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Abstract: A shortest path P of a graph G is maximal if P is not contained as a subpath in any other
shortest path. A set S ⊆ V(G) is a maximal shortest paths cover if every maximal shortest path
of G contains a vertex of S. The minimum cardinality of a maximal shortest paths cover is called
the maximal shortest paths cover number and is denoted by ξ(G). We show that it is NP-hard to
determine ξ(G). We establish a connection between ξ(G) and several other graph parameters. We
present a linear time algorithm that computes exact value for ξ(T) of a tree T.
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1. Introduction and Preliminaries

Distance is one of essential terms in mathematics and has inspired many important
results in different areas of mathematics. As the concept comes from real life, this gives rise
to several applications. A theoretical model for a possible scenario of such an application
is presented also in this work. Consider a complex system that can be modeled by a
graph. When it is not possible to control every part of a system, usually due to technical or
economical reasons, one would like to position the control points to strategic places of the
underlying graph. We propose here to put these controls into the particular elements of
the system, represented by vertices of a graph, in such a way that all the maximal shortest
paths of the graph can be monitored and controlled from these elements.

In this work we consider finite simple graphs. Let G be a graph and u, v be vertices of
G. The distance between two vertices u, v ∈ V(G) is the minimum number of edges on a
path that starts at u and ends at v and is denoted by dG(u, v) or for short d(u, v). A vertex
x ∈ V(G) strongly distinguishes vertices u and v of G if u is on a shortest path between x
and v or v is on a shortest path between x and u. Set S is a strong metric generator if for
any pair u, v of different vertices of G there exists x ∈ S such that x strongly distinguishes
u and v. The minimum cardinality of a strong metric generator is called the strong metric
dimension of G and is denoted by sdim(G). The strong metric dimension was introduced
in [1], but later, in [2], Oellermann and Peters-Fransen connected strong metric dimension
with so-called mutually maximal distant pairs of vertices. Vertices u and v form such
a pair if the distance between v and every neighbor w of u does not exceed d(u, v) and
symmetrically if the distance between u and every neighbor w of v does not exceed d(u, v).
But this simply means that a shortest path P between u and v is a maximal shortest path,
meaning that P is not included in any other longer shortest path as a subpath.

In [2] the authors also showed that sdim(G) is the minimum number of vertices that
cover every mutually maximal distant pair of vertices. This approach was later more
developed in several other papers (see, e.g., [3–7] for a flavor). Here we relax the conditions
mentioned above and we only require that all maximal shortest paths in a graph are covered.
One can wonder whether this requirement really leads to a relaxation. Indeed, there could
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be many shortest paths between the same pair of vertices. However, we can always take
one vertex of a considered pair of vertices and it obviously lies on all maximal shortest
paths between them in G. Hence, in this way we can cover all maximal shortest paths
with a set of cardinality sdim(G). Therefore, our approach actually yields to a relaxation of
maximal distant pair cover.

Such an approach is also a generalization of another well-known concept, namely the
vertex cover number of a graph G that belongs to the essential 21 NP-complete problems
described by Karp in [8]. We recall that the vertex cover number β(G) is the minimum
number of vertices that cover all edges of a graph G. Here we need to limit ourselves to
graphs without isolated vertices, because every isolated vertex forms a maximal shortest
path of length zero, but it does not contribute to β(G). On the other hand, every other
maximal shortest path contains at least one edge e ∈ E(G) and at least one end-vertex
of e must be contained in a vertex cover of G. The other generalization of the minimum
vertex cover was introduced in [9]. The k-path vertex cover number ψk(G) denotes the
minimum cardinality of a minimal set of vertices of G that have a non-empty intersection
with a vertex set of every path of order k. One can easily see that ψ1(G) and ψ2(G) coincide
with the order of G and β(G), respectively. For results concerning k-path vertex cover
for product of graphs see, e.g., [10–12] and relationships to other invariants can be found
in [13].

The same topic as it is considered in this paper was recently studied in [14] under the
name The geodesic-transversal problem. Some results from the mentioned paper overlap
with the results from this work; however, the used methods are different. The other results
on maximal shortest paths cover can be found in [15], where the maximal shortest paths
cover number is investigated for the joins and lexicographic products of two graphs.

