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Abstract: We apply the random controllers to stabilize pseudo Riemann-Liouville fractional equa-
tions in MB-spaces and investigate existence and uniqueness of their solutions. Next, we compute
the optimum error of the estimate. The mentioned process i.e., stabilization by a control function
and finding an approximation for a pseudo functional equation is called random HUR stability. We
use a fixed point technique derived from the alternative fixed point theorem (FPT) to investigate
random HUR stability of the Riemann-Liouville fractional equations in MB-spaces. As an application,
we introduce a class of random Wright control function and investigate existence—uniqueness and
Wright stability of these equations in MB-spaces.

Keywords: Riemann-Liouville fractional equation; integro-differential equation; MB-spaces; wright
stability; fixed point method

MSC: 461.05; 47B47; 47H10; 46L57; 39B62

1. Introduction and Preliminaries

We introduce the random control functions that help us to investigate existence,
uniqueness, and random Wright stability of integro-differential equations in MB-spaces.
Some good references for the theory and application of fractional analysis are [1-3].

Wesetl = [0,1],I° = (0,1), R®* = [—o0, 400, J* = [0, +00] and J° = (0, +-00). We
denote the set of distribution distance mappings (DDM) by £. Now, ¢ € X' means
that ¢ is a mapping from R*® to I, written by o+ for o(7), and is left continuous and non-
decreasing on R and also 0y is zero and 0y« = 1. Now, ST C £ consists of all (proper)
mappings o € YT for which /=0« = 1, and £~ ¢; means the left limit at the point 7; for
some more details, see [4-6]. Note that proper DDM’s are the DDM’s of non-negative
random variables (i.e., of those random variables g that a.s. take non-negative real values,

(P({g <0} U{g = o0}) = 0)).

The maximal element in (£F, <) is VY, which is defined by

0,
v%:{ N

Definition 1 ([5,7,8]). A continuous binary operation * :
t-norm) whenever

(@) CxG=¢CxCand {x (kx&) = ({*x)*Cforall (¢ x €1;

iftreR-J°,
if T e J°.

IxI — IisaCTN (continuous
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pDS”(S)

(b)) {x1=Cforalll €T;
() (xx < sk when < andx <« forevery, ', x,«" €L

For instance,

(1) @ xpx = O« (: the product CTN);
(2 O*px=A{D,x} (: the minimum CTN);
(3) Yxpx=V{d+x—1,0} (: the Lukasiewicz CTN).

Definition 2 ([6]). Let * be a CTN, W be a linear space and { : W — St be a DDM-valued
mapping. Now, (W, {, %) is called an MN-space if:

(MN1) (¥ = VY for every T € J° ifand only if w = 0;
(MN2) ¢%% =% foreachw € Wand o # 0in C;
la]

(MN3) g’jg"/ > ¥ ég"’for every w and w' in W and t,¢ € J°.

Here, MB-space represents a complete MN-space [9,10]. In the following, we suppose
that x = x,.

Theorem 1 ([11,12]). Consider the complete J*-valued metric space (S, ) and also consider the
self-map A\ on S such that

5(As, At) < xd(t,s), k <1, where x is a Lipschitz constant.
Assume that s € S, so there are two options:
(I) S(A™s, A"t1s) = 00, Vm €N,

or
(1) there is my € N such that

(1) §(A™s, A" F1s) < oo, Vm > mp;

(2)  the sequence A™s converges to a fixed point t* of A\;

(3) treV={teS|(AMs,t) < oo} isthe unique fixed point of A in V;
4 (1—x)o(tt*) < (t, At) forevery t € V.

