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Abstract: In this paper, the method of artificial boundary conditions for exterior quasilinear problems
in concave angle domains is investigated. Based on the Kirchhoff transformation, the exact quasiliner
elliptical arc artificial boundary condition is derived. Using the approximate elliptical arc artificial
boundary condition, the finite element method is formulated in a bounded region. The error estimates
are obtained. The effectiveness of our method is showed by some numerical experiments.
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1. Introduction

In many fields of scientific and engineering computing, such as heat transfer, magne-
tostatics or compressible flow, it is necessary to deal with problems in unbounded domains.
The method of artificial boundary conditions [1,2], which is also named coupled of fi-
nite element method and natural boundary element method [3–5] or DtN finite element
method [6,7], is a normal method used to solve this kind of problem numerically.

The method can be summarized in the following four steps: (i) By introducing an
artificial boundary ΓR, truncate the original infinite domain Ω into two subdomains: a finite
computational subdomain Ωi and an unbounded residual subdomain Ωe. (ii) By dissecting
the problem in Ωe, obtain a relation on ΓR involving the solution u and its derivatives.
(iii) Use the relation as an approximate boundary condition on ΓR, to earn a well posed
problem confined in Ωi. (iv) Use finite element method or other numerical methods to
solve the problem in Ωi.

The relation derived in (ii) and used in (iii) is called an artificial boundary condition,
natural integral equation or DtN map. Natural boundary reduction reduces the boundary
value problem into a hypersingular integral equation on the artificial boundary. It has
many advantages, such as the positive-definite symmetry of stiffness matrices, the stability
of approximate solutions, and can be coupled with the finite element method naturally
and directly. The method has been used to solve linear problems in last century. It has also
been successfully extended to nonlinear problems in recent years.

Suppose Ω is an infinite domain with a concave angle α, and 0 < α ≤ 2π. The
boundaries of Ω are disintegrated into three disjoint parts: Γ0, Γα and Γ (see Figure 1), i.e.,
∂Ω = Γ0 ∪ Γα ∪ Γ, Γ0 ∩ Γα = ∅, Γ0 ∩ Γ = ∅ and Γα ∩ Γ = ∅. The boundary Γ is a simple
smooth curve part, Γ0 and Γα are two half lines.
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We consider the following quasilinear problem
−∇·(a(x, u)∇u) = f , inΩ,

∂u
∂n = 0, on Γ0 ∪ Γα,

u = 0, on Γ,
u(x) is bounded, as |x| → ∞,

(1)

where a(x, u) and f are given functions with some properties which will be decribed later.
Problem (1) has numerous physical applications, e.g., in the field of magnetostat-

ics, where u is the magnetic scalar potential and a is the magnetic permeability; in the
field of compressible flow, where u is the velocity potential and a is the density. There
have been many numerical results about problems of this kind in bounded domains,
for example, the existence and uniqueness of weak solution [8,9], the finite element
method [10–12], the mixed finite element method [13–15], the discontinuous Galerkin
finite element method [16–18], the weak Galerkin finite element method [19], and the
adaptive finite element method [20,21].

The circular artificial boundary was used for exterior quasilinear problems in early
years [22,23]. The elliptical artificial boundary was generalised later for elongated domains
problems [24]. The circular arc boundary was often selected for problems in unbounded
domains with concave angles [25], but for the problems in elongated concave angle do-
mains, an elliptical arc boundary which leads to a smaller computational domain is much
better than the circular arc case (see Figure 2).
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Figure 2. Two different artificial boundaries: (a) The circular arc artificial boundary ΓR; (b) The
elliptical arc artificial boundary Γµ1 .

In this paper, we propose a new method of elliptical arc artificial boundary conditions
for the numerical solution of quasilinear problems in exterior elongated domains with
concave angles.

Suppose that the given function a(·, ·) satisfies [8]

C0 ≤ a(x, u) ≤ C1, ∀u ∈ R, and for almost all x ∈ Ω, (2)

and
|a(x, u)− a(x, v)| ≤ CL|u− v|, ∀u, v ∈ R, and for almost all x ∈ Ω, (3)

where C0, C1 and CL are three positive constants. We also assume that ∂a
∂s , ∂2a

∂s2 are continuous.
Additionally, we suppose that f ∈ L2(Ω) has compact support, i.e., there exists a constant
µ0 > 0, such that

supp f ⊂ Ωµ0 =
{

x ∈ R2
∣∣∣|x| ≤ µ0

}
. (4)

Moreover, we assume that

a(x, u) ≡ a0(u), when |x| ≥ µ0. (5)
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The rest of this paper is organized as follows. We derive the exact quasilinear elliptical
arc artificial boundary condition in Section 2. In Section 3, we formulate the finite element
approximation and give an new error estimate. In Section 4, we give some numerical
experiments to show the efficiency and feasibility of our method. Some conclusions are
given in Section 5.