A wheel graph Wn, n ≥ 4, is a graph obtained from a cycle Cn−1 = v1 . . . vn−1v1 by
adding a new vertex u and edges viu for every i ∈ {1, . . . , n− 1}. The vertex u of Wn is
universal and is called the central vertex of Wn. A star Sk, k ≥ 2, is a special kind of complete
bipartite graph, namely K1,k−1. For some positive integers k, t1, . . . , tk a generalized star is
a graph St1,...,tk with the central vertex v of degree k and with St1,...,tk − v isomorphic to k
paths Pk1 , . . . , Pkt . It is easy to see that if t1 = · · · = tk = 1, then St1,...,tk

∼= Sk.
A grid graph or a Cartesian product of two paths Pq�Pr has vertices vi,j where

i ∈ {1, . . . , q} and j ∈ {1, . . . , r}. Two vertices vi,j and vk,` of Pq�Pr are adjacent if
either |i− k| = 1 and j = ` or i = k and |j− `| = 1. In [7] (see Proposition 30) among other
results, also the strong metric dimension of grids was determined as

sdim(Pq�Pr) = 2. (1)

2. Definition and Complexity

A path between u and v of length d(u, v) is called a u, v-shortest path or a u, v-geodesic.
The diameter of G is denoted by diam(G) and is the length of a longest geodesic in G. A u, v-
geodesic P is said to be extendible if there exist vertices x, y in G such that {u, v} 6= {x, y}
and P is a subpath of a x, y-geodesic. If a path P is not extendible, then P is not contained in
any other shortest path and is therefore a maximal shortest path. If there exists a maximal
shortest path between u and v, then all u, v-geodesics are maximal shortest paths. The path
yxt at Figure 1 is extendible because it is a proper subpath of the path yxtv—a shortest
path between y and v. The path zxt is not extendible because it is not a proper subpath of
any shortest path of the graph.
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Figure 1. Black vertices form a maximal shortest paths cover.

A subset S of the set of vertices of a graph G is called a maximal shortest paths
cover if it has non-empty intersection with vertex set of every maximal shortest path of
G. The vertex set {z, t} at Figure 1 is the maximal shortest paths cover of the given graph
since the paths yxtv and yzuv and zxt are maximal shortest paths (i.e., the cardinality of
the cover must be at least 2) and the paths yx and uv are extendible.

The cardinality of a smallest maximal shortest paths cover in a graph G is denoted by
ξ(G) and is called the maximal shortest paths cover number of G. Every maximal shortest
paths cover of G of cardinality ξ(G) is called a ξ(G) set.

Let G and H be two graphs. The disjoint union of G and H is the graph G ∪ H that is
obtained from one copy of G and one copy of H. The following observation ensures that it
is enough to handle connected graphs. It holds because every maximal shortest path of
G ∪ H is contained either in G or in H.

Proposition 1. If G and H are arbitrary disjoint graphs, then ξ(G ∪ H) = ξ(G) + ξ(H).

We start with determining ξ(G) for some classic families of graphs to get a better grip
on the problem.

Proposition 2. If k is a positive integer, then

(i) ξ(Pk) = 1, k ≥ 1;
(ii) ξ(Ck) = 2, k ≥ 3;
(iii) ξ(Sk) = 1, k ≥ 2;
(iv) ξ(Kk) = k− 1, k ≥ 2, and ξ(K1)=1;
(v) ξ(W4) = 3, ξ(W5) = 2 and ξ(Wk) = d k−1

3 e+ 1, k ≥ 6.

Proof.

(i) A path Pk contains exactly one maximal shortest path and any vertex of Pn is its
maximal shortest paths cover. Therefore, ξ(Pk) = 1.

(ii) Let Ck = v1 . . . vkv1. A path P is a maximal shortest path of Ck if and only if P is of the

length t =
⌊

k
2

⌋
. Suppose that ξ(Ck) = 1 and that, with the possible change of notation,

{v1} is a maximal shortest paths cover. Path v2v3 . . . vt+2 is of length t and does not
contain v1, a contradiction. Hence, ξ(Ck) ≥ 2. On the other hand, set {v1, vt+1} is a
maximal shortest paths cover and ξ(Ck) = 2 follows.

