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Abstract: Fitts’ law predicts the human movement response time for a specific task through a simple
linear formulation, in which the intercept and the slope are estimated from the task’s empirical
data. This research was motivated by our pilot study, which found that the linear regression’s
essential assumptions are not satisfied in the literature. Furthermore, the keystone hypothesis in
Fitts’ law, namely that the movement time per response will be directly proportional to the minimum
average amount of information per response demanded by the particular amplitude and target width,
has never been formally tested. Therefore, in this study we developed an optional formulation by
combining the findings from the fields of psychology, physics, and physiology to fulfill the statistical
assumptions. An experiment was designed to test the hypothesis in Fitts’ law and to validate the
proposed model. To conclude, our results indicated that movement time could be related to the index
of difficulty at the same amplitude. The optional formulation accompanies the index of difficulty in
Shannon form and performs the prediction better than the traditional model. Finally, a new approach
to modeling movement time prediction was deduced from our research results.

Keywords: Fitts’ law; information theory; index of difficulty; SQRT_MT model

1. Introduction

Since Fitts’ study on the speed–accuracy trade-off in rapidly aimed movements [1]
was published, many researchers have proposed different movement time prediction
equations to compete with Fitts’ proposal. Hoffmann et al. [2] defined one-, two-, and
three-dimensional targets based on whether the limitation of the movement performance
is in the direction of movement or perpendicular to the movement, in addition to the
depth at the target location. Readers can refer to a review paper [3] on mathematical
formulations for Fitts’ law for one-dimensional targets. Soukoreff and Mackenzie published
a paper with suggestions for using Fitts’ law [4]. The existing formulations can be divided
into two categories: information theory based and non-information theory based. There
are two subcategories of the non-information theory-based formulations. One is the
theoretical formulation category, with such formulations being derived from a specific
theoretical argument proposed by various authors, with several studies [5–9] belonging
to this subcategory. The other is the non-theoretical formulation category, proposed by
other authors and not involving reasoning. Some examples in this category are Jagacinski
et al.’s [10] and Kvålseth’s [11] studies.

Despite Fitts’ law having an exceptional reputation and broad applications, there
are still gaps in the literature. One of the extant issues is that there is no single and
united formulation that is used in the community. Another is that Fitts did not apply any
statistical tests to validate the assumption that movement time is related only to the index
of difficulty [1]. In addition, we found that the current Fitts’ law models do not follow the
statistical requirements for regression analysis when Fitts’ data from 1954 are applied, e.g.,
fitting the linearity adequately, the independence and equal variance of residuals between
predictor levels, and the normality of the residuals.
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1.1. Literature Review: Models of Fitts’ Law

Fitts’ law is a highly successful formulation rooted in psychology [12]. It states that
the time to complete a movement (movement time, MT) depends on the distance to be
covered and the spatial accuracy required [1]. The distance is defined as the movement
amplitude (A) required for a person to hit a target, while the target, with tolerance shown
as the width (W), is treated as the accuracy requirement. A logarithmic term defined by
A and W is called the index of difficulty (ID) and is measured in bits. The ID specifies
the minimum information required on average to achieve each movement. Researchers
have manipulated movement amplitudes and target widths. Consequently, a specific ID
value can be composed of different A and W combinations. Fitts [1] argued that ID was
consistent with Shannon’s Theorem 17 [13], which describes the transmitted information
capacity (C) in a communication system with the bandwidth (B), signal power (S), and
white noise power (N):

Capacity = B× log
(

S + N
N

)
. (1)

Fitts’ law is a regression equation, referred to as the Canon model in this study, which
is derived from empirical data and describes the relationship between the dependent
variable (MT) and the independent variable (ID) with two parameters, the intercept (a) and
slope (b):

MT = a + b× ID. (2)

Interestingly, this equation was proposed not by Fitts in 1954 [1] but by Welford in
1960 [14]. After Welford’s study, the linear equation was applied in all studies related to
Fitts’ law, including by Fitts himself [15]. Fitts defined ID as the information required
to finish a task considering the ID’s specific movement amplitude [1]. ID has multiple
definitions, with the most popular one being considered to be information theory based [16],
as follows:

IDFitts = log2

(
2A
W

)
(3)

Fitts explained that 2A could cover the endpoints during the movement, resulting in
a non-zero difficulty.

