Equation (107) satisfies ~w(x) = O(|x|−3) as |x| → ∞.

In [27], [Th. 3.2] was given an exhaustively classification of the asymptotic behavior of
the solutions of the Neumann BVP Equation (98) under an appropriate functional setting.
In that work, the authors used the solutions of the div-curl system in the entire three-
dimensional space and correct the boundary values by harmonic vector fields; the second
part is similar to the equivalent BVP Equation (99) considered in this work.

Regularity of the solution: We can apply the Sobolev embedding theorem so that,
if we require a higher regularity for the function g = g0 +~g, then the range in which the
embedding is achieved is improved. If g = g0 +~g ∈ W1,p(Ω−,H), then TΩ− [−g0 +~g] ∈
W2,p(Ω−,H) and UΩ− [T0,Ω− [~g]] ∈W2,p(Ω−,H) (analogous to the proof of Proposition 6).
Consequently, HΩ− [g] ∈ W2,p(Ω−). Observe that up to this step, we have still not used
the extra geometric condition of the domain. If Ω− satisfies the strong local Lipschitz
condition, then W2,p(Ω−) ⊂ C0(Ω−) for p > 3/2 follows from [17] [Th. 4.12, Part II].
Therefore, the range of integrability in the hypotheses of Theorem 7 can be improved from
3 < p < ∞ to 3/2 < p < ∞.

Corollary 5. Let Ω± be as in Theorem 7. If 3/2 < p < ∞, g = g0 +~g ∈W1,p(Ω−,H), div~g = 0
in Ω− and ϕ0 ∈ C0(∂Ω), then the exterior Neumann boundary-value problem Equation (98) has a
unique solution

~w = HΩ− [g] + grad u0, in Ω−, (107)

where HΩ− [g] ∈ W2,p(Ω−,R3) and u0 ∈ C2(Ω−,R) ∩ C1(Ω−,R). Moreover, the asymptotic
behavior of the solution is ~w(x) = O(|x|−2) as |x| → ∞.

Obviously, we can modify the functional framework of our Neumann boundary-
value problem for the div-curl system in the context of weighted Sobolev spaces which,
as shown in [29], gives a correct functional setting to the exterior Neumann problem for the
Laplace equation. This approach was also used to analyzed the regularity of the Teodorescu
transform in exterior domains [3].
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Right Inverse of the Curl and Double Curl Operator

Let us define the subspace of divergence-free Lp- functions Solp(Ω−) as the set
Solp(Ω−) := {~u ∈ Lp(Ω−) : div~u = 0 in Ω−}. Taking g0 ≡ 0 in the general solution
Equation (85), we readily obtain a right inverse operator for the curl operator in exterior
domains whose complement is a star-shaped domain, namely,

R1,Ω− [~g] := T2,Ω− [~g]−UΩ− [T0,Ω− [~g]], ∀~g ∈ Solp(Ω−). (108)

Meanwhile, when Ω− satisfies the strong local Lipschitz condition, the operator

R2,Ω− [~g] := T2,Ω− [~g] + Vec F∂Ω[α0] = TΩ− [~g] + F∂Ω[2α0], (109)

is also a right inverse for the curl operator in Solp(Ω−) when (I − K0)α0 = tr T0,Ω− [~g].
Moreover, both operators are divergence-free invariant in Ω−. Due to the Helmholtz-type
decomposition Equation (91), a right inverse operator of the curl curl operator in exterior
domains of star-shaped domains is given by

S1,Ω− [~g](x) =
∫

Ω−

~g(y)
|x− y| dy

+
1
2

∫ ∞

1
t|x|2 grad T0,Ω− [~g](tx) dt, ∀x ∈ Ω−, ∀~g ∈ Solp(Ω−).

(110)

Similarly, we can obtain a right inverse operator for curl curl by taking g0 = 0 in the
Helmholtz-type decomposition Equation (69). Indeed, if (I − K0)α0 = tr T0,Ω− [~g], then
S2,Ω− : Solp(Ω−)→ Solp(Ω−) defined by

S2,Ω− [~g](x) :=
∫

Ω−

~g(y)
|x− y| dy−

∫
∂Ω

2α0(y)η(y)
|x− y| dsy, ∀x ∈ Ω−, (111)

is also a right inverse of the curl curl operator in exterior domains satisfying the strong
local Lipschitz condition. As a consequence of this discussion, given ~g ∈ Solp(Ω−), there
exists S2,Ω− [~g] ∈W1,p(Ω−) ∩ Solp(Ω−) with the property that

curl curl~S2,Ω− [~g] = ~g, in Ω−,

div~S2,Ω− [~g] = 0, in Ω−.
(112)