(iii) Every maximal path of Sk contains the central vertex v of Sk and {v} is the maximal
shortest paths cover of Sk. Therefore, ξ(Sk) = 1.

(iv) Clearly, ξ(K1) = 1. In Kk, k ≥ 2, every edge is a maximal shortest path. Therefore,
ξ(Kk) ≥ β(Kk) = k− 1 for k ≥ 2. Conversely, any path of order 1 is extendible and
therefore any set of cardinality k− 1 is a maximal shortest paths cover set of Kk when
k ≥ 2. This yields ξ(Kk) = k− 1 for k ≥ 2.

(v) For k = 4 we have W4 = K4. For k = 5 it is easy to check that two consecutive vertices
of cycle C4 form a maximal shortest paths cover of W5 and that one vertex is not
sufficient to cover all maximal shortest paths of W5.

Let Ck−1 = v1 . . . vk−1v1 and let u be the central vertex of Wk, k ≥ 6. Notice that
every path of length two on Ck−1 is a maximal shortest path of Wk. This means that
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at least one vertex among three consecutive vertices of Ck−1 must be in every maximal
shortest paths cover of Wk. Hence, ξ(Wk) ≥ d k−1

3 e. Moreover, u is on a maximal shortest
path between any two non-consecutive vertices of Ck−1. As k ≥ 6 there always exist two
non-consecutive vertices of Ck−1 that are not in a subset of V(Ck−1) of cardinality d k−1

3 e.
Therefore, ξ(Wk) ≥ d k−1

3 e+ 1. To show the equality ξ(Wk) = d k−1
3 e+ 1 one needs to show

that {u, v1, v4, . . . , v3d k−1
3 e−2} is a maximal shortest paths cover, which is clear from the

previous analysis of all maximal shortest paths of Wk.

Next we deal with the complexity of the Maximal Shortest Paths Cover Problem (or
MSPC problem for short) that is defined as follows.

Maximal Shortest Paths Cover Problem (MSPC problem)
INSTANCE: A graph G of order n ≥ 3 and an integer 1 ≤ r ≤ n− 1.
QUESTION: Is ξ(G) ≤ r?

Since the maximal shortest paths cover is a generalization of some well known prob-
lems that are NP-complete, it is not very surprising that MSPC problem is NP-complete
as well.

Theorem 1. MSPC problem is NP-complete.

Proof. Let us reduce the well-known Vertex Cover Problem to MSPC problem. Let G be
an instance of the Vertex Cover Problem without isolated vertices. We construct G∗ by
attaching a pending edge to every vertex of G.

Let S be a minimum vertex cover of G. Evidently it covers all shortest paths of the
original graph G. Moreover, if a shortest path of G∗ is not extendible, then it must contain
at least one edge from G. Therefore, it is covered by S.

On the other hand, for every edge e of the original graph G there is a maximal shortest
path between new vertices of G∗ of length three containing e and no other edge belonging
to G. Therefore, any maximal shortest paths cover must contain at least one vertex from
such a path and evidently we can choose an end-vertex of e. In such a manner we obtain
a maximal shortest paths cover of G∗ that is simultaneously a minimum vertex cover
of G.

3. General Bounds

First we present relationships of ξ(G) to the both invariants which we used for
a motivation in Introduction. We remind that these two invariants are strong metric
dimension sdim(G) and vertex cover number β(G). We start with the latter one.

Proposition 3. If G is a graph without isolated vertices, then

ξ(G) ≤ β(G).

Proof. Evidently, every shortest path in G must be of order at least two and therefore it
contains at least one vertex from the vertex cover.

The previous bound is sharp and it is obtained for stars and for complete graphs.
On the other hand, β(G) can exceed ξ(G) with an arbitrary big difference. Such a difference
can be achieved even for paths and cycles.

The next proposition provides another bound for ξ(G).