Another attractive metric, the index of performance (Ip = MT/ID), was defined as
the maximum information rate of a specific task. This index was employed to test Fitts’
hypothesis, namely, that MT is only proportional to ID if Ip is constant for all IDs. However,
Fitts supported the validity of his hypothesis by checking his data visually. Even he
was aware that Ip was not precisely constant [1]. Moreover, after the regression equation
appeared six years later, in 1966, Fitts and Radford used slope b in Equation (2) instead of
Ip. They applied the data from their previous studies and claimed a slope ranging from
90 to 110 msec/bit was a constant, again without statistical tests [17]:

IDWel f ord = log2

(
A
W

+ 0.5
)

. (4)

Welford found that IDFitts has drawbacks, such as a negative intercept and upward
curve fitting at the lower end of ID values. He thought the law chose a distance W out
of a total distance extending from the starting point to the far edge of the target, equal to
A + W/2. The modification IDWelford preserved the advantages of the non-zero ID, resulted
in a near-zero intercept, and removed the upward curve [14]:

IDShannon = log2

(
A
W

+ 1
)

. (5)

MacKenzie [18] directly analogized A to S and W to N and claimed that this analogy
was an exact adaptation to Shannon’s Theorem 17. Consequently, IDShannon is referred to
as “ID in Shannon form.” It was shown that the R-squared performance of IDShannon was
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better than those of IDFitts and IDWelford. MacKenzie applied this adapted model in several
human–computer interaction studies [19–21]. The IDShannon version of Fitts’ law has gained
popularity in the human–computer interaction (HCI) community since the 1990s.

One of the assumptions of the information theory-based form is that movement is
performed under a visual feedback loop. Therefore, Schmidt et al. [22] found that the
visual feedback assumption in [1] might be impossible for a movement time of less than
200 msec. Schmidt [23] found that the reaction time to correct an error in response selection
required at least 120 to 200 msec. Those movements, not involving visual feedback, are
prestructured muscle commands called motor programs [24] or ballistic movements [25].
Based on the above results, Gan and Hoffmann’s study argued that low ID movement is
ballistic [5]. They indicated that Equation (2) is only valid for a visual feedback movement
when ID is higher than three. When the response is a ballistic movement, the upward curve
results. A theoretical formulation,

MT = a + b×
√

A, (6)

Was proposed to fit ballistic movement [5]. They derived Equation (6) from the kinetics
of arm movement. The square root of A replaced the A/W ratio in the logarithmic term.
Subsequently, a discrete tapping experiment with four amplitudes (4, 9, 16, and 25 cm), ten
IDFitts (1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, and 6.0), and ten repetitions was conducted.
The R-squared performance for IDs of less than or equal to 3 was 0.944 in Equation (6).
When a constant ID was considered, the R-squared performance was over 0.992 for IDs
of less than 3. However, the R-squared performance ranged from 0.883 to 0.983 for IDs of
3 to 6. Gan and Hoffmann thought that the movement time was a function of movement
amplitude [5].

Kvålseth [26] indicated that the ID based on a direct analogy with Shannon’s Theorem
17 was not justified, and they proposed that an information theory statistic was indeed
questionable. The critical reason was that Theorem 17 involves a power ratio but no
amplitude/width ratio applied in the ID. Instead of the A/W in a logarithmic term, Kvålseth
proposed an alternative to Equation (2) [11],

MT = aAbWc. (7)

When the empirical constants b and c are identical, Equation (7) can be expressed as
Equation (8).

MT = a
(

A
W

)b
. (8)

Fitts’ data were applied to an analysis with Equations (7) and (8). The R-squared per-
formances were 0.987 for 1 oz stylus tapping and 0.985 for 1 lb stylus tapping. Kvålseth
claimed that the power law was superior to the information theory-based models in terms
of R-squared performance.