In the following sections, we denote C as a general positive constant independent of
µ1, N and h, where N and h will be defined in Sections 2 and 3, respectively. The constant
C has different meaning in different place.

2. Exact Quasilinear Elliptical Arc Artificial Boundary Condition

We first introduce the elliptical arc artificial boundary Γµ1 =
{
(x, y)

∣∣∣ x2

a2 + y2

b2 = 1 , (x, y)
∈ Ω, a > b > 0} to enclose supp f , which divides Ω into a bounded computational domain
Ωi and an unbounded domain Ωe (see Figure 2b). Let 2 f0 denote the distance between
two foci of the previous ellipse, we introduce the elliptic co-ordinates (µ, ϕ) such that
artificial boundary Γµ1 coincides with elliptical arc {(µ, ϕ)|µ = µ1, 0 < ϕ < α}, where
f0 =

√
a2 − b2, µ1 = ln a+b√

a2−b2 . Thus, the Cartesian co-ordinates (x, y) are related to the
elliptic co-ordinates (µ, ϕ), that is x = f0cos hµ cos ϕ, y = f0sin hµ sin ϕ.

Then, problem (1) can be rewritten in the following coupled form:
−∇·(a(x, u)∇u) = f , inΩi,

∂u
∂n = 0, on Γ0i ∪ Γαi,

u = 0, on Γ,
(6)


−∇·(a0(u)∇u) = 0, inΩe,

∂u
∂n = 0, on Γ0e ∪ Γαe,

u(x) is bounded, as |x| → ∞,
(7)

u(x) and a0(u)
∂u
∂n

are continuous on the artificial boundary Γµ1 , (8)

where Γ0i = Γ0 ∩ Ωi, Γαi = Γα ∩ Ωi, Γ0e = Γ0 ∩ Ωe, and Γαe = Γα ∩ Ωe.
We introduce the so-called Kirchhoff transformation [26]:

w(x) =
∫ u(x)

0
a0(ξ)dξ, for x ∈ Ωe. (9)

The transformation is invertible because a0(u) is a positive function. Notice that

∇w = a0(u)∇u, (10)

we can transform the quasilinear problem (7) into the following linear problem
−∆w = 0, inΩe,

∂w
∂n = 0, on Γ0e ∪ Γαe,

w(x) is bounded, as |x| → ∞.
(11)

Suppose w(x) is the solution of problem (11). By Fourier series expansion, we have

w(µ, ϕ) =
b0

2
+ ∑+∞

n=1 bne(µ1−µ) nπ
α cos

nπϕ

α
, (12)

where
bn =

2
α

∫ α

0
w(µ1, φ) cos

nπφ

α
dφ, n = 0, 1, 2, · · · . (13)
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It is easy to obtain

∂w
∂µ

(µ, ϕ)|µ=µ1 = −2π

α2 ∑+∞
n=1 n

∫ α

0
w(µ1, φ) cos

nπφ

α
cos

nπϕ

α
dφ. (14)

Since
∂w
∂n

= − 1√
J0

∂w
∂µ

, (15)

where J0 = f 2
0

(
cos h2µ1 − cos2 ϕ

)
, and

∂w
∂n

= a0(u)
∂u
∂n

, (16)

we obtain the exact artificial boundary condition of u on Γµ1 :

a0(u)
∂u
∂n

=
2π

α2
√

J0
∑+∞

n=1 n
∫ α

0
(
∫ u(µ1,φ)

0
a0(y)dy) cos

nπφ

α
cos

nπϕ

α
dφ , Ku(µ1, ϕ). (17)

The difference between this artificial boundary condition and that in circular arc case
is only a factor 1√

J0
[25], so it does not increase the computational complexity of the stiff

matrix from artificial boundary. In the meantime, an elliptical arc artificial boundary is
advantageous in that it may be used to enclose some narrow region with concave angle
efficiently, so it is much better than the circular arc one.

By the exact quasilinear artificial boundary condition (17), we have
−∇·(a(x, u)∇u) = f , inΩi,

∂u
∂n = 0, on Γ0i ∪ Γαi,

u = 0, on Γ,
a0(u) ∂u

∂n = Ku(µ1, ϕ), on Γµ1 .