Proposition 4. If G is a graph without isolated vertices, then

ξ(G) ≤ sdim(G).
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Proof. Let P be any maximal shortest path of G and let S be an sdim(G) set. As it was
mentioned in the first section, S must contain at least one end-vertex of P. Since P was
chosen arbitrary, this means that S is also a maximal shortest paths cover of G and the
result follows.

The above bound is sharp for paths and complete graphs. The difference between
sdim(G) and ξ(G) can be arbitrary large as we can see it on even cycles where sdim(C2k)−
ξ(C2k) = k − 2. Stars present another example with big difference between sdim(G)
and ξ(G).

Next we provide a classification for all graphs with ξ(G) = 1.

Theorem 2. Graph G has ξ(G) = 1 if and only if G is isomorphic to St1,t2,...,tk for some positive
integers k, t1, t2, . . . , tk.

Proof. It is easy to verify that ξ(St1,t2,...,tk ) = 1.
On the other hand, let ξ(G) = 1 and suppose that {v} covers all maximal short-

est paths.
If G is not connected, then at least one component does not contain v and obviously any

maximal shortest path from this component is not covered by v. Therefore, G is connected.
Assume first that G is a tree. Moreover, suppose that G has more than one vertex of

degree at least three. If x and y are two such vertices with maximum possible distance
in G, then G− x contains at least two components that are isomorphic to paths and end
with leaves `1 and `2, respectively. Similarly, G − y contains at least two components
that are isomorphic to paths and end with leaves `3 and `4, respectively. The choice of
x and y implies that `1, `2, `3, `4 are pairwise different. The unique `1, `2-geodesic and
`3, `4-geodesic are disjoint and they are maximal shortest paths of G. Hence, v cannot
belong to both, a contradiction. Therefore, either G is a path or contains exactly one vertex
w of degree at least three. In both cases G is isomorphic to some St1,t2,...,tk .

Assume now that G contains a cycle. Let us denote by Ct = x1x2 . . . xtx1, t ≥ 3 a
shortest cycle of G. Firstly suppose that v belongs to Ct. Without loss of generality we can
assume that v = x1. Let i = 1 +

⌈ t
4
⌉

and j = 1 +
⌈ t

4
⌉
+
⌊ t

2
⌋
. There exists the shortest path

P on Ct between xi and xj that does not contain x1. Since Ct is a shortest cycle, P is also
a shortest xixj-path in G. If P is a maximum shortest path, then we have an immediate
contradiction as v /∈ V(P). Hence, let P′ be a maximal shortest path that contains P. Since
{x1} is the maximum shortest paths cover we know that x1 ∈ V(P′). If xj is between xi and
x1 on P′, then dP′(x1, xi) >

⌊ t
2
⌋
≥
⌈ t

4
⌉
= dG(x1, xi), a contradiction with the existence of

P′. Symmetrically we obtain a contradiction when xi is between xj and x1 on P′. Therefore,
v is not a vertex of Ct.

Let Q be a shortest path between v and Ct. With a possible suitable modification
of notation, we may assume that x1 is the other end-vertex of Q. Let now P be the
shortest path on Ct between x2 and xt. If t = 3, then P is the edge x2xt. When t = 4 we
have two shortest paths between x2 and xt on Ct and let P be the one that contains x1.
Moreover, if t > 4, then P contains x1. Now, P is not a maximal shortest path because
v is not on P. Let P′ be a maximal shortest path through v that contains P as a subpath.
Without loss of generality we may assume that x2 is closer to v than xt on P′. If t ≥ 4, then
dQ(v, x1) ≤ dP′(v, x2) and with this dG(v, xt) ≤ dQ(v, x1) + 1 < dP′(v, xt) = dP′(v, x2) + 2,
a contradiction with P′ being a shortest path. Hence, t = 3. If dQ(v, x1) < dP′(v, x2), then
dG(v, xt) ≤ dQ(v, x1) + 1 < dP′(v, xt) + 1, which provides the same contradiction as before.
Therefore, we have dQ(v, x1) = dP′(v, x2). Now the edge x1x2 is a maximal shortest path
itself or it is properly contained in some maximal shortest path R that does not contain v.
However, this is not possible since {v} is a maximal shortest paths cover of G. This means,
that G with ξ(G) = 1 does not contain any cycle and we are done.