Although Kvålseth did not explain the power law’s origin, Meyer et al. developed
a stochastic optimized submovement model by extending the impulse variability [8].
Another power law, namely that the constant b in Equation (8) is equal to 1

2 , was proposed
as follows:

MT = a + b×
√

A
W

. (9)

The square root of A/W replaced ID in the logarithmic term. Equation (9) is called
the Power model in this study. After application of the alternative formulation, the R-
squared performances were 0.974 for 1 oz stylus tapping and 0.972 for 1 lb stylus tapping
in Fitts’ study [1]. Goldberg [9] gave a succinct derivation for Equation (9) from the
kinematic aspect.

Some works extended Fitts’ law to two-dimensional [20,27–29] and three-dimensional [30–32]
circumstances with a new formula. Bi et al. developed a modified model for finger touch-
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based input on a screen [33]. In addition, researchers utilized Fitts’ law to evaluate the
operating performance of new technological devices [34–38]. In addition to the above
studies, fundamental studies were conducted to examine the theory of Fitts’ law. For
example, Gori et al. worked on the rationale of Fitts’ law in a pointing task [39], and Muller
et al. concluded that the control theory complemented Fitts’ law [40]. Since the Shannon
form was proposed, no studies have investigated the formula for Fitts’ paradigm with
one-dimensional targets.

1.2. The Valid Version of Fitts’ Law

With the advances on Fitts’ law, the numerous candidates for the formulation in
Equations (3)–(8) have confused researchers. Drewes was the first researcher to ask for
unification of the formulation of Fitts’ law [41]. This issue might have been caused by the
analogy of A and W in Shannon’s Theorem 17.

Fitts did not explain the relationship between A/W and S/N in his work [1]. Therefore,
there was no argument about the relationship between A/W and S/N in Welford’s study [14].
However, in a subsequent study on applying Fitts’ law to a discrete tapping task, Fitts ex-
plained that A was analogous to S + N, and W/2 could be assumed to be N [15]. MacKenzie
indicated that IDFitts might be inappropriate from an information perspective, and IDWelford
went halfway to Shannon’s Theorem 17. Therefore, IDShannon mimicked Shannon’s original
equation in that A/W was analogous to S/N [18].

Hoffmann developed the derivation of these three IDs from information theory and
claimed that, although IDFitts and IDWelford were valid, IDShannon was invalid. After reana-
lyzing three data sets available in the literature, he concluded that IDShannon did not always
have the best R-squared performance, and that it was even worse when We and IDShannon
were applied simultaneously [16].

MacKenzie challenged Hoffmann’s arguments that the validity issue was no basis for
analysis, since the formula was an analogy of human movement to an electronic signal. In
addition, Hoffmann excluded the data of ID equal to one in his work. Via reanalysis with
the complete ID range for the same data sets and one more application in a computer’s
input devices, MacKenzie showed that IDShannon had the best R-squared performance
whether the set or the effective width was applied [42].

Unfortunately, in the community, there is still no consensus on the valid version.
Researchers tend to apply their preferred formulations in their studies. Which version of
Fitts’ law should be applied is still an open issue in the community.

1.3. Statistical Principles in Fitts’ Law

The second inadequacy of Fitts’ law is the satisfaction of statistical principles. The
first statistical insufficiency is related to the designs of the experiments. Traditionally,
Fitts’ law researchers have manipulated a target’s amplitude and width as independent
variables, but not the crucial factor, ID, directly [43]. That is an uncommon situation, for the
primary purpose is to investigate the relationship between the response movement time
and IDs. Such an experimental design also causes the empirical regression formulation
to be built from just one A/W combination for the two extreme ID values. When the ID
approaches the mean, there are more A/W combinations for a specific ID. Consequently, the
resultant regressive parameters might be biased due to the smaller amount of information in
extreme conditions.

Another flaw in the literature is that there is only one observation for every A/W
combination. A single observation means that the statistical test of Fitts’ hypothesis,
i.e., “the average movement time per response would be proportional to the minimum
average information per response demanded by the particular conditions of amplitude
and tolerance” argued in Fitts’ original work [1], cannot be tested. This hypothesis implies
that MT would be the same for tasks with the same ID value, regardless of amplitude. Fitts
claimed his hypothesis was valid because the difference between movement times within
the same ID value is tiny, but he provided no formal statistical test to support his claim. In
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addition, without repeated measures in every ID, the lack-of-fit test is impossible. Whether
the formulation fits the data adequately cannot be justified statistically.

