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Abstract: Linear fractional programming has been an important planning tool for the past four
decades. The main contribution of this study is to show, under some assumptions, for a linear
programming problem, that there are two different dual problems (one linear programming and one
linear fractional functional programming) that are equivalent. In other words, we formulate a linear
programming problem that is equivalent to the general linear fractional functional programming
problem. These equivalent models have some interesting properties which help us to prove the
related duality theorems in an easy manner. A traditional data envelopment analysis (DEA) model is
taken, as an instance, to illustrate the applicability of the proposed approach.

Keywords: linear fractional programming; linear programming; duality; data envelopment analysis (DEA)

1. Introduction

Fractional programming has been attracting the attention of a fair number of re-
searchers all over the world (see [1]). The author of [2] presented the last bibliography with
520 entries, mainly from the period 1997–2019, which emphasizes the amount of effort that
has been made in the field. This bibliography is an extension of eight other bibliographies
previously published by him. Some researchers have been studying the role of duality
in fractional programming. The authors of [3] dealt with programming with linear frac-
tional functionals and utilized a transformation of variables to obtain an equivalent linear
programming form of general linear fractional programming. The author of [4] studied
the duality for a special class of linear fractional functionals programming problem where
its dual is a linear programming problem. The authors of [5] showed that the dual of a
linear fractional program, under some assumptions, is itself a fractional linear program.
The author of [6] investigated the primal–dual relation in linear fractional programming
when the constraints are in an equation form. It was concluded that some primal–dual
relations in such problems may not hold. The author of [7] extended a dual linear fractional
program of a given linear fractional program which resulted in necessary and sufficient
conditions for the optimality of a given feasible solution. The authors of [8] extended
the duality in linear fractional programming and developed a dual linear programming
model for a general maximization linear fractional functionals programming problem.
They proved duality theorems in linear fractional functionals programming. The authors
of [9] and [10] extended fuzzy duality in linear fractional programming problems under
uncertainty. Recently, the author of [11] presented a linear fractional programming problem
and its dual problem under a fuzzy environment using hyperbolic membership functions.

In this paper, we first show that the dual linear programming model of the dual model
proposed by [8] is the same linear programming model that was formulated by [3] as
an equivalent model of linear fractional functionals programming problems. Next, we
utilize some interesting properties obtained in this study and also the duality properties
to prove (in an easy manner) that the linear programming and linear fractional functional
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programming models are equivalent. There is an involutory property of duality in linear
programming which states that the dual of the dual is the original (primal) model (see [12]).
We show that in linear fractional functional programming the dual of the dual is also a
model that is equivalent to the original model. We use a numerical example to show the
applicability of the proposed linear programming model.

As a special case of the general maximization linear fractional functional programming
problem, we consider the well-known data envelopment analysis (DEA) approach. DEA,
originated by [13], is an operations research method to evaluate the efficiency score of a
set of similar decision-making units (DMUs) in which each DMU uses multiple inputs to
produce multiple outputs. DEA assigns a weight (multiplier) to each input and output and
to evaluate the efficiency score of a specific DMU, finds the maximum ratio of the weighted
sum of outputs to the weighted sum of inputs subject to the condition that the same ratio
for all DMUs must be less than or equal to unity.

2. Related Work

Consider the following general linear fractional programming:

maximize f (x) = cx+α
dx+β

subject to x ∈ XF
where XF = {x : Ax ≤ b, x ≥ 0n}

(1)

Here, A =
[
aij
]

m×n is the constraint (technology) matrix, x =

 x1
...

xn

 is the decision

variable vector, b =

 b1
...

bm

 is the right-hand side column vector, c = (c1, . . . , cn) and

d = (d1, . . . , dn) are row vectors, α and β are arbitrarily scalar constants, and 0n is the origin
in Rn. It is assumed that dx + β > 0 for all x ∈ XF, the objective function is continuously
differentiable, and that the feasible region XF is regular (nonempty and bounded).