Proposition 4, together with (1) and Theorem 2 directly imply the following result on
grid graphs.
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Corollary 1. For positive integers q, r ≥ 2, ξ(Pq�Pr) = 2.

The following proposition provides us another useful bound on ξ(G).

Proposition 5. For every graph G the following is true:

ξ(G) ≤ |V(G)| − diam(G).

Proof. Let P be a diametrical path of G. Set S contains all the vertices outside P and one
vertex of P. Clearly P is covered by S. Every maximal shortest path different than P
contains a vertex outside of P that belongs to S. Hence, S is a maximal shortest paths cover
of cardinality |V(G)| − diam(G) and the result follows.

From Theorem 2 we also deduce the following connection.

Corollary 2. If a graph G is 2-connected, then ξ(G) ≥ 2.

In the light of the previous corollary one can ask whether similar relationship is valid
also for higher degrees of connectivity. However, one can easily see that such an extension
is not true. Indeed, by Proposition 2 we have ξ(W5) = 2 and evidently W5 is 3-connected.

4. Trees

A vertex v of degree at least 3 in a tree T is called a support if there exists at least one
path component in T − v. Clearly such a path component of T − v ends in a leaf ` and we
say that ` corresponds to a support v. A support v is a light support if it has just one path
component in T− v, otherwise it is called a strong support. Notice that the term support is
often used for neighbors of leafs in other publications, while we use it for the vertex that is
closest to a leaf and has degree at least three. Paths have no support vertices and the star
Sq has one strong support vertex when q ≥ 3. It is an easy observation that every tree is
either a path or it contains a strong support vertex. We can immediately bound ξ(T) as it is
shown next. A tree T shown in Figure 2 has two strong supports u and w and one weak
support v.

u v w

Figure 2. Caterpillar with one weak support v and two strong supports u and w.

Theorem 3. Let k, `, r, q be non-negative integers. Let T be a tree different from a path having k
strong supports v1, . . . , vk and ` light supports. If T− {v1, . . . , vk} contains r components with at
least one light support of T and q components with at least two light supports of T, then

k + q ≤ ξ(T) ≤ k + `− r.

Proof. Every maximal shortest path in a tree is a path between two leaves. Let S and L
be the sets of strong and light supports of T, respectively. Further let L′ be a set obtained
from L by deleting one light support from every component of T − S that contains a light
support. Let x and y be arbitrary leaves. The x, y-geodesic P in T contains at least one
support. Moreover, if the number of supports on P is exactly one then x and y correspond
to the same strong support. Hence, the set S ∪ L′ covers P when P contains exactly one
(strong) support. Similarly, P is covered by S ∪ L′ when P contains at least one strong
support. So suppose that V(P) ∩ S = ∅. Now P contains at least two light supports, which
means that both light supports are in the same component of T− S and at least one of them
is in L′. Hence, P is again covered by S ∪ L′ and the upper bound follows.
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Let now D be a ξ(T) set. Let v be a strong support vertex of T. Let P1 and P2 be two
path components of T − v and let `1 and `2 be leaves of T that correspond to v and belong
to P1 and P2, respectively. Path P in T that starts at `1 and ends at `2 is a maximal shortest
path containing exactly one vertex of degree three, namely v. As D is a ξ(T) set, there
exists a vertex from D that belongs to P. Hence, for every strong support vertex we have at
least one vertex in D. Moreover, as follows from the previous analysis and the definition
of strong supports, these vertices are pairwise different. Let D′ be set obtained from D by
deleting all vertices that correspond to strong support vertices. Now, let us consider an
arbitrary component of T − S that contains at least two light supports, say u and v. Let
x and y be the leaves that correspond to u and v, respectively. Evidently, no vertex from
D− D′ lies on the x, y-geodesic. Hence, for every component of T − S with at least two
light supports we need at least one additional vertex in D′. Hence, ξ(t) ≥ k + q and we
are done.

Last theorem immediately implies the result for trees without light supports.