The second statistical insufficiency is the essential assumption of residual normality in
the regression analysis. Generally, this assumption is thought to have been satisfied in the
literature. However, this study found that the residuals using IDFitts in the Canon model
failed the normality test of Fitts’ data [1], as shown in Section 2.2.

The third statistical insufficiency is the question of whether a linear regression formu-
lation adequately fits the data or not, which should be formally tested with a lack-of-fit
test [44]. This study found that Fitts’ law in the Canon and Power models also failed the
lack-of-fit test with Fitts’ data [1], as shown in Section 2.2.

The fourth statistical insufficiency is the method of evaluating quality in a regression
model. Researchers applied Fitts’ law in pursuit of high R-squared performance and
claimed a good fit in the resultant formula [41]. R-squared performance was also applied
as the metric to justify which model had a better performance [11,15,16,42]. However,
the idea that a value close to one represents a good fit is a common misunderstanding
about R-squared in regression analysis [44]. While more than one competing model exists,
other metrics, such as the prediction sum of squares (PRESS), could be criteria for model
selection [44,45].

Based on the fact that Fitts’ law in all forms utilizes regression analysis to estimate
the empirical parameters, a sound model satisfies the assumptions and principles in the
regression analysis, e.g., the error term follows the normal distribution, the residuals are
independent, and the variance of residuals is constant between independent variables. The
linearity fitting is appropriate, and evaluations of other quality indexes, such as the PRESS
and not just the R-squared value, should be satisfied in empirical application.

1.4. Motivation

This study was motivated by the disagreement on which version of Fitts’ law should
be applied in the literature. During the investigation, the authors discovered the statis-
tical insufficiencies of past studies, which are discussed in Section 1.3. Additionally, the
Canon model does not fit Fitts’ data well for ballistic movement with low ID values. This
study aimed to find the solution for the mentioned gaps. Since Fitts’ law regulates the
human speed–accuracy trade-off in the psychological aspect, the authors investigated the
relationship between MT and ID from a physiological perspective.

1.5. Research Purposes and Limitation

This research focused on one-dimensional targets on a computer input device. The
purposes of this research were as follows: (1) to propose an optional equation inspired
by the findings in physiological research on motor units in a movement, which have the
advantage of satisfying the statistical principles and are robust in performance; (2) to apply
the optional formulation to visual feedback and ballistic movement synchronously; and
(3) to test Fitts’ hypothesis that movements with the same ID value have the same average
movement time even if the movement amplitudes and target tolerances differ [1]. This
study hypothesized that movement time is positively related to ID and that this relationship
holds when all the movements are of the same amplitude. To the best of our knowledge,
none of the purposes have been discussed in the literature.

This study’s scope is limited to the information theory-based forms and the theoretical
formulation applied in Fitts’ paradigm for two reasons. The first reason is that researchers
can consistently develop a good matching equation, e.g., polynomial regression fitting,
between dependent and independent variables. Therefore, scientists pursue cause–effect
relationships between responses and circumstances to advance their research. A non-
theoretical formulation contributes little to knowledge. The second reason is that the
information theory-based forms have been successfully applied in the community for
almost seventy years. These forms support a solid relationship between movement time
and index of difficulty.
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The remainder of this paper is organized as follows. Section 2 describes this study’s
methodology and materials. A succinct derivation of the SQRT_MT model is presented in
Section 2.1. Then, the validation of the SQRT_MT model applying Fitts’ data is summa-
rized in Section 2.2. Section 2.3 describes the experimental design for testing this study’s
hypothesis, in which the SQRT_MT model is applied to analyze the experimental data.
Section 3 presents the results and discussion based on the experiment. The kernel of this
study, namely that movement time might differ for the same ID when the movement ampli-
tude and target tolerance are varied, is demonstrated in Section 3.1. To support this study’s
hypothesis, Section 3.2 utilizes the results of the experiment to perform regression analysis
by considering just one constant movement amplitude at a time. Section 3.3 examines the
valid version issue by reviewing the evidence in the literature and the evidence in this
study. The meanings of the intercept and the slope in the regression model are discussed in
Section 3.4. Finally, Section 4 concludes this research with suggestions for researchers in
Fitts’ law applications.