The authors of [8] formulated the following linear programming and proved that it is
the dual of general linear fractional programming (1):

minimize g(y, z) = z
subject to (y, z) ∈ XD

where XD =
{
(y, z) : ATy + dTz ≥ cT,−bTy + βz = α, y ≥ 0m, z free

} (2)

Here, the symbol T denotes transposition, y =

 y1
...

ym

 is a decision variable vector,

and z ∈ R is a decision variable. The authors of [8] stated and proved the well-known
weak duality and complementary slackness theorems for models (1) and (2).

3. Dual of the Dual in Linear Fractional Programming

This section shows that in contrast to linear programming where the dual linear
program is itself a linear program, the dual linear fractional programming problem is not
necessarily a linear fractional programming problem. The linear programming of model (2)
is the dual of the general linear fractional programming (1) (see [8]). We first formulate the
dual linear programming of model (2) to obtain the following linear programming problem
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and then show that the following model is equivalent (not necessarily equal) to the general
linear fractional programming (1):

maximize h(x, λ) = cx + αλ
subject to (x, λ) ∈ XL

where XL = {(x, λ) : dx + βλ = 1, Ax− λb ≤ 0m, x ≥ 0n, λ free}
(3)

As a result, there are two various models which are the dual of the dual model (2), i.e.,
linear fractional programming (1) and linear programming (3) problems. In other words,
we can conclude that a linear programming model and a fractional programming model
might have a common dual problem. We utilize the dual model proposed by [8] to prove
that models (1) and (3) are equivalent. Toward this end, we first prove (x, 0) /∈ XL and
then state some interesting propositions which show the relationship between the feasible
regions and objective functions of the linear fractional programming problem (1) and linear
programming (3) problems.

Lemma 1. For all (x, λ) ∈ XL we have λ 6= 0.

Proof. Suppose that (x, 0) ∈ XL, then D = {x : dx = 1, Ax ≤ 0m, x ≥ 0n} is a nonempty
set. Subsequently, x ∈ D is a recession direction for XF (for more details about recession
direction, we refer the reader to [12]) which contradicts the given assumption that XF is
bounded. �

Referencing Lemma 1 helps us to validate the following corollaries:

Corollary 1. (x, λ) ∈ Rn+1 is a feasible solution of XL if and only if 1
λ x ∈ Rn is a feasible solution

of XF.

Corollary 2. x ∈ Rn is a feasible solution for XF if and only if
(

x
dx+β , 1

dx+β

)
∈ Rn+1 is a feasible

solution of XL.

Corollary 3. For a given x ∈ Rn in XF, f (x) = h
(

x
dx+β , 1

dx+β

)
.

Corollary 4. For a given (x, λ) ∈ Rn+1 in XL, h (x, λ) = f
( x

λ

)
.

According to Lemma 1 and the given assumptions for model (1), all denominators in
Corollaries 1–4 are nonzero. These corollaries help us to prove the following theorem.

Theorem 1. The linear programming model (3) and the general linear fractional programming (1)
are equivalent.

Proof. Let x∗ be an optimal solution for the general linear fractional programming (1). We
show

(
x∗

dx∗+β , 1
dx∗+β

)
is an optimal solution for the linear programming model (3). From

the optimality conditions for dual linear programming, there is an optimal solution for
model (2), say (y∗, z∗), in which f (x∗) = g(y∗, z). From Corollary 2,

(
x∗

dx∗+β , 1
dx∗+β

)
∈ XL

and clearly h
(

x∗
dx∗+β , 1

dx∗+β

)
= g(y∗, z). Hence,

(
x∗

dx∗+β , 1
dx∗+β

)
is an optimal solution for

model (3) and h
(

x∗
dx∗+β , 1

dx∗+β

)
= f (x∗).