Corollary 3. If T is a tree with k > 0 strong supports and without light supports, then ξ(T) = k.

Let T be a tree. By T− we denote the forest of paths obtained from T by deleting all
vertices of degree at least three. Let v be a strong support of T. The star neighborhood of v,
denoted by SNT(v), contains v and all the vertices belonging to path components of T−

that containins a neighbor of v in T.
Let v1 be a leaf of T that corresponds to a strong support u. We order V(T) by BFS

algorithm that starts at v1. In addition, we adjust BFS algorithm in such a way that for a
vertex x it remembers also its closest ancestor (with respect to the constructed order) of
degree more than two whenever such an ancestor exists and keeps it in a(x). When such
an ancestor does not exist, for all the vertices on the v1, u-geodesic we set a(x) = u for
x 6= u and a(u) = v1. Hence, after the completion of the run of the designed algorithm,
each variable a(`), associated with a leaf `, possesses the reference to the corresponding
support of `. Those vertices that appear more than once among the values a(`), ` is any
leaf, are strong supports and those which appear only once are light supports.

Now, let us restrict our attention to all the vertices of T of degree at least three
accompanied with v1. For these vertices reverse the order constructed by the enhanced
BFS algorithm. We put them in list A together with information whether they are strong
or light supports or no supports at all. This can be achieved with two Boolean functions
s(x) and `(x) where s(x) = 1 means that x is a strong support and `(x) = 1 that x is a light
support. If s(x) = 0 = `(x), then x is not a support vertex. Moreover, the state s(x) = 1
means that `(x) = 0 and vice versa. Clearly, A ends with v1.

Let x be the first vertex from A and T′ = T − SNT(x). If T contains more than one
vertex of degree three, then T′ is a tree and exactly one of the following cases occurs:

(a) a(x) is a strong support of T with deg(a(x)) > 3 and it is a strong support of T′ as
well;

(b) a(x) is a light or strong support of T with deg(a(x)) = 3 and is a vertex of degree two
in T′ — the later case occurs only when T has exactly two vertices of degree at least
three;

(c) a(x) is a light support of T with deg(a(x)) > 3 and is a light support of T′ as well;
(d) a(x) is not a support of T and is not a support of T′.

In particular, (b) means that the ancestor of y of degree at least three that is closest to
a(x) in T′, i.e., y = a(a(x)) if it exists, either becomes a light support (providing y was not
a support vertex of T) or becomes a strong support (whenever y was a support of T). In the
special case, when T has exactly two vertices of degree at least three and one of them, say
u, that is closer to v1, has degree three, then T′ is a path. It is also worth to mention that in
the case (d) the vertex a(x) has degree two in T′ providing deg(a(x)) = 3 in T. Therefore,
in such a case one needs to delete a(x) from A (see the first condition in if sentence in the
line 6 of Algorithm 1).
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For an arbitrary tree T the value ξ(T) and the corresponding ξ(T) set D are computed
in the main loop of Algorithm 1. The loop is repeated while A is not empty and, in addition,
in every step we adjust the parameters s(a(a(x))), `(a(a(x))) and a(x) when needed. If the
processed vertex satisfies the conditions described in the cases (a), (c) or (d), then nothing
needs to be done (except, as it is explained above, for case (d) and deg(a(x)) = 3). If we
have the case (b), then a(x) is a vertex of degree two in T′ and we change the value a(x) to
a(a(x)) in the leaf t that corresponds to a(x) in T, i.e., a(t) = a(a(x)) after this operation.
However, one can avoid this and just adopt the status of a(a(x)) directly, see if sentences in
lines 9–11 and 12–14 of Algorithm 1 for this.

Algorithm 1: Computing ξ(T) of a tree T.
Data: A tree T and a leaf v1 that corresponds to a strong support or v1 being an

end-vertex of the path T.
Result: Maximal shortest paths cover number ξ(T) = z and a ξ(T) set D.