2. Materials and Methods
2.1. The Derivation and Validation of the SQRT_MT Model

Schmidt et al. treated motor output variability as the noise that leads to movement
inaccuracy [24]. Muscles contract to execute prestructured commands, and the variability
introduced during movement is considered the motor output noise. The relationships
between motor output variability and the movement distance, effective width, movement
time, generated force, and mass to be moved in accurate movements were investigated.
Some critical relationships were derived from the aspect of physics. First, We is directly
proportional to the variability in the velocity and proportional to the variability in the
impulse for acceleration, according to Newton’s second law.

We ∝ σImpulse ∝ σvelocity.

Variability is related to the magnitude of force and movement time.

σForce ∝ Force.

σMT ∝ MT.

The proportional relationship between the variability and mean force implies that a constant
coefficient of variance (CV) exists.

CV =
σForce
µForce

. (10)

Second, the variability of impulse is directly proportional to the movement amplitude.

We ∝ σImpulse ∝ A.

The variability of impulse is inversely proportional to the movement time, in which both
force and movement time may vary.

We ∝ σImpulse ∝
1

MT
.

Consequently, the combined expression could be

We ∝
A

MT
.
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Such a relationship implies that MT is a function of A/We.

MT ≡ f
(

A
We

)
. (11)

Harris and Wolpert reported that noise in the firing of motor neurons would cause
trajectories to deviate from planned paths [46]. The accumulated deviations over the move-
ment duration would lead to variability in the final position. A cost function was defined
by minimizing the position’s variance across repeated movements over the movement
duration. They assumed that, in the presence of signal-dependent noise, a human would
select a movement trajectory with the minimum cost over the duration. A later study [47]
called this concept task optimization in the presence of signal-dependent noise, or TOPS.
TOPS is a critical concept that might connect open- and closed-loop movement behaviors
in the same formula.

Jones et al. investigated the sources of signal-dependent noise and found that firing
rate variability comes from the motor neuron pool transmitting signals to muscles [48].
Hamilton et al. investigated the scaling of motor noise with muscle strength measured by
maximum voluntary torque (MVT) [49]. The result was

CV = e−2.76MVT−0.25.

A simulation was conducted to investigate the relationship between CV and the number of
motor units (MUN). The simulation result was

CV = ek MUN−0.5,

where k is a constant that varies with the level of spike noise. Combining the results, the
relationship between MUN and MVT could be

MUN ∝ MVT0.5.

Harris and Wolpert applied TOPS, but the noise in the cost function was defined
by CV instead of position [46]. The muscles that define the cost should be activated to
minimize the variability of muscle noise,

CostTOPS =
n

∑
i=1

σ2
Forcei

.

where i is the number of motor units activated in the muscle. By substituting Equation (10),

CostTOPS =
n

∑
i=1

σ2
Forcei

=
n

∑
i=1

CV2µ2
Forcei

=
n

∑
i=1

µ2
Forcei

MUNi
+ k1

=
n

∑
i=1

µ2
Forcei

MVT0.5
i

+ k2.

where k1 and k2 are constants estimated from empirical data. From Equation (10), CV is a
dimensionless statistic; it is more likely to be normalized by the noise/signal (N/S) ratio.
Thus, we can have the following relationship during MT:(

S
N

)2
≡
(

µForce
σForce

)2
= CV−2 =

(
e2.76MVT0.25

)2
∝
(

MVT0.5
)

.

In this equation, µForce can be a constant from the mean force during the movement. Thus,
we have

σ−2
Force ∝

(
MVT0.5

)
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1
σForce

∝
(

MVT0.5
)0.5

.