2. Riemann-Liouville Fractional Equations

Letu: [p,q] - R (0 < p < g < o) be a continuous function and ¢ > 0 a real number.
We define the Riemann-Liouville fractional integrals of order ¢, by

pIiu(s) = 1,(1‘2) '/;(s —0) lu(o)do, p<s. 1)

Using the definition of Riemann-Liouville fractional integrals, we define the Riemann-
Liouville derivatives as follows:

d\F k—o
= (&) 2 @

k S
- r(kl_g)<;s) /p(S—U)k_Q_lu(a)da, p<s k—1<o<k

Let T be a real positive number. Consider the Riemann-Liouville fractional Volterra
integro-differential equation, defined by

0DLu(s) = a(s,u(s)) + /: K(s,o,u(0))do (©)]

whereo € I°, a0 : [0, T] x W — W, K :[0,T] x [0,T] x W — W.
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In [13], Golet, defined the concept of differentiable functions in an MB-space (W, , *)
and proved that, if the function f : U — (W, {, *) is differentiable in uy € U, it is therefore
continuous in the point .

The Wright function [14,15] is one of the special functions defined by the series
representation, valid in the whole complex plane

e}

Z n!T( nzx—l—,B)

where « > —1 and B € C. In this paper, we define a distribution distance mapping (DDM)
based on Wright functions.

Consider the DDM-valued W, g : [0, T] — ST (&, B € J°), a random control mapping,
which is defined as follows:

( . 0, ifte R—]J°,
wa,ﬁ'r: o —llsll yn . R
”:011!(1"(:17043-15)’ if T € J°.

Then, we have

e It is left continuous and always increasing for positive values, it means that, for
T>0, (Wep); >0

. limr_mo( tx IS) =1

e Fort <0, wehave (W,p5); =0,
And the following conditions also apply to the DDM-valued Wright function

(MN1) We show that (W, )5 = 1iff s = 0.

el ym

@ (=k
= IT(na + B) +g’ F(noc—t—[%) =1

ey
=
=
S~—
-~ ®
I
12
=
~—~
|
=
N
=
I
[N

T 0= [s[| =0 =>s=0

(MN2)

=

s s’ 5
:‘HT”Z Il slisll ||S’||:>T+||S||

G T

_ _ e
Isll _ =1’
T 6

g
2 IS+ lIsll = s +5'll = lIsll(Z) > lls +s

( —ls+sll yn )

[Is + 5| —llsll _ =lls+5'l (-~ e o (=
T TH4g¢ T T T+Hg Z O n'T(na+B) — ; n!l (na + B)

Y

Now, we conclude that

(W p)3is = (Wap)T 5 (Wap); -
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Let DDM-valued ¢ : [0,T] — S* be a random control mapping. We say that (3) is
random HUR stable, when, for a differentiable mapping u(s), satisfying

oDLu(s)—a(s,u
T

so’ua
ST g,

€ [0, T], there is a solution v(s) of Equation (3) such that, for some r > 0,

gfrt(S)—v(S) >y

If we replace the control function ¢ with the DDM-valued Wright function (W, g), we
say that (3) is random Wright stable.

3. Riemann-Liouville Fractional Volterra Integro-Differential Equation

In 2008, Mihet and Radu [16,17] introduced a new method to investigate random
stability in MB-spaces and then some authors used this method to get stability results
for new equations [18-30]. Here, we use the Mihet and Radu method and Theorem 1
to investigate random Wright stability of (3) and improve recent results [31]; we can
suggest [32-34] for more details. We set

B:={u:[0,T] — W, u is differentiable }

and consider ¢ from B x B to J* by
5(1,0) = inf{y € I : PO =0PE) L pO=06) S s e B s € [0,T], T e Jo}.
Z

Theorem 2. J*-valued metric space (B, d) is complete.

Proof. Letting d(u,v) = 0, we have
1nf{]/t € Jo . QDR moPEe(s) ) =20) 5 s vy u e B se[0,T), T e JO} =
u

and so
0DSu(s)—oDiv(s
T

Degr T 2 gt
for all u € J°. Tend y to zero in the above inequality, we get

D DY
0 u(s)—oDsv(s Cr VO
and so

u(s)—o( 0

Ot =Vy

thus, u(s) = v(s) for every s € [0, T], and vice versa. In addition, we have §(u,v) = (v, u)
for every u,v € B. Now, let 6(1,v) = e; € J° and 6(v,w) = e, € J°. Thus, we have
goTDsQu(S)—oDsQU(S) " gg(S)—v(S) > ¢,
€1
and . .
Ds —0Ds —
7o v(s)—oDsw(s) gg(S) w(s) > 1/)5}2
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for every T € J°. Thus, we have