Conversely, let (x∗, λ∗) be the optimal solution of the linear programming model (3).
We prove that 1

λ∗ x∗ is an optimal solution for the linear fractional programming (1). From
Corollary 1, 1

λ∗ x∗ ∈ XF, which leads to

f
(

1
λ∗

x∗
)
=

(c(x∗/λ∗) + α)

(d(x∗/λ∗) + β)
=

cx∗ + αλ∗

dx∗ + βλ∗
= cx∗ + αλ∗ = h(x∗, λ∗)
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On the contrary, suppose w∗ is an optimal solution for model (1) with f (w∗) >

f
(

1
λ∗ x∗

)
. According to Corollary 2, the vector

(
w∗

dw∗+β , 1
dw∗+β

)
∈ XL and

h
(

w∗

dw∗ + β
,

1
dw∗ + β

)
= f (w∗) > f

(
1

λ∗
x∗
)
= h(x∗, λ∗)

which shows that there is a feasible solution with a higher objective value than the optimal
solution, which is impossible. �

The following corollaries can be directly obtained from Theorem 1:

Corollary 5. If x∗ is an optimal solution of the general fractional programming model (1), then(
1

λ∗ x∗
)

is an optimal solution of the equivalent linear programming model (3).

Corollary 6. If (x∗, λ∗) is an optimal solution of the linear programming model (3), then
(

1
λ∗ x∗

)
is an optimal solution of the equivalent linear fractional programming model (1).

Theorem 2 (Weak Duality Theorem). For all x in XF and for all (y, z) in XD, we have
f (x) ≤ g(y, z).

Proof. Given x0 ∈ XF and (y0, z0) ∈ XD and considering Corollaries 2 and 3, we have(
x0

dx0+β , 1
dx0+β

)
∈ XL and f (x0) = h

(
x0

dx0+β , 1
dx0+β

)
. Referencing the weak duality theorem

for linear programming models (2) and (3) reveals that h(x0, λ) = f (x0) ≤ g(y0, z0) which
completes the proof. �

Theorem 3. If x0 ∈ XF and (y0, z0) ∈ XD with f (x0) = g(y0, z0), then x0 and (y0, z0) are the
optimal solutions to their respective problems.

Proof. Considering Corollaries 2 and 3, we have
(

x0
dx0+β , 1

dx0+β

)
∈ XL and f (x0) =

h
(

x0
dx0+β , 1

dx0+β

)
which result in h

(
x0

dx0+β , 1
dx0+β

)
= g(y0, z0). From the optimality condi-

tions for linear programming problem models (2) and (3),
(

x0
dx0+β , 1

dx0+β

)
and (y0, z0) are

the optimal solutions for models (3) and (2), respectively. From Corollary 5, x0 is an optimal
solution for model (1) which completes the proof. �

Corollary 7. Let x∗ and (y∗, z∗ ) be the optimal solutions of models (1) and (2), respectively.(
x∗, λ

∗)
=
(

x∗
dx∗+β , 1

dx∗+β

)
is an optimal solution of model (3) and f (x∗) = g(y∗, z∗ ) =

h
(

x∗, λ
∗)

.

Analogously, the strong direct duality and complementary slackness theorems can be
proved.

4. Numerical Example

The authors of [8] employed the following fractional linear programming model, as
an illustrative example, including two decision variables:

maximize f (x1, x2) =
3x1+5x2
x1+x2+2

subject to x1 + x2 ≤ 6
3x1 + 8x2 ≤ 24

x1, x2 ≥ 0

(4)
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The authors verified that the following linear programming model is the dual of the
fractional linear programming (4):

minimize g(y1, y2, z) = z
subject to y1 + 3y2 + z ≥ 3

y1 + 8y2 + z ≥ 5
6y1 + 24y2 − 2z = 0

y1, y2 ≥ 0, z free

(5)

By applying Theorem 1, we obtain the following linear programming problem that is
equivalent to the fractional linear programming model (4):

maximize h(x1, x2) = 3x1 + 5x2
subject to x1 + x2 + 2λ = 1

x1 + x2 − 6λ ≤ 0
3x1 + 8x2 − 24λ ≤ 0

x1, x2 ≥ 0, λ free

(6)

It is easy to obtain the optimal solution
(
x∗1 , x∗2 , λ∗

)
=
(

0, 3
5 , 1

5

)
for the linear program-

ming problem (6) and therefore applying Corollary 6
(
λ∗x∗1 , λ∗x∗2

)
= (0, 3) is an optimal

solution for the fractional linear programming problem (4) that is consistent with the results
obtained in [8]. Note that the optimal objective value of model (6), h∗ = h

(
0, 3

5
)
= 3, is

equal to those for model (4), f ∗ = f (0, 3) = 15
5 = 3, as we expected.