Hence, MT in the TOPS model has a relationship with S/N,

S
N
≡ µForce

σForce
∝
(

MVT0.5
)0.5

∝ (MT)0.5. (12)

Equation (12) implies that the square root of movement time is a function of S/N. Hence,
we have √

MT ≡ f
(

S
N

)
. (13)

Combining the result from physics in Equation (11), the aspect from physiology in Equation
(13), and the analogy of S/N to A/W from psychology in Equation (2) into the general form,
we have √

MT = a + b× ID. (14)

The ID is in the form of A/W in the logarithm, which could be IDFitts, IDWelford,
or IDShannon. Part of our first purpose is achieved in Equation (14), which is called the
SQRT_MT model in this study. There are two reasons for using the same ID type as the
Canon model. The first is that we expect a linear formulation. A logarithmic transformation
frequently makes the relationship between two variables linear. Second, it is beneficial to
keep the same ID type as the convention to facilitate the application and memorization of
the model by researchers.

Although the SQRT_MT model is similar to the Power model in Equation (9) at first
glance, the meanings of the two models are different. The SQRT_MT model is inspired by
physiological research, including in vivo studies. In contrast, the Power model is given
without any reasoning at the beginning. Later researchers tried to explain Equation (9)
from kinetics and kinematics theoretically. Despite the belief that people could optimally
move without consciousness, it might be hard to prove that this ideational condition is
characteristic of human behavior. In addition, the unit of the Power model is time, but in
the SQRT_MT model, the unit is the square root of time.

2.2. Validation of the SQRT_MT Model: Results and Discussion

Fitts’ data [1] were applied to validate the proposed Equation (14). The lack-of-fit test
for adequate fitting, the Anderson–Darling (AD) test for residual normality, the residual
plot for the constant variance and independent assumptions, and R-squared and PRESS
for model selection were utilized to evaluate model quality. A PRESS close to the sum
square of error (SSE) supports the validity of the regression formulation [44]. However, the
unit of the dependent variable in the SQRT_MT model is the square root of a microsecond,
whereas in the Canon and Power models, it is a microsecond. Researchers cannot compare
the PRESSs in these models directly. The ratio PRESS/SSE makes the metric unit free,
like R-squared. Consequently, this study applied both R-squared and PRESS/SSE as the
model selection indexes. Since PRESS is always larger than SSE, a ratio close to one implies
a suitable formulation.

Table 1 presents the performances of 1 oz stylus tapping in the Canon, Power, and
SQRT_MT models. The SQRT_MT models applying IDWelford and IDShannon satisfied the
straight line fitting. In addition, all three Canon models, the Power model, and the
SQRT_MT model applying IDFitts had significant results in the lack-of-fit test. Such results
imply that the five models did not fit the linearity adequately. In the ID type effect, IDShannon
had the best fit, and IDFitts had the worst in both the Canon and the SQRT_MT models. In
addition, the SQRT_MT model was better than the Canon model in the lack-of-fit test, no
matter which ID type was applied.
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Table 1. Performances of 1 oz stylus tapping in the Canon, Power, and SQRT_MT models using Fitts’ data [1]. The SQRT_MT
model performed better than the Canon and Power models in all statistics.

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test’s p-Value

Canon IDFitts 12.8 94.67 0.966 1.71 <0.001 0.014
Canon IDWelford 65.4 103.79 0.980 1.65 0.004 0.057
Canon IDShannon 27.7 111.54 0.987 1.58 0.023 0.265
Power

√
A/W 121.3 82.40 0.971 1.78 0.001 0.542

SQRT_MT IDFitts 9.793 2.405 0.986 1.58 0.022 0.432
SQRT_MT IDWelford 11.162 2.625 0.991 1.37 0.155 0.899
SQRT_MT IDShannon 10.239 2.812 0.992 1.27 0.221 0.936

In terms of residual normality performance, the Canon model applying IDFitts was the
only significant (p-value = 0.014 < 0.05) formulation. Additionally, IDWelford in the Canon
model passed the test only marginally (p-value = 0.057). The residuals of other models in
Table 1 satisfied the normal distribution sufficiently.

Although all the models in Table 1 provided considerably high R-squared perfor-
mances (ranging from 0.966 to 0.992) and low PRESS/SSE ratios (ranging from 1.27 to
1.78), the failures in linearity fitting and residual normality excluded the validity in the
application of three Canon models and the Power model. The effects of ID type on R-
squared and PRESS/SSE in the Canon and SQRT_MT models were consistent with the
lack-of-fit test. IDShannon had the best performance, followed by IDWelford and then IDFitts.
Overall, the SQRT_MT model performed better (means: 0.990 in R-squared and 1.41 in
PRESS/SSE) than the Canon (means: 0.978 in R-squared and 1.65 in PRESS/SSE) and
Power models (means: 0.971 in R-squared and 1.78 in PRESS/SSE) in the quality indexes
of model selection.