7. Lamé–Navier Equation

In this section, we will apply the results obtained in the previous sections in order
to provide an explicit solution to the well known Lamé–Navier problem in elasticity [30].
Let us consider the inhomogeneous Lamé–Navier equation

∆~u +
λ + 2µ

µ
grad div~u = α

(
3λ + 2µ

µ

)
grad T0 +

~Eres

µ
−

~f
µ

, in Ω±, (113)

where λ and µ are known as the first and second Lamé parameters, respectively. The parame-
ters on the right-hand side of Equation (113) have physical significance. For example, T0

denotes the temperature field, ~f represents the body forces, and the residual strain εres
ij

defines the vector field ~Eres as follows:

~Eres =

(
(λ + 2µ)

∂εres
11

∂x1
+ λ

(
∂εres

22
∂x1

+
∂εres

33
∂x1

)
+ 2µ

(
∂εres

12
∂x2

+
∂εres

13
∂x3

))
e1

+

(
(λ + 2µ)

∂εres
22

∂x2
+ λ

(
∂εres

11
∂x2

+
∂εres

33
∂x2

)
+ 2µ

(
∂εres

12
∂x1

+
∂εres

23
∂x3

))
e2

+

(
(λ + 2µ)

∂εres
33

∂x3
+ λ

(
∂εres

11
∂x3

+
∂εres

22
∂x3

)
+ 2µ

(
∂εres

13
∂x1

+
∂εres

23
∂x2

))
e3.

(114)
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It is worth recalling that this system with the right-hand side of Equation (113) equal
to zero was originally introduced by G. Lamé while he was studying the method of
separation of variables for solving the wave equation in elliptic coordinates [31]. Recently,
several works have addressed the homogeneous Lamé–Navier equation using the tools of
quaternionic analysis. For instance, [32,33].

Quaternion algebra was also used in [34] to give an extension of the classical Kolosov–
Muskhelishvili formulas from elasticity to three dimension. This approach is also based on
the classical harmonic potential representation due to Papkovich and Neuber, as well as on
a monogenic representation. In the latter technique, the main tool is the decomposition
of harmonic functions as the sum of a monogenic with an antimonogenic function in the
quaternion setting. For the complete details of this decomposition, see [35]. Here, we will
proceed following a completely different path. In fact, we will show that the solutions of
Equation (113) can be constructed by solving a specific div-curl system whose solutions
are readily at hand with the theory developed herein.

Lemma 1. Let Ω± be a bounded or unbounded domain in R3. Let ~u± satisfy the system

div~u± =
f±0

λ + 2µ
,

curl~u± = −
~f±

µ
, in Ω±,

(115)

with f± = f±0 + ~f± being a quaternionic solution of the inhomogeneous Moisil–Teodorescu system
D f± = ~G in Ω±, and

~G := α

(
3λ + 2µ

µ

)
grad T0 +

~Eres

µ
−

~f
µ

. (116)

Then, ~u± is a solution of the inhomogeneous Lamé–Navier Equation (113) in Ω±, respectively.

Proof. Since ∆~u± = grad div~u±− curl curl~u±, the identity Equation (113) can be rewritten as(
2µ + λ

µ

)
grad div~u± − curl curl~u± = ~G. (117)

Let f± = f±0 + ~f± be a quaternionic solution of the Moisil–Teodorescu system
D f± = ~G in Ω±, respectively. Moreover, f± = TΩ± [~G] + H±, where H± is an arbi-
trary monogenic function in Ω±. Equating the scalar parts of D f± = ~G, we readily obtain
div ~f± = 0 in Ω±, respectively. Now, equating the vector parts of D f± = ~G, we have

grad f±0 + curl ~f± =

(
2µ + λ

µ

)
grad div~u± − curl curl~u± in Ω±.

The conclusion of the result follows now by Equation (115).

If ~G = 0, then f± is monogenic in Ω±, respectively. Moreover, the relation between
the homogeneous Lamé–Navier equation, Equation (113), and the monogenic functions
taking values in the quaternions was first observed by G. Moisil [36]. Using [7] [Th. 4.4] for
star-shaped domains and Theorem 5 for star-shaped domains w.r.t. infinity, we obtain an
explicit solution of the following Lamé–Navier equation, Equation (113).