§OD u(s)—gDSw(s) " éru(s)fw(s)

€1+€2)T (€1+€2)
> [geBF ) —oPEo(s)  poDEe(e) =0 Diw(s))  (rule)=0(s)  pols)—wlo))
> iy
>y,

and so 6(u, w) < ey + ep. Thus, §(u, w) < §(u,v) + 6(v, w). To show completeness of (B, J),
we consider the Cauchy sequence {uy }x in (B, d). Suppose that s € [0, T] is fixed. Assume
that w € J° and A € I° are arbitrary and consider T € J° such that 6§ > 1 — A. Foret < w,
choose kg € N such that

J(uk — ng) <e Vk >k

Consequently,

0Dy (s)—o DSy (s) s 71(8) = (s)
w w

DS ug(s)—oDSuy(s) s 71(8) = (s)
etT et

¥e
1- A

\YAR VARV,

Hence, (%, 0 DS () —0DSuy (s) >1—Aand C”k “() 5 1 _ ) and i.e., the sequence both
{ug(s) }r and {ODQuk( ) }x are Cauchy in complete space (W, {, ) on compact set [0, T], so
they are uniformly convergent to the mapping u : [0, T] — W and oD u, respectively. Now,
if we apply the uniform convergence, we conclude that u € B and is differentiable; thus,
(B, 6) is complete. [

Theorem 3. Let (W, , *) be an MB-space and €1, {5, {3, £y and T be a positive constant such that
V{1,203, 010y, Ual30s} < 0.5. Assume that the continuous mappings « : [0,T] x W — W,
K :[0,T] x [0,T] x W — W with DDM-valued ¥ : [0, T] — S™ satisfying

gi(sru(s))_a(s,v(s)) > éL;L(S)_v(S)/ (4)
“1
gTK(S/U’u(U))_K(S,UU( ) > gr_r( )— U(U), o<s, (5)
fh > 9., ’
pe% T]lp IPT :
and
G 2 g, implies that CEFO > g 7

for every s € [0,T], u,v : [0,T] — Wand t € J°. Let w : [0,T] — W be a differentiable
function satisfying

oDéw(s)—a(sw(s))— [y K(s,ow(0))do

G

forevery s € [0, T| and T € J°. Thus, there is a unique differentiable function wy : [0, T| — W
such that

> ¥z, ®)

ODEwO( ) = a(s, wo(s —i—/ (s,0,wo(0))do, 9)
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and
Diw(s)—Ds -
OT w(s)—oDswo(s) * g?(s) wo(s) > lps(lfz\/{131!21?3,(1@4/2(3/«‘4}%’ (10)
V{Lly
for everys € [0, T] and T € J°.
Proof. We set
B:={u:[0,T] — W, u is differentiable }
and define
0 0
5(1/[,,0) — lnf{]/l c JO . ggpsu(s)_opsv(s) *gz/;(s)—v(s) 2 IPSI/ \v/u,,U c B, = [0, T], TE JO}.
Z
Theorem 2 guarantees that (B, J) is a complete J*-valued metric space.
Consider the self-map Y on B by
ag
Y(u(5) = o8 (o)) +o7¢ [ Kl (e ), an

where o € I°, 0 : [0, T] x W — W, K : [0,T] x [0,T] x W — W. We prove that Y is a strictly
contractive mapping. Let u,v € B, u € J° and 6(u,v) < v; thus, we have

B?gu(s)—ngv(s) * g;‘S)‘”(” >y, YuoeB,sc[0,T], el

Using properties (MN2) and (MN3) of Definition 2 and (11), imply that

>

*

Now, we connect (12) and control function . Assume that0 = @1 < @ < -+

gDsQY(“(S))—ODsQY(U(S)) % g}(“(s))—Y(U(S))
[a(s,(s))—a(s,0(s))]+ [o [K(s,0u(0) =K (s,0,0(0))|do
vt