Table 2 presents the performances of 1 lb stylus tapping in the Canon, Power, and
SQRT_MT models. The pattern in Table 2 is almost the same as that in Table 1, except that
all the models passed the normality test. Only the SQRT_MT models with IDWelford and
IDShannon passed the lack-of-fit test again. IDShannon achieved better performances in terms
of R-squared value, PRESS/SSE, and linearity than did IDWelford and IDFitts. Similarly, the
SQRT_MT model performed better (means: 0.988 in R-squared and 1.37 in PRESS/SSE) than
the Canon (means: 0.973 in R-squared and 1.53 in PRESS/SSE) and Power models (means:
0.971 in R-squared and 2.00 in PRESS/SSE) in the quality indexes of model selection.

Table 2. Performances of 1 lb stylus tapping task with the Canon, Power, and SQRT_MT models using Fitts’ data [1]. The
results were consistent with the 1 oz stylus tapping task.

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test p-Value

Canon IDFitts −6.2 104.80 0.960 1.61 0.001 0.379
Canon IDWelford 51.7 114.99 0.975 1.53 0.007 0.506
Canon IDShannon 9.7 123.65 0.983 1.45 0.038 0.353
Power

√
A/W 112.8 91.56 0.971 2.00 0.004 0.700

SQRT_MT IDFitts 9.556 2.586 0.983 1.51 0.032 0.182
SQRT_MT IDWelford 11.022 2.825 0.990 1.34 0.240 0.702
SQRT_MT IDShannon 10.023 3.028 0.992 1.27 0.480 0.161

Comparing the results in Tables 1 and 2, the R-squared values increased slightly, and
the PRESS/SSE improved in the SQRT_MT models with IDWelford and IDShannon. Although
IDShannon performed better than IDWelford in the two model selection indexes, the difference
in PRESS/SSE might be more critical than that in R-squared for these cases. The R-squared
results for IDWelford and IDShannon were 0.991 vs. 0.992 in 1 oz stylus tapping and 0.990 vs.
0.992 in 1 lb stylus tapping. The differences in the R-squared results were fairly small.
Instead, the PRESS/SSEs for IDWelford were 1.37 and 1.27, and those for IDShannon were
1.34 and 1.27, in 1 oz and 1 lb stylus tapping, respectively. As mentioned above, the PRESS
could be helpful in model validation. More improvement in the PRESS near the SSE
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indicated a more suitable formulation. Such a result also implied that the model selection
might not depend on only the R-squared.

Furthermore, many cases in Tables 1 and 2 failed the lack-of-fit test even though their
residuals satisfied the assumption of normality. The possible reasons could be either the
violation that the residuals are independent or constant variance in the predictor variables.
Figure 1 shows the worst case in the 1 oz stylus tapping, when the Canon model with
IDFitts was applied. The graph on the left is the normality plot using the AD test, in which
the residuals show an S pattern along the straight line. Therefore, the residual normality
was not satisfied in the model. In the graph on the right, as the ID departs from the central
value 4, the residual increases gradually. The scatter points form a shape like a parabola
with an upward opening. Consequently, the independent assumptions underlying the
linear regression did not exist.
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Figure 1. The normality plots of the residuals in the 1 oz stylus tapping task using the Canon model with IDFitts. The left
side is residual vs. response percentage in AD test; the right side is residual vs. IDFitts. Both plot patterns show violation of
the normality assumption.