5. A Special Case (DEA Method)

In this section, we consider the fractional functional programming problem in DEA as
a special case of the general linear fractional functional programming problem (1) where
α = β = 0 :

maximize f (x) = cx
dx

subject to x ∈ XF
where XF = {x : Ax ≤ b, x ≥ 0n}

(7)

According to the proposed approach in this study, the following linear programming
model is equivalent to the above linear fractional model:

maximize f (x) = cx
subject to x ∈ XL

where XL = {x : dx = 1, Ax ≤ b, x ≥ 0n}
(8)

As a result, to obtain an equivalent linear programming form of the linear fractional
model (7), we easily set the denominator of the model equal to 1, include it in the feasible
region, and maximize the numerator, as is done in the equivalent linear programming
model (8).

It should be highlighted here that the following model is the dual of both models (7)
and (8):

minimize g(y, z) = z
subject to (y, z) ∈ XD

where XD =
{
(y, z) : ATy + dTz ≥ cT,−bTy = 0, y ≥ 0m, z free

} (9)

Assume there are n DMUs (DMUj : j = 1, . . . , n) of which DMUj consumes m inputs
xj =

(
x1j, . . . , xmj

)
to produce s outputs yj =

(
y1j, . . . , ysj

)
. The authors of [13] formu-

lated the following fractional functional programming to evaluate the efficiency score of
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DMUo∈{1,...,n}, the unit under consideration, which is known as the Charnes, Cooper, and
Rhodes (CCR) model under the constant returns-to-scale (CRS) assumption:

maximize eF(u, v) = (y0,0T
m)(u,v)

(0T
s ,x0)(u,v)

subject to (u, v) ∈ XF

where XF =

(u, v) :

 y1 −x1
...

...
yn −xn

(u, v) ≤ 0n, u ≥ 0s, v ≥ 0m


(10)

Here,

 y1 −x1
...

...
yn −xn


n×(s+m)

is the constraint matrix, v =

 v1
...

vm

 and u =

 u1
...

us

 are

(decision variables) weights (multipliers) for inputs and outputs, respectively. In fact, since
the weights in model (10) are derived from the data in favor of the unit under evaluation
instead of being fixed in advance for all the units, the model is called the multiplier model
(for more details, see [14]).

According to [8], the following linear programming model is the dual of fractional
functional programming (10):

minimize eD(θ) = θ

subject to (λ, θ) ∈ XD

where XD =

{
(λ, θ) :

[
yT

1 . . . yT
n

−xT
1 . . . −xT

n

]
λ +

(
0s

xT
o

)
θ ≥

(
yT

o
0m

)
, λ ≥ 0n, θ free

} (11)

Here, λ =

 λ1
...

λn

 is the intensity vector and, as a matter of fact, the nonnegative

linear combination vector of DMUs λ1

(
yT

1
−xT

1

)
+ λ2

(
yT

2
−xT

2

)
+ . . . + λn

(
yT

n
−xT

n

)
is

compared with
(

yT
o

−θxT
o

)
. If the optimal θ, denoted by θ∗, is less than one, then the

obtained linear combination vector outperforms DMUo.
Since the feasible region of the linear programming (11) envelops all data by the

efficient frontier, it is called the envelopment model (for more details, see [15]).
Considering the proposed approach in this paper, the following linear programming

model which is the dual of model (11) is equivalent to the fractional functional program-
ming (10):

maximize eL(µ, η) =
(
y0, 0T

m
)
(µ, η)

subject to (µ, η) ∈ XL

where XL =

(µ, η) :
(
0T

s , x0
)
(µ, η) = 1,


y1 −x1
...