1 z = 0, D = ∅
2 Make a list A containing v1 and all vertices of degree at least three of T in reverse

order as was constructed by the enhanced BFS algorithm and for each vertex in
the list compute also s(x), `(x) and a(x)

3 while A is non-empty do
4 for the first vertex x from A do
5 D ← x, z = z + 1 and A = A− x
6 if deg(a(x)) = 3 or a(x) = v1 then
7 A = A− a(x)
8 end
9 if a(x) 6= v1 and `(a(x)) = 1 and `(a(a(x))) = 1 then

10 `(a(a(x))) = 0 and s(a(a(x))) = 1
11 end
12 if a(x) 6= v1 and `(a(x)) = 1 and s(a(a(x))) = 0 then
13 `(a(a(x))) = 1
14 end
15 end
16 end

We need to consider also the second condition in if sentence of line 6 of Algorithm 1.
If a(x) = v1, then v1 corresponds to x and all maximal shortest paths that starts at v1
contain x. Therefore, we delete v1 from A. However, it is possible that v1 corresponds to
a(x), where a(x) is a strong support of T with exactly two leaves corresponding to a(x).
This means that the maximal shortest path between v1 and the other leaf that corresponds
to a(x) is not covered yet. In such a case v1 remains in A and it is added to D in the last
step of the algorithm. Since v1 belongs to A, Algorithm 1 works correctly also for paths.

Next we prove the correctness and estimate the time complexity of Algorithm 1.

Theorem 4. Algorithm 1 correctly computes ξ(T) and ξ(T) set D for any tree T in O(n) time
where n = |V(T)|.

Proof. Let T be a tree and let S = {u1, . . . , uk} be all strong support vertices of T ordered
by BFS algorithm starting from a leaf v1 (the ordering is arbitrary but fixed). We prove the
correctness of Algorithm 1 by induction on the number ` of light support vertices of T.

Let first ` = 0. We prove the basis again by induction on the number k of strong
supports of T. If T has also no strong supports, then T ∼= Pr and the output of Algorithm 1
is z = 1 and D = {v1} which is correct. If T has exactly one vertex of degree at least three,
then T is a generalized star and we have ξ(T) = 1 and D = {u1} by Theorem 2. The same
result is obtained by Algorithm 1, because line 5 is executed exactly once and v1 is deleted
from A in line 7.
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Let now k > 1 and let T′ = T − SNT(uk). As there are no light support vertices in
T, we have, by (a), (b) and (d) no new supports in T′. Hence, T′ has at most k− 1 strong
supports (and no light supports) and Algorithm 1 correctly computes ξ(T′) and ξ(T′) set D′.
It is not hard to see, that D′ = S− {uk} when deg(u1) > 3 and D′ = (S− {u1, uk}) ∪ {v1}
when deg(u1) = 3. By Corollary 3 we have ξ(T′) = k− 1 and ξ(T) = k. For T Algorithm 1
gives z = ξ(T′) + 1 = k and D = D′ ∪ {uk}. So, Algorithm 1 correctly computes ξ(T) and
ξ(T) set D for a tree T without light supports.

Suppose now that T has ` ≥ 1 light supports and let w be the last light support in
the fixed BFS order of T. By the assumption on input, v1 corresponds to a strong support
which is different from w. Let uj1 , . . . , ujp be all descendants of w that belong to S ordered
by the fixed BFS ordering. For T0 = T we define inductively Ti = Ti−1 − SNTi−1(uk−i+1)
for i ∈ {1, . . . , k − j1 + 1}. So, we end with Tk−j1+1 and let T′ = Tk−j1+1. At this stage
k− j1 + 1 strong supports were already processed by Algorithm 1, which means that z =
k− j1 + 1 and D = {uj1 , uj1+1, . . . , uk}. In particular, notice that in the last step a(uj1) = w,
degTk−j1

(w) = 3 and the case (b) occurs for w. Hence, T′ has one light support less than

T and, by the induction hypothesis, Algorithm 1 correctly computes ξ(T′) and ξ(T′) set
D′. Therefore, at the end of the run of the algorithm we obtain z = ξ(T′) + k− j1 + 1 and
D = D′ ∪ {uj1 , uj1+1, . . . , uk}.