(18)

Let V =
{

v ∈ H1(Ωi)
∣∣v∣∣Γ = 0

}
, then problem (18) is equivalent to the variational

problem as follows: {
Find u ∈ V, such that

A(u; u, v) + B(u; u, v) = F(v), ∀v ∈ V,
(19)

where
A(w; u, v) =

∫
Ωi

a(x, w)∇u·∇vdx, (20)

B(w; u, v) = ∑+∞
n=1

2
nπ

∫ α

0

∫ α

0
a0(w(µ1, φ))

∂u
∂φ

(µ1, φ)
∂v
∂ϕ

(µ1, ϕ) sin
nπφ

α
sin

nπϕ

α
dφdϕ, (21)

F(v) =
∫

Ωi

f (x)v(x)dx. (22)

In practice, we must truncate the infinite series in (17) by finite terms, let

KNu =
2π

α2
√

J0
∑N

n=1 n
∫ α

0
(
∫ u(µ1,φ)

0
a0(y)dy) cos

nπφ

α
cos

nπϕ

α
dφ. (23)

Consider the following approximation problem:
−∇·

(
a
(
x, uN)∇uN) = f , inΩi,

∂uN

∂n = 0, on Γ0i ∪ Γαi,
uN = 0, on Γ,

a0
(
uN) ∂uN

∂n = KNuN , on Γµ1 .

(24)
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It is equivalent to the variational problem as follows:{
Find uN ∈ V, such that

A
(
uN ; uN , v

)
+ BN

(
uN ; uN , v

)
= F(v), ∀v ∈ V,

(25)

where
BN(w; u, v) = ∑N

n=1
2

nπ

∫ α

0

∫ α

0
a0(w(µ1, φ))

∂u
∂φ

(µ1, φ)
∂v
∂ϕ

(µ1, ϕ) sin
nπφ

α
sin

nπϕ

α
dφdϕ. (26)

For s ∈ R, we introduce the equivalent definition of Sobolev spaces Hs(Γµ1

)
as

follows [27]:

∀ Hs(Γµ1

)
⇔ v(µ1, ϕ) =

b0

2
+ ∑+∞

n=1 bn cos
nπϕ

α
and

b2
0

2
+ ∑+∞

n=1

(
1 + n2

)s
b2

n < ∞.

The norm of Hs(Γµ1

)
can be defined as follows:

‖ v(µ1, ϕ) ‖s,Γµ1
=

[
b2

0
2
+ ∑+∞

n=1

(
1 + n2

)s
b2

n

] 1
2

.

Then, we have the following results.

Lemma 1. B(u; u, v) and BN(u; u, v) are both a symmetric, semi-definite and continuous bilinear
form on V ×V.

Proof. For u, v ∈ V, we assume that

u(µ1, φ) =
b0

2
+ ∑+∞

n=1 bn cos
nπφ

α
,

v(µ1, ϕ) =
d0

2
+ ∑+∞

n=1 dn cos
nπϕ

α
,

taking the derivative with respect to φ and ϕ, we obtain

∂u
∂φ

(µ1, φ) = ∑+∞
n=1

nπ

α
bn sin

nπφ

α
,

∂v
∂ϕ

(µ1, ϕ) = ∑+∞
n=1

nπ

α
dn sin

nπϕ

α
,

then we have
|B(u; u, v)| ≤ C

(
∑+∞

n=1 nb2
n
) 1

2
(
∑+∞

n=1 nd2
n
) 1

2

≤ C‖ u ‖ 1
2 ,Γµ1
‖ v ‖ 1

2 ,Γµ1
≤ C‖ u ‖1,Ωi

‖ v ‖1,Ωi
.

In the same way, we obtain

|BN(u; u, v)| ≤ C
(
∑N

n=1 nb2
n

) 1
2
(
∑N

n=1 nd2
n

) 1
2 ≤ C‖ u ‖1,Ωi

‖ v ‖1,Ωi
.

Next, we show that B(u; u, v) and BN(u; u, v) are semi-definite. For any given v ∈ V,
we consider the following auxiliary problem:

−∇·(a(x, u)∇u) = 0, inΩe,
∂u
∂n = 0, on Γ0e ∪ Γαe,

u = v, on Γµ1 ,
u(x) is bounded, as |x| → ∞,

(27)
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the solution u of the above problem satisfies

a0(u)
∂u
∂n

= Ku(µ1, ϕ).

If we multiply (27) by u and integrate over Ωe, then we can obtain

B(u; u, u) =
∫

Ωe
a0(u)|∇u|2dx ≥ 0.

In the same way, we obtain
BN(u; u, u) ≥ 0.

This completes the proof. �

3. Finite Element Approximation

Suppose Jh is a regular and quasi-uniform triangulation on Ωi, s.t.

Ωi = ∪K∈Jh K, (28)

where K is a (curved) triangle, h denote the maximal side of the triangles. Let

Vh = {vh ∈ V, vh| K is a linear polynomial, ∀K ∈ Jh}. (29)

Then, the approximation problem of (25) is{
Find uN

h ∈ Vh, such that
A
(
uN

h ; uN
h , vh

)
+ BN

(
uN

h ; uN
h , vh

)
= F(vh), ∀vh ∈ Vh.