Theorem 8. Let Ω = Ω+ be a bounded star-shaped domain in R3, and let Ω− = R3 \Ω satisfy
the strong local Lipschitz condition. Let ~G ∈ Lp(Ω±) for 1 < p < ∞ in the bounded case,



Mathematics 2021, 9, 1609 23 of 25

and 3/2 < p < ∞ in the unbounded case. Then a general solution of the Lamé–Navier equation,
Equation (113), is given by

~u+ = −T1,Ω[ f0/(λ + 2µ)]− T2,Ω

[
~f /µ

]
−UΩ+

[
T0,Ω

[
~f /µ

]]
, in Ω, (118)

~u− = −T1,Ω− [h0/(λ + 2µ)]− T2,Ω−
[
~h/µ

]
−UΩ−

[
T0,Ω−

[
~h/µ

]]
, in Ω−, (119)

where f = f0 + ~f = TΩ[~G] + F and h = h0 +~h = TΩ− [~G] + H are quaternionic solutions of the
inhomogeneous Moisil–Teodorescu systems D f = ~G in Ω and Dh = ~G in Ω−, and F and H are
arbitrary monogenic functions in W1,p(Ω±), respectively. Moreover, ~u± ∈W2,p(Ω±), and these
general solutions are unique up to the gradient of a harmonic function in Ω±, respectively.

Proof. By construction, div ~f = div~F = 0 and div~h = div ~H = 0 in Ω−, with ~F and ~H
being the vector parts of the arbitrary monogenic functions in Ω and Ω−, respectively.
It only remains to verify that f and h belong to Lp(Ω+) and Lp(Ω−), for 1 < p < ∞
and 3/2 < q < ∞, respectively. Since TΩ± : Wm,p(Ω±) → Wm+1,p(Ω±) for m ≥ 0,
then f ∈ W1,p(Ω) and h ∈ W1,p(Ω−) for 1 < p < ∞ and 3/2 < p < ∞, respectively.
The result readily follows from Lemma 1 and Theorem 4 for the star-shaped domain
Ω+, and from Lemma 1 and Theorem 5 for the exterior domain Ω−. For the unbounded
case scenario, the regularity of the solution comes from Corollary 5, due to the fact that
~u− = HΩ− [− f0/(λ + 2µ)− ~f /µ]. In the bounded case, the proof of Proposition 6 yields
that UΩ+ = UΩ defined in Equation (74) belongs to W2,p(Ω), as desired.

Theorem 9. Let Ω = Ω+ be a bounded Lipschitz domain, and let Ω− = R3 \ Ω satisfy the
strong local Lipschitz condition. Let ~G ∈ Lp(Ω±) for 2 − ε(Ω) < p < ∞ in the bounded
case, and 3/2 < p < ∞ in the unbounded case. Then, a general solution of the Lamé–Navier
Equation (113) is given by

~u+ = −T1,Ω[ f0/(λ + 2µ)]− T2,Ω

[
~f /µ

]
−Vec F∂Ω

[
2α+0

]
, in Ω, (120)

~u− = −T1,Ω− [h0/(λ + 2µ)]− T2,Ω−
[
~h/µ

]
+ Vec F∂Ω

[
2α−0

]
, in Ω−, (121)

where

(I + K0)α
+
0 = tr T0,Ω[~f /µ], (122)

(I − K0)α
−
0 = tr T0,Ω− [~h/µ], (123)

Here, f = f0 + ~f = TΩ[~G] + F and h = h0 +~h = TΩ− [~G] + H are quaternionic solutions
of the inhomogeneous Moisil–Teodorescu systems D f = ~G in Ω and Dh = ~G in Ω−, and F and H
are arbitrary monogenic functions in Lp(Ω±), respectively. These general solutions are unique up
to the gradient of a harmonic function in Ω±, respectively.

Proof. The result readily follows from Lemmas 1 and [8] [Appendix, Th. A.1] or, alterna-
tively, from the particular case n = 3 of Theorem 2 for the interior domain Ω+, Lemma 1
and Theorem 3 for the exterior domain Ω−.

Note that we can guarantee that the weak solutions ~u± in Theorem 8 are continuous
solutions in Ω±, respectively. Using the Sobolev embedding theorem, W2,p(Ω±) ⊂ C0(Ω±)
for p > 3/2. Alternatively, for p > 3, we reach W2,p(Ω±) ⊂ C1(Ω±):

Corollary 6. Let Ω± as in Theorem 8. Let ~G ∈ Lp(Ω±) and p > 3, assume that Ω has Lipschitz
boundary or Ω− satisfies the strong local Lipschitz condition, respectively. Then the weak solutions
Equation (118) and (119) are strong solutions of the Lamé–Navier equation, Equation (113), in Ω±,
respectively, that is, u± ∈ C1(Ω±).
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Before concluding this work and motivated by one of the reviewers of this work, it is
worth noting that the exterior problems considered here are posed in the complement of a
star-like region. As a consequence, the cohomological aspects that are handled by Hodge
theory are trivial [37]. On the other hand, traditional Hodge theory is usually in the context
of compact manifolds. If one sticks to complements of star-like regions, then operators
such as the UΩ operator introduced above seem to be related to the Poincare homotopy
operator acting on differential forms.
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