9 (w
Covr
gf/cgs,u(s))—Dc(s,v(s)) N l{é[’C(S,G’,M(U))—/C(S,(T,U(U’))}d(f

(su(s))—a(s,0(5)))+0Zs ( fo [K(s,0,u(0))~K(s,0,0(0))]dor)

0Z8 (a(ou(0)) ~a(o,0(0))) érolf(fé’[lC(tf,g,u(c))*/C(W;,v(g))]dg)-

@ =5, A®; = @; —@;_1 = },i=1,2,--- ,kand [|[A@|| = V1<i<x(A®@;).
Step 1. From (35), we have

C%S/u(S))%(Slv(S))

v
']
=
=
w
)
|
Q
=
w
)

v
<
oA

(12)

(13)
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Step 2. Using (MN2) and (MN3) of Definition 2, continuity property of DDM-valued

Z, (36), and (37), we get

fOS[IC(S,O',u(U'))—’C(S,U’,’U(O’))]d(f . HAlc'anao E;(:l [IC(s,rDj,u(coj))flC(s,coj,v((Dj))]Awi
vT - vT
_ lim z]k:l[zc(s,@j,u(@j))—/C(s,wj,v(wj))]mi
laal—0 """
IC(sa) u(@ »))—K(s,wj,v(wj))]AcDi
>
- HAaﬂkﬁO /\ g
> £ SPM(P)) K(s.p(p))
> péfgﬁékv
> inf uk(VpT)—v(p)
p€[0,T] " T2y
> inf ¢’
N pelﬂ),T] tp/?
S
> 4’@.

Step 3. Using (38) and (13), we get

9 14 u - v
?/%s( (‘7/ (‘7)) (Ur (‘7))) 2 l'bsL

Step 4. Using (38) and (14), we get

oL ( [y [K(ogu(g))—K(0,6,0(c))]ds)

> S
Coe o lpfzfsé’z;
Form (12)-(16), we have
0DSY (u(s))—oDSY (v C =Y(v(s))
Ut ZUT
D S.oxy°
> 5 .
- VI, 00,60 04,0030}
and so
g?sQY(M( ))—0DEY (o(s)) gw =Y (v(s)) >

P ——
2V o3, 0 Ly a3 04}

which implies that
5(Y(u),Y(v)) <2\/{t1, oLz, b10y, Lrl304}v,
and so
S(Y(u),Y(0)) <2\/{1, €203, 0104, 20304}6(u, 0).
Consequently, Y is a strictly contractive mapping with Lipschitz constant
2\/ {1, oLz, t1Ly, U304}

Letting w € B, we show that (Y (w), w) < co. Using (38) and (39), we get

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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0DE[Y (w(s))—w(s)] , »Y(w(s))—w(s)

g *x (1 (21)
_ zx(s,w(s))—kjbsIC(s,U,w(U))dU—ODgw(s) é,(%IQ(a(U w(0))+0Z8 (fy K(o,6w(c))ds)—oZéoDew(o)
_ zx(s w(s)) —|—f0 K(s,0,w(c))do—oDEw(s) ér [ (fo K(og6w(s) )dG) Opgw(o)]
> gy

4

Z s T 7

V{104}

for every T € J°. Then, we have §(Y(w), w) < /{1, 44} < .
By Theorem 1, there is wq in B such that
(1) wy is a fixed point of Y, i.e.,

wo(s) = Y(wo(s) @)
o2 o, 00(0) +o2 [ Lo ol ),

which is unique in

B* ={ueB:5Y(w) u) <oo}.
Taking 0D?¢ from (22), we get

0DSwy(s) = a(s, wy(s —l—/ (s,0,wo(0))do, (23)

whereo € I°,a: [0, T| x W — W, K :[0,T] x [0,T] x W — W.
(2) 6(YK(w), wp) — 0asn — oo;