(30)

Lemma 2. The variational problems (19), (25) and (30) are uniquely solvable.

Proof. From (2), it is easy to shown that the bilinear form A(u; u, v) is V-elliptic and
bounded in V, i.e., there exist constants C0, C1 > 0, such that

|A(u; v, v)| ≥ C0‖ v ‖2
1,Ωi

,

|A(u; u, v)| ≤ C1‖ u ‖1,Ωi
‖ v ‖1,Ωi

.

Combining with Lemma 1, we can deduce that A(u; u, v) + B(u; u, v) is also V-elliptic
and bounded in V. By (3), a(x, u) is uniformly Lipschitz continuous with respect to u. Since
these conditions hold, it is known [8] that variational problem (19) has a unique solution
u ∈ V for all f ∈ L2(Ω). In the same way, we obtain that the variational problems (25) and
(30) are uniquely solvable. �

We let u, uN ∈ H2(Ωi) and uh ∈ Vh be the solution of problems (19), (25) and (30),
respectively. We also assume that

Vh ⊂ V ∩ W1,2+ε(Ωi) for some ε ∈ (0, 1). (31)

Moreover, we require that {Vh}h→0 is a family of finite dimensional subspaces of
V ∩ C(Ωi), s.t.

v ∈ V ∩ C(Ωi), there exists {vh} : vh ∈ Vh, ‖ v− vh ‖→ 0, as h→ 0, (32)

‖ vh ‖ 1,2+ε,Ωi ≤ C(v) for any h, (33)

where C(v) > 0 is independent of h.
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It is obvious that the continuous piecewise polynomial spaces (29) satisfy (31). Fur-
thermore, if we suppose vh = Πhv, and Πh : v→ vh is the interpolation operator, we have

‖ vh ‖ 1,2+ε,Ωi ≤‖ Πhv− v ‖1,2+ε,Ωi
+ ‖ v ‖1,2+ε,Ωi

≤ C(v).

Following the convergence theory in [5,8], we have the following result:

lim
h→0
‖ uN

h − uN ‖ 1,Ωi = 0 and uN ⊂ V ∩ W1,2+ε(Ωi), ∀N ≥ 0. (34)

Moreover, we can obtain the following lemma.

Lemma 3. Suppose u be the solution of (19) and uN be the solution of (25). Then, we have

lim
N→+∞

‖ u− uN ‖1,Ωi= 0. (35)

Proof. From (2) and Lemma 2, we have

‖ uN ‖ 2
1,Ωi
≤ C

(
A
(
uN ; uN , uN)+ B

(
uN ; uN , uN))

= C
(

F
(
uN)+ B

(
uN ; uN , uN)− BN

(
uN ; uN , uN))

≤ C
(
‖ f ‖0,Ωi

·‖ uN ‖ 1,Ωi +
∣∣B(uN ; uN , uN)− BN

(
uN ; uN , uN)∣∣)

For uN ∈ V, we assume that

wN(µ, φ) =
∫ uN(µ,φ)

0
a0(ξ)dξ =

b0

2
+ ∑+∞

n=1 bne(µ0−µ) nπ
α cos

nπφ

α
, ∀µ > µ0,

uN(µ1, ϕ) =
d0

2
+ ∑+∞

n=1 dn cos
nπϕ

α
,

then we have ∣∣B(uN ; uN , uN)− BN
(
uN ; uN , uN)∣∣

=
∣∣∣∑+∞

n=N+1
2

nπ

∫ α
0

∫ α
0

∂wN

∂φ (µ1, φ) ∂uN

∂ϕ (µ1, ϕ) sin nπφ
α sin nπϕ

α dφdϕ
∣∣∣

= ‖ ∑+∞
n=N+1

nπ
2 e(µ0−µ1)

nπ
α bndn ‖

≤ Ce(µ0−µ1)
(N+1)π

α
(
∑+∞

n=N+1 nb2
n
) 1

2
(
∑+∞

n=N+1 nd2
n
) 1

2

≤ Ce(µ0−µ1)
(N+1)π

α ‖ wN ‖ 1
2 ,Γµ0

‖ uN ‖ 1
2 ,Γµ1

≤ Ce(µ0−µ1)
(N+1)π

α ‖ uN ‖ 2
1,Ωi

.

From µ1 > µ0, we deduce that
{

uN} is bounded in V. Therefore, we obtain a
subsequence

{
uNn

}
, s.t. uNn ⇀ u ∈ V . Then, similar with Lemma 3.4 of [22], we have (35).

�

Finally, we obtain the convergence result as follows.