...
yn −xn

(µ, η) ≤ 0n, µ ≥ 0s, η ≥ 0m


(12)

Here, µ =

 µ1
...

µm

 and η =

 η1
...

ηs

 are the multipliers for inputs and outputs,

respectively.
The above linear programming problem is called the multiplier form of the CCR model.

It should be mentioned here that to obtain the equivalent linear programming form of the
linear fractional programming (10), we just set the denominator of the model equal to 1
and then consider it as a new constraint.
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Let (u∗F, v∗F), (λ∗, θ∗), and (u∗L, v∗L) be the optimal solutions for models (10)–(12),
respectively. As inspection makes clear, eD(λ

∗, θ∗) = eL(u∗L, v∗L) and
(
0T

s , x0
)
(u∗F, v∗F) ×

eF(u∗F, v∗F) = eL(u∗L, v∗L) (for more details, see [16]).
As a result, there is an identical dual problem for both fractional functional program-

ming (10) and linear programming (12) which points out that these models are equivalent.

Numerical Case Study (Healthcare Systems)

Table 1 exhibits data of twelve hospitals with two inputs (Doctors and Nurses) and
two outputs (Inpatients and Outpatients), as adopted from [17]:

Table 1. Data for 12 hospitals.

Hospitals
Inputs Outputs

Doctors Nurses Inpatients Outpatients

H1 25 148 33 189
H2 46 234 65 175
H3 32 193 70 142
H4 39 207 63 234
H5 23 150 87 161
H6 36 287 91 225
H7 50 203 84 258
H8 16 196 68 294
H9 21 176 33 320
H10 31 159 75 295
H11 45 225 73 277
H12 43 207 69 293

The following fractional CCR model evaluates the performance of the first hospital:

maximize eF(u1, u2, v1, v2) =
33u1+189u2
25v1+148v2

subject to
33u1+189u2
25v1+148v2

≤ 1 (H1),
65u1+175u2
46v1+234v2

≤ 1(H2),
70u1+142u2
32v1+193v2

≤ 1 (H3)
63u1+234u2
39v1+207v2

≤ 1 (H4),
87u1+161u2
23v1+150v2

≤ 1(H5),
91u1+225u2
36v1+287v2

≤ 1 (H6)
84u1+258u2
50v1+203v2

≤ 1 (H7),
68u1+294u2
16v1+196v2

≤ 1(H8),
33u1+320u2
21v1+176v2

≤ 1 (H9)
75u1+295u2
31v1+159v2

≤ 1 (H10),
73u1+277u2
45v1+225v2

≤ 1(H11),
69u1+293u2
43v1+207v2

≤ 1(H12)

u1, u2, v1, v2 ≥ 0

(13)

The optimal solution and the optimal objective value of the fractional CCR model are(
u∗1 , u∗2 , v∗1 , v∗2

)
= (265.29, 950.15, 0, 539.99) and e∗F

(
u∗1 , u∗2 , v∗1 , v∗2

)
= 0.693, respectively,

which points out that the first hospital is inefficient and its efficiency score is 0.693.
According to [8], the following linear programming model is the dual of fractional

functional programming (13):

minimize eD(θ) = θ
subject to

33λ1 + 65λ2 + 70λ3 + 63λ4 + 87λ5 + 91λ6 + 84λ7 + 68λ8 + 33λ9 + 75λ10 + 73λ11 + 69λ12 ≥ 33
189λ1 + 175λ2 + 142λ3 + 234λ4 + 161λ5 + 225λ6 + 258λ7 + 294λ8 + 320λ9 + 295λ10 + 277λ11 + 293λ12 ≥ 189

25λ1 + 46λ2 + 32λ3 + 39λ4 + 23λ5 + 36λ6 + 50λ7 + 16λ8 + 21λ9 + 31λ10 + 45λ11 + 43λ12 ≤ θ25
148λ1 + 234λ2 + 193λ3 + 207λ4 + 150λ5 + 287λ6 + 203λ7 + 196λ8 + 176λ9 + 159λ10 + 225λ11 + 207λ12 ≤ θ148