1 V{L4s} ESR T
®) 8w, w0) <ty AL AR AGET (Y (@) ©) S ToviR A hnanay Which im-
plies that
Déw(s)—oDlw
T () =oPen(s) gr ole) > 1/’5(1—2\/{51,2253,@1@4,42@@4})7/ (24)
V{1,04}

foreverys € [0,T] and T € J°.
Now, we prove that B* = B. Considering zg in B satisfying (40) and (41), we show
that zp = wp and zp € B*. From (40), we get

0DSzo(s) = a(s, zo(s +/ (s,0,20(0))do, (25)
and so
20(s) = oZ8u(e,20(0)) +0Z¢ [ K(0,¢,20(6)de 26)
= Y(zo(s)),

where o € I°, 0 : [0, T| x W — W, K :[0,T] x [0,T] x W — W.
Now, we show that
zo € {u € B:5(Y(w),u) < oo},

ie., 5(Y(w),zg) < co. Weset ) = 172V{El’éﬁﬁl}ﬁ’éﬂﬂ“}, from (41), we get

Orpgw(s),opgzo@ SORCIORN g, (27)

foreverys € [0,T] and T € J°.
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Form (35) and (27), we get
ég(srw(S))*tx(S,Zo(S)) > a;(s)*zo(s) (28)
7
Z wjﬁl
in addition, from (36) and (27), we get
gf(smw(ﬁ))—’C(S,Mo(ﬂ)) > gfzi(ff)—zo(ﬁ) (29)
2
S
foreverys € [0,T],c < sand T € J°. By step 2 and (29), we get
;L[OS[IC(s,a,w(U))—K(s,a,zo(a))]dtr > 4]%
203
S
> IPJ@-
Using triangular inequality (MN3), (28) and (30), we get
gq(:s,w(s))—oc(s,zo(s))+f05[IC(s,U,w(U))—IC(s,U,zO(U))]d(T (30)
2 gi(s,w(s))fa(s,zo (5)) % g,‘[os [K(S,U,w((]’))7}C(S,0’,Zo((7))]dl7’
2 eV
> ¢ ., 31
= VIR LGy 6D
and so
gi(s,w(s))71Jc(s,z[)(s))+f0s (K(s,ow(o))—K(s,0,20(0))]do > ]s . . (32)
2V a5}
We apply (38) and get
oL [a(0w(0)) —a(0,20(0)) +0Z5 [ [K(0,6,w(6))—K(0,6,20(5))]dg > 4 . (33)
‘ ~ Yavinny
foreverys € [0,T],0c <sand T € J°.
Using (32), (32), and (33), we get
£ @) ~20(5)] , pY(@(s))—20(s) 1)

_ gﬂ(sfw(s))—“(sfzo(s))ﬂg [K(s,0w(0)) =K (s,0,20(0))]der

- T

“ oL [w(ow(0) —a(0,20(0))+0Zs [y [K(0,6,w(6))—K(06,20(c)))dg
T

> ¢ . * P° .

R A2y R VI (2R 2Y2Y;

2 S

T _ g
AV PRy Y TG R

which implies that §(Y(w), z9) < 2AALEHI) < oo hence zg € B*. O
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Corollary 1. Let (R, {,*) be an MB-space and 1,0y, (3,04 and T be a positive constant such
that \/ {{1, Lal3, {10y, lal3ls} < 0.5. Assume that the continuous mappings a : [0,T] x R — R,
K:[0,T] x [0,T] x R — R with DDM-valued ¢ : [0, T] — S™ satisfying

gg(sru(S))*“(S/v(S)) > gl;L(S)*U(S)l (35)
1
LMo Klai0) 5 o)) g < (36)
2
f w ), 37
pelf(ngPT_( B (37)
and
t) > (Wyp)s, implies that T > (W, )5, (38)
4

for every s € [0,T], u,v : [0,T] - Rand t € J°. Let w : [0,T] — R be a differentiable

function satisfying

ggD w(s)—a(s,w(s))— 5 K(s,ow(o))do > (Wa,ﬁ)gf, (39)
forevery s € [0,T] and T € J°. Thus, there is a unique differentiable function wy : [0, T] — R
such that