Theorem 1. Suppose u ∈ H2(Ωi), and let assumptions (31)–(33) be satisfied. Then, we have

lim
h→0,N→+∞

‖ u− uN
h ‖ 1,Ωi = 0. (36)

Next, we give the error estimates. We assume that the solution u of problem (1) satisfies

u|Ωi ∈ V ∩ Wk,2+ε(Ωi), ε > 0, k ≥ 2.
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For simplicity, we define the following notation

D(u; u, v) , A(u; u, v) + B(u; u, v),

DN

(
uN ; uN , v

)
, A

(
uN ; uN , v

)
+ BN

(
uN ; uN , v

)
,

DN

(
uN

h ; uN
h , vh

)
, A

(
uN

h ; uN
h , vh

)
+ BN

(
uN

h ; uN
h , vh

)
.

Then, problems (19), (25) and (30) can be reduced to the simple forms, respectively.
Let us introduce the bilinear form D′(u; ·, ·) and D′N

(
uN ; ·, ·

)
defined by

D′(u; v, z) =
∫

Ωi
∂a
∂s (x, u)v∇u·∇zdx +

∫
Ωi

a(x, u)∇v·∇zdx

+
∫ α

0

∫ α
0

∂a0
∂s (u)v

∂u
∂φ (µ1, φ) ∂z

∂ϕ (µ1, ϕ)
+∞
∑

n=1

2
nπ sin nπφ

α sin nπϕ
α dφdϕ

+
∫ α

0

∫ α
0 a0(u) ∂v

∂φ (µ1, φ) ∂z
∂ϕ (µ1, ϕ)∑+∞

n=1
2

nπ sin nπφ
α sin nπϕ

α dφdϕ,

D′N
(
uN ; v, z

)
=
∫

Ωi
∂a
∂s
(
x, uN)v∇uN ·∇zdx +

∫
Ωi

a
(
x, uN)∇v·∇zdx

+
∫ α

0

∫ α
0

∂a0
∂s
(
uN)v ∂uN

∂φ (µ1, φ) ∂z
∂ϕ (µ1, ϕ)

N
∑

n=1

2
nπ sin nπφ

α sin nπϕ
α dφdϕ

+
∫ α

0

∫ α
0 a0

(
uN) ∂v

∂φ (µ1, φ) ∂z
∂ϕ (µ1, ϕ)∑N

n=1
2

nπ sin nπφ
α sin nπϕ

α dφdϕ.

Let V′ denote the dual of V. Notice that D′(u; ·, ·) is bounded on V ×V since (2) and
∂a
∂s (·, u(·)) are continuous. Then, we have an operator T : V → V′ , s.t.

(Tv, z) = D′(u; v, z), ∀v, z ∈ V. (37)

Similar with Lemma 2.2 of [23], we have the following lemma.

Lemma 4. The bilinear form (Tv, v) defined by D′(u; v, v) satisfies the following inequality

(Tv, v) + K
(
‖ v ‖2

0,Ωi
+ ‖ v ‖2

1
2 ,Γµ1

)
≥ C‖ v ‖2

1,Ωi
, ∀v ∈ V, (38)

where K ≥ 0 is a sufficient large constant.

We assume that
D′(u; v, z) = 0, ∀z ∈ V ⇒ v = 0. (39)

Let I : V → V′ denote the canonical injection. We obtain that operator J : V → V′

defined by J(v) = (I(v), 0) is also compact since V is compactly embedded in L2(Ωi). Thus
the Fredholm alternative applies for T. We have that T : V → V′ is an isomorphism.

According to Theorem 10.1.2 of [28], under the conditions (19), (38) and (39), there
exists an h0 ∈ (0, 1], such that the following inf-sup condition is satisfied.

sup
z∈Vh

D′(u; v, z)
‖ z ‖1,Ωi

≥ α1‖ v ‖1,Ωi
, ∀v ∈ Vh, (40)

for some constant α1 > 0 independent of h(h < h0).
We define the Galerkin projection with respect to D′(u; ·, ·), Ph : V → Vh

D′(u; Phv, z) = D′(u; v, z), ∀z ∈ Vh.

Then, we obtain

‖ v− Phv ‖ 1,p,Ωi ≤ C inf
vh∈Vh

‖ v− vh ‖ 1,p,Ωi ≤ Chσ, (41)

where 2 ≤ p ≤ ∞, 0 < σ < 1.
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Lemma 5. uN
h ∈ Vh is a solution of (30) if, and only if, this equation,

D′N
(

uN ; uN − uN
h , v

)
= R

(
uN ; uN

h , v
)

, ∀v ∈ Vh,

holds, where

R
(
uN ; uN

h , v
)

,
∫

Ωi

(∫ 1
0

(
∂2a
∂s2

(
x, wN

h
)
∇wN

h ·∇v
)
(1− t)dt

)(
dN

h
)2dx

+2
∫

Ωi

(∫ 1
0

(
∂a
∂s
(
x, wN

h
)
∇dN

h ·∇v
)
(1− t)dt

)
dN

h dx

+
∫ α

0

∫ α
0

(∫ 1
0

(
∂2a0
∂s2

(
wN

h
) ∂wN

h
∂φ

∂v
∂ϕ ∑N

n=1
2

nπ sin nπφ
α sin nπϕ

α

)
(1− t)dt

)(
dN

h
)2dφdϕ

+2
∫ α

0

∫ α
0

(∫ 1
0

(
∂a0
∂s
(
wN

h
) ∂dN

h
∂φ

∂v
∂ϕ ∑N

n=1
2

nπ sin nπφ
α sin nπϕ

α

)
(1− t)dt

)
dN

h dφdϕ.

with wN
h = uN + t

(
uN

h − uN), dN
h = uN

h − uN .