It remains to show that ξ(T) = z where D is a ξ(T) set as |D| = z. For this notice that
the path between two leaves x and y that belongs to some T′ is covered by D′ by induction
hypothesis. Otherwise, a shortest path between x and y contains a strong support us for
some s ∈ {j1, j1 + 1, . . . , k} and is also covered by D. Hence, ξ(T) ≤ z. Conversely, we
can show as in the proof of Theorem 3 that for every strong support ui there must be a
vertex from a shortest path between two leaves corresponding to ui in every ξ(T) set. So,
if ξ(T) < z, then we have |D1 ∩V(T′)| < ξ(T′) for a ξ(T) set D1. Thus D1 ∩V(T′) is not
a ξ(T′) set and there exist two leaves x and y of T′ such that the x, y-geodesic P is not
covered by D1 ∩V(T′). But then P is not covered by D1 in T, a contradiction. Therefore,
ξ(T) ≥ z and the equality follows.

For the time complexity notice that adjusted BFS algorithm can be computed in linear
time O(n). For every vertex of list A Algorithm 1 performs constant number of operations
(three in line 6 and either one in line 7 or two in line 10 or one in line 13). As there are less
then n vertices in A the time complexity is linear.

The previous theorem enable us to show that the maximal shortest paths cover number
of an (induced) subgraph can exceed the maximal shortest paths cover number of the
original graph, that is ξ(G) is not monotone with respect to taking neither subgraphs nor
induced subgraphs (see [16,17]). A tree T is a caterpillar if the path Pk, called the spine,
remains after deleting all leaves from T. Let t1, . . . , tk be non negative integers where
t1, tk > 0. We denote by CTPk(t1, . . . , tk) the caterpillar with the spine Pk and ti leaves
attached to the i-th vertex of the spine for i ∈ {1, . . . , k}. A caterpillar CTPk(2, 0, 1, 0, 2) is
depicted in Figure 2.

Corollary 4. The parameter ξ(G) is not monotone neither with respect to taking subgraphs nor to
taking induced subgraphs.

Proof. We have ξ(Pq�Pr) = 2 by Corollary 1. However, the caterpillar CTPq(2, 2, . . . , 2)
is a subgraph of the graph Pq�Pr when r ≥ 3 and we have ξ(CTPq(2, 2, . . . , 2)) = q by
Theorem 4. Similarly, CTPq(2, 0, 2, 0, . . . , 0, 2) is an induced subgraph of Pq�Pr for an odd q
and, according to Theorem 4, we have ξ(CTPq(2, 0, 2, 0, . . . , 0, 2)) = q+1

2 .

The result on tress allows us to describe also the relationship of ξ(G) to the invariant
k-path vertex cover number ψk(G). By Proposition 4 we already have ξ(G) ≤ β(G) = ψ2(G).
However, this inequality cannot be extended for higher values of k.

Proposition 6. If C is a positive constant and k ≥ 4 an integer, then
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(i) there exists a graph G with ψk(G)− ξ(G) > C;
(ii) there exists a graph G with ξ(G)− ψk(G) > C.

Proof. For the first statement it is sufficient to consider the path Pn for sufficiently large n.
We have already shown by Proposition 2 that ξ(Pn) = 1 and by [10] we have ψk(Pn) = b n

k c.
For the second statement consider the caterpillar G ∼= CTPn(2, 2, . . . , 2) of order 3n.

The maximal shortest paths cover of G is formed by n vertices of spine by Theorem 4 and
we have ξ(G) = n. On the hand ψk(G) ≤ b n

2 cwhenever k ≥ 4. This means ξ(G)−ψk(G) ≥
n− b n

2 c ≥ n− n
2 = n

2 and for sufficiently large n we obtain the desired result.

Notice that the first item of the above proposition holds also for k ∈ {2, 3}. The exam-
ple G ∼= CTPn(2, 0, 2, . . . , 0, 2) for an odd n shows that equality ξ(G) = ψ3(G) is attainable.
In contrast we have ξ(Kr) = r− 1 > r− 2 = ψ3(K3). Clearly, the inequality ξ(G) > ψ2(G)
is not attainable, by Proposition 3, for a connected graph G as ψ2(G) = β(G).
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