ODSQZU()( ) S ZU() + / S g, ZU() d (40)
and

DEw(s)—oD?
@‘% wle)—oDswole gr ole) > ( ﬁ) 1-2V{lq,lpl3,01L4,lp 304 })T (41)

V{Lly}

for everys € [0,T| and T € J°.
Proof. Put ¢ = (W, ) and apply Theorem 3. [

4. Random Stability of Riemann-Liouville Fractional Volterra Integral Equation

Consider the Riemann-Liouville fractional Volterra integral equation
u(s) = a(s,u(s)) + oZK (s, o, u(o)), (42)

where o € I°, . : [0, T] x W — W, K : [0,T] x [0,T] x W — W. In this section, we study
random Wright stability of (42).

Theorem 4. Suppose that (W, {, x) is an MB-space and {1, 5, (3, {4 and T are positive constants
such that \/ {1,203, (104, U304} < 0.5. Assume the continuous mappings a : [0, T| x W — W,
K :[0,T] x [0,T] x W — W with DDM-valued  : [0, T| — ST satisfying (35)—(38).

Let w : [0, T| — W be a differentiable function satisfying

5?(5)7“(Srw(s))7OI§K(SV‘7/W(U)) Z lp?r/ (43)
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for every s € [0, T] and T € J°. Thus, we can find a unique differentiable function wy : [0, T] — W

such that
wo(s) = a(s, wo(s)) + o ZSK(s, 0, wo (7)), )
and
gl =ls) > Yl avie sy ta b laty )T (45)
VL)

for everys € [0,T| and T € J°.

Proof. We set
B:={u:[0,T] = W,u as differentiable }

and define
5(u,v) = inf{y eJo: éz(s)_v(s) >¢%, YuveB, s€[0,T], T€ Jo}.
[

Theorem 2 guarantees that (B, J) is a complete J*-valued metric space.
Consider Y from B to B by

Y(u(s)) = a0, u(0)) + oZ2 ( [ ke g,u<g>>dg), (46)

where g € I°, 0 : [0, T] x W — W, K : [0, T] x [0, T] x W — W. We show that Y is a strictly
contractive mapping. Let u,v € B, u € J° and 6(u,v) < v; then, we have

i) =) > Y3, Yu,veB, s [0,T), Tel
From (MN2) and (MN3) of Definition 2, (35)—(38) and (46), we get

gY(u(S))—Y(U(S))

T 47)
_ Alalsu(s)—a(s,0(5))]+0Z8 [K(s,0,u(0)—K(s,0,0(0))do
- vt
> gﬁs,u(s))fa(s,v(s)) « gﬁ[lC(s,a,u(U))fIC(s,U,v(U))}dU
S S
= Vv
> 5.
- VinGa)
and so
Y(u(s))—Y(v(s)) > S - (48)
vt - W’
for every s € [0, T] and T € J°. Consequently,
6(Y(u),Y(v)) <2\/{l1,l2ls}v, (49)
and so
5(Y(u),Y(v)) <2\/{l1,0204}6(u,0). (50)

Thus, Y is strictly contractive with Lipschitz constant 2 \/{¢1, {204 }.
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Letting w € B, we prove that 6(Y(w), w) < co. In addition, (53) implies that

> Yy

for every T € J°. Thus, 6(Y(w),w) < 1.
By Theorem 1, there is wy in B such that
(1) wp is a fixed point of Y, i.e.,

gY(w(s) )—w(s) guc(s,w(s) VLK (s,0,w(0))do—w(s)

wo(s) = Y(wo(s)) (51)
= a(o,wo(7)) +0Zs (K(o, ¢, wo(g))ds),

which is unique in the set
B* ={u € B:§(Y(w),u) < oo}.