Proof. Let η(t) , DN
(
wN

h ; wN
h , v

)
. Then, by (25), (30), and

η(1) = η(0) + η′(0) +
∫ 1

0
η′′ (t)(1− t)dt,

we can get the desired result. �

Let
Mh ,

{
v ∈ Vh|‖ v ‖1,∞,Ωi

≤ 1+ ‖ uN ‖ 1,∞,Ωi

}
, (42)

Then, following [23,29], we have the Lemma as follows.

Lemma 6. There exists a constant C > 0 independent of h , such that∣∣∣R(uN ; v, z
)∣∣∣ ≤ C

(
‖ uN − v ‖2

1,Ωi
+ ‖ uN − v ‖1,Ωi

)
‖ z ‖1,Ωi

, ∀v ∈ Mh, ∀z ∈ Vh.

We define a nonlinear mapping ψ : Vh → Vh as follows. ψ(v) is the unique solution of

D′(u; ψ(v), z) = D′(u; u, z)− R(u; v, z), ∀z ∈ Vh, (43)

for any given v ∈ Vh. Let

Eh ,
{

v ∈ Vh| ‖ v− Phv ‖1,∞,Ωi
≤ Chσ

}
, (44)

then we have

Lemma 7. The nonlinear mapping ψ is continuous from Eh to Eh.

Proof. By (43), we have

D′(u; ψ(v)− ψ(vn), z) = R(u; vn, z)− R(u; v, z). (45)

Combining (45) with (40), we obtain the operator ψ is continuous, i.e.,

lim
vn→v

ψ(vn) = ψ(v).

For any v ∈ Eh,

‖ v ‖1,∞,Ωi
≤‖ uN − v ‖1,∞,Ωi

+ ‖ uN ‖ 1,∞,Ωi , (46)
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‖ uN − v ‖1,∞,Ωi
≤‖ uN − PhuN ‖1,∞,Ωi + ‖ PhuN − v ‖1,∞,Ωi

, (47)

‖ uN − PhuN ‖1,∞,Ωi≤‖ uN −ΠhuN ‖1,∞,Ωi + ‖ ΠhuN − PhuN ‖1,∞,Ωi . (48)

By the fact that Jh is quasi-uniform, according to [30], we have the inverse inequality,
as follows:

‖ w ‖1,∞,Ωi
≤ C

(
log

1
h

) 1
2
‖ w ‖1,Ωi

, ∀w ∈ Vh. (49)

Combining the definition of Eh with (41) and (49), we obtain

‖ uN − v ‖1,∞,Ωi
≤ 1.

This means that v ∈ Mh. By the definition of Ph, (43) can be rewritten as

D′
(

uN ; ψ(v)− PhuN , z
)
= −R

(
uN ; v, z

)
, ∀z ∈ Vh.

Then, by (40), Lemmas 5 and 6, we have

‖ ψ(v)− PhuN ‖1,Ωi≤ Csup
z∈Vh

|D′(u;ψ(v)−PhuN ,z)|
‖z‖1,Ωi

≤ C
(
‖ uN − v ‖2

1,Ωi
+ ‖ uN − v ‖1,Ωi

)
≤ C

(
‖ uN − PhuN ‖2

1,Ωi
+ ‖ PhuN − v ‖2

1,Ωi
+ ‖ uN − PhuN ‖1,Ωi + ‖ PhuN − v ‖1,Ωi

)
≤ C hσ.