λj ≥ 0 j = 1, . . . , 12, θ free

(14)
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At optimality, θ∗ = 0.693 & λ∗j =


0.200 j = 9
0.423 j = 10
0 otherwise

. As a result, the efficiency score

of H1 is 0.693 and this hospital is not efficient which is consistent with the results obtained
by the fractional CCR model (13). Moreover, the reference set for H1 is {H9, H10} and
λ∗9 = 0.200 and λ∗10 = 0.423 show the proportions contributed by H9 and H10 to the point
used to evaluate H1 and hence the hospital under evaluation is technically inefficient.

The following model is also another alternative dual linear programming model of
the model (14) which is not identical to the fractional CCR model (13):

maximize eL(µ1, µ2) = 33µ1 + 189µ2
subject to

25η1 + 148η2 = 1
33µ1 + 189µ2 − (25η1 + 148η2) ≤ 0 (H1), 65µ1 + 175µ2 − (46η1 + 234η2) ≤ 0 (H2)

70µ1 + 142µ2 − (32η1 + 193η2) ≤ 0 (H3), 63µ1 + 234µ2 − (39η1 + 207η2) ≤ 0 (H4)

87µ1 + 161µ2 − (23η1 + 150η2) ≤ 0 (H5), 91µ1 + 225µ2 − (36η1 + 287η2) ≤ 0 (H6)

84µ1 + 258µ2 − (50η1 + 203η2) ≤ 0 (H7), 68µ1 + 294µ2 − (16η1 + 196η2) ≤ 0 (H8)

33µ1 + 320µ2 − (21η1 + 176η2) ≤ 0 (H9), 75µ1 + 295µ2 − (31η1 + 159η2) ≤ 0 (H10)

73µ1 + 277µ2 − (45η1 + 225η2) ≤ 0(H11), 69µ1 + 293µ2 − (43η1 + 207η) ≤ 0 (H12)

µ1, µ2, η1, η2 ≥ 0

(15)

This example illustrates that the dual of the dual model (14) is not necessarily the
original model. As a matter of fact, these models are equivalent. In other words, the linear
model (15) is equivalent to the fractional linear programming problem (13) (see Theorem 1)
and both are the dual model. It should be highlighted here that the optimal solution for
the linear model (15) is

(
η∗1 , η∗2 , µ∗1 , µ∗2

)
=
(
1.80× 10−3, 6.45× 10−3, 0, 3.67× 10−3) with

e∗L = eL
(
µ∗1 , µ∗2

)
= 0.693. In summary, the optimal objective values of models (13–15) are

identical, i.e., eF
(
u∗1 , u∗2 , v∗1 , v∗2

)
= eD(θ

∗) = eL
(
µ∗1 , µ∗2

)
= 0.693.

The main aim of this paper is to point out that, in contrast to linear programming,
in fractional linear programming, the dual of the “dual” is not necessarily the original
model. As a matter of fact, the dual of the dual is a linear programming problem that
is equivalent to the fractional linear programming problem. Toward this end, we em-
ployed the approach of [8] to formulating a linear programming problem from a general
fractional linear programming problem. Although both problems have an identical dual
problem, they are equivalent, not equal. In other words, we demonstrated that for a linear
programming problem, under some assumptions, two different dual problems exist that
are indeed equivalent. We provided a numerical example along with one of the most
important DEA models (α = β = 0), to illustrate the provided theorems. We applied
the method of [8] to directly find the dual of the linear fractional DEA model and then
utilized the suggested approach in this study to directly obtain its equivalent linear DEA
model. Extending our approach for α > 0 (β > 0) leads to another DEA model with
an input (output) orientation form under the variable returns-to-scale assumption (for a
deeper discussion about different orientations and returns-to-scale assumptions, we refer
the reader to [18]). An interesting further research direction is investigating duality in
linear fractional programming with multiple objective functions. Finally, our approach can
be applied to a wide range of practical applications, including energy [19], the banking
industry [20], manufacturing systems [21], finance [22], and sport [23], among others.
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