(2) 5(Yk(w),ZUo) — 0asn — oo;

(3) 6(w, wp) < (Y(w),w) <

1 e
< W(S which implies that

1
1-2V/{{1,b204}"

w(s)—wp(s)
Co T 2 Wl o bt (52)
for every s € [0,T] and T € J°. By the same method of the proof of Theorem 3, we can
show that B* = B. O

Corollary 2. Suppose that (R, {, *) is an MB-space and {1, {5, 03,04 and T are positive constants
such that \/{l1, lal3, (104, (0304} < 0.5. Assume that the continuous mappings a : [0, T] x R —
R, K:[0,T] x [0, T] x R — R with DDM-valued i : [0, T] — S satisfying (35)—(38).

Let w : [0, T] — R be a differentiable function satisfying

ggi(s)70((5,‘(0(5))701‘5@’((5,0’,{0((7)) > (thﬁ)i*/ (53)

for every s € [0, T| and T € J°. Thus, we can find a unique differentiable function wy : [0, T] — R
such that

wo(s) = a(s, wo(s)) + oZeK (s, 0, wo (7)), (54)
and
w(S)wa(S) > W S 55
Cr = ( a,ﬁ)(172v{z1,22z3,£1z4,52£354})rr (55)
V{Ll}

foreverys € [0,T] and T € J°.
Proof. Put ¢ = (W, ) and apply Theorem 4. [J

5. Applications, Random Wright Stability

Now, as applications, we study the concept of random Wright stability for some
fractional equations.

Example 1. Assume that (R,{,*) is an MB-space. Consider u,v : [0,T] — R and define
a(s,u(s)) = Lyu(s). Let 6 € WY(J°,R), in which W is the Sobolev space, define K :
[0,T] x [0,T] x R — Ras K(s,0,u(c)) = 0(s — o)u(o) for every s € [0, T] and o < s.
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Consequently, we have
gg(s,u(S))—vé(srv(S)) _ gﬁl”(s)_zlv(s) (56)
- u(s)—ov(s)
— g% ,
Cf(slmu(tf))—’c(srm(ﬂ)) _ gz(S—V) [u(o)—v ()] (57)
> gu(UT)—v((r)
TGl
u(o)—o(o)
>
- g% 7
for some K € J°. Let DDM-valued W g : [0, T| — S satisfying (37) and (38).
Let w : [0, T| — R be a differentiable function satisfying
(%D w(s)—liw(s)— [y 0(s—)w(o)de > (Wa,ﬁ)fn (58)

forevery s € [0, T] and T € J°. Now, Theorem 3 implies that, if \/{{1, Kl3, {14, Kl304} < 0.5,
there is a unique differentiable function wy : [0, T| — R such that

S
0Dswo(s) = Lwy(s) + /0 0(s —o)w(o)do, (59)
and
D¢ D¢
OT w(e)=oPstls gr o) > ( ﬁ) 1-2V{{q,Kl3,0104,Kl304})T (60)
V{Lly}

for everys € [0,T| and T € J°.

Example 2. Assume that (R,(,*) is an MB-space. Consider u,v : [0,T] — R and define
a(s,u(s)) = Lyu(s). Let & € WY(J°,R), in which W' is the Sobolev space, and define
K:[0,T] x[0,T] xR — Ras K(s,o,u(c)) = 0(s —o)u(c) for every s € [0,T) and o < s
satisfying (57).

Let DDM-valued W, g : [0, T| — S* satisfying (37) and (38).

Let w : [0, T] — R be a differentiable function satisfying

el BB —e)e(@)ie 5 (g s (61)

forevery s € [0,T| and T € J°. Now, Theorem 4 implies that, if \/{{1,Kls} < 0.5, there is a
unique differentiable function wy : [0, T| — R such that

wo(s) = Lrwo(s) + 0Z50(s — o)w(o)do, (62)
and
gr o) = ( zxﬂ) 1-2V{{1 Ky )T (63)
W

foreverys € [0,T) and T € J°.

6. Conclusions

We considered a class of random control functions. By a method from Mihet and Radu
emanating from the alternative fixed point theorem and random controllers, we stabilized
some fractional equations in MB-spaces in the sense of Wright.
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