This implies that ψ : Eh → Eh . �

Theorem 2. Suppose u ∈ V ∩ Wk,2+ε (Ωi) be a solution of problem (1), with ε > 0, k ≥ 2. And
we also assume that u|Γµ0

∈ Hk− 1
2
(
Γµ0

)
and u satisfies (39). With sufficiently small h, the finite

element Equation (30) has an approximate solution uN
h ∈ Vh, such that

‖ u− uN
h ‖1,Ωi≤ C

(
hσ +

1

(N + 1)k−1 e(µ0−µ1)
(N+1)π

α ‖ u ‖k− 1
2 ,Γµ0

)
. (50)

Proof. From Lemma 7 and Brouwer’s fixed point theorem, there exists uN
h ∈ Vh, such that

ψ
(
uN

h
)
= uN

h . By Lemma 5, we deduce that uN
h is a solution of (30). Furthermore, by (41)

and uN
h ∈ Eh, we obtain

‖ uN − uN
h ‖1,Ωi≤‖ uN − PhuN ‖1,Ωi + ‖ PhuN − uN

h ‖1,Ωi≤ Chσ. (51)

For any uN ∈ V, from Lemma 3, we have∣∣B(uN ; uN , v
)
− BN

(
uN ; uN , v

)∣∣
≤ Ce(µ0−µ1)

(N+1)π
α

(
∑+∞

n=N+1
(
1 + n2) 1

2 b2
n

) 1
2
(

∑+∞
n=N+1

(
1 + n2) 1

2 d2
n

) 1
2

≤ C 1
(N+1)k−1 e(µ0−µ1)

(N+1)π
α

(
∑+∞

n=N+1
(
1 + n2)k− 1

2 b2
n

) 1
2
(

∑+∞
n=N+1

(
1 + n2) 1

2 d2
n

) 1
2

≤ C 1
(N+1)k−1 e(µ0−µ1)

(N+1)π
α ‖ u ‖k− 1

2 ,Γµ0
‖ v ‖1,Ωi

.

It follows from (25) that

D
(
uN ; uN , v

)
= A

(
uN ; uN , v

)
+ B

(
uN ; uN , v

)
= F(v) + B

(
uN ; uN , v

)
− BN

(
uN ; uN , v

)
.
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Let η(t) = D
(
u + t

(
uN − u

)
; u + t

(
uN − u

)
, v
)
, we obtain

∫ 1

0
D′
(

u + t
(

uN − u
)

; uN − u, v
)

dt = D
(

uN ; uN , v
)
− D(u; u, v).

By (19), (38), (39) and [28], we have

‖ u− uN ‖ 1,Ωi ≤ Csup
v∈V

∫ 1
0 D′(u+t(uN−u);uN−u,v)dt

‖v‖1,Ωi

≤ C |B(uN ;uN ,v)−BN(uN ;uN ,v)|
‖v‖1,Ωi

≤ C 1
(N+1)k−1 e(µ0−µ1)

(N+1)π
α ‖ u ‖k− 1

2 ,Γµ0
.

(52)

Combining (51) with (52), we obtain

‖ u− uN ‖ 1,Ωi ≤‖ u− uN ‖ 1,Ωi+ ‖ uN − uN
h ‖ 1,Ωi

≤ C
(

hσ + 1
(N+1)k−1 e(µ0−µ1)

(N+1)π
α ‖ u ‖k− 1

2 ,Γµ0

)
.

This completes the proof. �

4. Numerical Examples

We computed three numerical examples using the method developed above to test
the effectiveness of the method.

Example 1. We take Ω = {(µ, ϕ)|µ >µ0, 0 < ϕ < 2π},Γ = {(µ, ϕ)|µ = µ0, 0 < ϕ < 2π},
Γ0 = {(µ, 0)|µ >µ0}, Γα = {(µ, 2π)|µ >µ0}, Γµ1 = {(µ1, ϕ)|µ1 >µ0, 0 < ϕ < 2π}, f0 = 1.5,

µ0 = 1 and a(x, u) = 1
1+u2 . The exact solution of original problem is u = tan 2 cosh µ cos ϕ

f0(cosh 2µ+cos 2ϕ)
.

Figure 3 shows Mesh h of subdomain Ωi (µ1 = 2). The numerical results are given in Table 1,
Figures 4 and 5.
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Figure 3. Mesh h of Ωi for Example 1.

Table 1. The errors against mesh for Example 1 (µ1 = 2, N = 20).

Mesh L2(Ωi) Error L∞(Ωi) Error

h 0.078260 0.034508
h/2 0.015860 0.008414
h/4 0.003546 0.002088
h/8 0.000840 0.000521
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Figure 5. L∞(Ωi) errors against µ1 for Example 1 (N = 20).

Example 2. We take Ω =
{
(µ, ϕ)|µ > µ0 , 0 < ϕ < 3π

2
}

,Γ = {(µ, ϕ)|µ = µ0 , 0 <

ϕ < 3π
2
}

, Γ0 = {(µ, 0)|µ > µ0}, Γα =
{(

µ, 3π
2
)
|µ > µ0

}
, Γµ1 = {(µ1 , ϕ)|µ1 > µ0 , 0 <

ϕ < 3π
2
}

, f0 = 1.5, µ0 = 1 and a(x, u) = 1√
1−u2 . The exact solution of original

problem is u = sin
4(cosh2 µ cos2 ϕ−sinh2 µ sin2 ϕ)

f 2
0 (cosh 2µ+cos 2ϕ)2 . Figure 6 shows Mesh h of subdomain

Ωi (µ1 = 2). The numerical results are given in Table 2, Figures 7 and 8.
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Table 2. The errors against mesh for Example 2 (µ1 = 2, N = 20).

Mesh L2(Ωi) Error L∞(Ωi) Error

h 0.064870 0.033738
h/2 0.011609 0.007163
h/4 0.002651 0.001776
h/8 0.000636 0.000444
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Figure 7. L∞(Ωi) errors against N for Example 2 (µ1 = 2).
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Example 3. We take Ω =
{
(x, y)

∣∣x2 + 2y2 > 2, y > 0
}

,Γ =
{
(x, y)

∣∣x2 + 2y2 = 2, y > 0
}
=

{(µ, φ)|µ = µ0, 0 < φ < π}, where f0 = 1 and µ0 = ln
(√

2 + 1
)

. Γ0 =
{
(x, 0)|x >

√
2
}

,

Γα =
{
(x, 0)

∣∣∣x < −
√

2
}

, Γµ1 = {(µ1, φ)|µ1 = 2, 0 < φ < π} and

a(x, u) =

{
4− x2 − y2 + 1√

1−u2 , 2 ≤ x2 + 2y2 ≤ 4,
1√

1−u2 , x2 + 2y2 > 4,

f (x) =

{
4−x2−y2

(x2+y2)
2 sin x

x2+y2 − 2x
x2+y2 cos x

x2+y2 , 2 ≤ x2 + 2y2 ≤ 4,

0, x2 + 2y2 > 4.
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The exact solution of original problem is u = sin x
x2+y2 . Figure 9 shows Mesh h of

subdomain Ωi. The numerical results are given in Table 3, Figures 10 and 11.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 16 
 

The exact solution of original problem is 𝑢 = sin . Figure 9 shows Mesh ℎ of 
subdomain Ω . The numerical results are given in Table 3, Figures 10 and 11. 

 
Figure 9. Mesh ℎ of Ω  for Example 3. 

Table 3. The errors against mesh for Example 3 (𝑁 = 10). 

Mesh 𝑳𝟐(𝛀𝒊) Error 𝑳 (𝛀𝒊) Error ℎ 0.091740 0.054584 ℎ/2 0.018287 0.013246 ℎ/4 0.004044 0.003287 ℎ/8 0.000950 0.000820 

 
Figure 10. The errors on the artificial boundary against mesh for Example 3 ( 𝑁 = 10). 

 
Figure 11. The errors on the artificial boundary against 𝑁 for Example 3 (Mesh ℎ/8). 

The numerical experiments show that the errors can be reduced by refining the fi-
nite element mesh, increasing the order of the artificial boundary condition or enlarging 

0 0.5 1 1.5 2 2.5 3 3.5
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

φ

u hN ( μ
1, φ

)-u
( μ

1, φ
)

h
h/2
h/4
h/8

0 0.5 1 1.5 2 2.5 3 3.5
-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

φ

u hN ( μ
1, φ

)-u
( μ

1, φ
)

N=1
N=5
N=10
N=100

Figure 9. Mesh h of Ωi for Example 3.

Table 3. The errors against mesh for Example 3 (N = 10).

Mesh L2(Ωi) Error L∞(Ωi) Error

h 0.091740 0.054584
h/2 0.018287 0.013246
h/4 0.004044 0.003287
h/8 0.000950 0.000820
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The numerical experiments show that the errors can be reduced by refining the finite
element mesh, increasing the order of the artificial boundary condition or enlarging the
location of the artificial boundary. Numerical experiments are identical with the theoretical
analysis and show that the proposed method is very effective.
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5. Conclusions

In this paper, we propose an artificial boundary method using elliptical arc artificial
boundary for exterior quasilinear problems in concave angle domains. Based on the
Kirchhoff transformation, we obtain the exact and a series of approximate boundary
conditions. We formulate the finite element approximation in a bounded region using the
approximate elliptical arc artificial boundary condition. We also provide error estimates
depend on the finite element mesh, the order of the artificial boundary condition and the
location of artificial boundary. Our numerical examples show the efficiency of our method.

An elliptical arc artificial boundary is advantageous in that it may be used to enclose
slender obstacles with a concave angle efficiently, so that only a small computational
domain in the immediate vicinity of the obstacle is need. It is much better than the
circular arc one since it does not increase the computational complexity of the stiff matrix
from artificial boundary. Using the elliptical arc boundary condition we proposed in this
paper, one can design other numerical methods, for example, the non-overlapping and
overlapping domain decomposition methods to solve the exterior quasilinear problems in
concave angle domains. The results in this paper extend many related results about the
numerical methods for quasilinear problems in unbounded domains.
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