Notice that, even though the residuals met the normality requirement, this did not
guarantee satisfaction of the linearity. Figure 2 presents the residual analysis in the Power
model for the 1 oz data. The p-value in the AD test was 0.542, and the graph on the left
shows that the scatter points fitted the straight line well. However, the graph on the right
shows a parabola with a downward opening. The data violated the independent assump-
tions underlying the linear regression again. The lack-of-fit assumes that observations
of a response variable for a given predictor variable are (1) normally distributed and (2)
independent, and that (3) the distribution of the response variable has constant variance.
These assumptions could be checked visually with the residuals plot. Figure 2 implied that
even though the residual followed the normal distribution, it might violate the assumption
of independence.
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Figure 2. The normality plots of the residuals in the 1 oz stylus tapping task using the power model. The left side is residual
vs. response percentage in the AD test; the right side is residual vs.

√
A/W. The residuals changed the plus/minus signs as

compared with Figure 1, and the plot pattern indicated violation of the assumption of independence.
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Figure 3 demonstrates the advantage of the SQRT_MT model in the residuals. For the
normality plot using the AD test, the scatter points are perfectly fitted along the straight
line in the graph on the left. The scatter pattern of residual vs. ID also implies that the
requirement of independence and the constant variance underlying the linear regression
were not violated.
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Figure 3. The normality plots of the residuals in the 1 oz stylus tapping task using the SQRT_MT model with IDShannon. The
left side is residual vs. response percentage in the AD test; the right side is residual vs. IDShannon. The normality assumption
was satisfied.

This study hypothesized that MT is related to ID with the same amplitude limitation;
however, this hypothesis cannot be tested with Fitts’ data, as mentioned in the literature
review. Nevertheless, a trial study using Fitts’ data is possible. Table 3 presents the perfor-
mances of 1 oz stylus tapping with the same amplitude considered. Compared with the
pooled amplitude performances in Table 1, the much worse performance in PRESS/SSE
is a distinct difference. The overall mean ratio was 5.71. The maximum ratio, 7.33, oc-
curred at the 16-inch amplitude in the Power model. In contrast, the minimum ratio was
3.06 at the 8-inch amplitude for the SQRT_MT model with IDWelford. Although all models
passed the residual normality assumption and had considerable R-squared results, the
high PRESS/SSE ratio still indicated that the model was not appropriate.

As each ID had only one observation, the lack-of-fit test could not be implemented.
Generally, we use all the observations to develop a regression equation to predict these
observations. The PRESS avoids this dilemma by predicting each observation based on
a model developed using all other observations. The PRESS is always larger than SSE
because a case deleted in fitting can never be as good as a case included. Consequently, the
PRESS/SSE ratio is a supplement for evaluating whether the model fits the observations
adequately in this situation.

Figure 4 presents the relationships between the MT and the ID at the same amplitude.
The upward curve noted by Welford [14] existed for every amplitude, which might explain
the high PRESS/SSE ratio.

On the other hand, the R-squared values were higher for the same amplitude in
Table 3 than for the pooled amplitude in Table 1, but not for the 2-inch amplitude. The
curvature in the 2-inch amplitude was more remarkable than the others in Figure 4, which
might explain the lower R-squared results. Such a distinct curvature might have resulted
from ballistic movement at the low ID [14]. The effect of ID type was the same as that for
the pooled amplitude. IDShannon had the best performance, followed by IDWelford and IDFitts,
for each amplitude. Overall, the R-squared performance of the SQRT_MT model was better
than those of the Power and the Canon models for every amplitude.
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Table 3. Performances of 1 oz stylus tapping for the same amplitude with Fitts’ data [1]. The performances in all statistics
but PRESS/SSE were good.

Amplitude = 2 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts 90.0 70.5 0.941 6.58 0.062
MT IDWelford 113.7 85.2 0.962 6.58 0.099
MT IDShannon 67.1 98.6 0.973 6.68 0.139

Power
√

A/W 52.9 117.8 0.991 6.90 0.134
SQRT_MT IDFitts 10.797 2.135 0.962 6.57 0.079
SQRT_MT IDWelford 11.525 2.574 0.979 6.52 0.085
SQRT_MT IDShannon 10.129 2.974 0.987 6.54 0.101

Amplitude = 4 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts −4.5 95.50 0.981 5.97 0.553
MT IDWelford 49.7 105.43 0.987 5.59 0.553
MT IDShannon 9.4 114.77 0.991 5.16 0.638

Power
√

A/W 46.2 110.75 0.995 4.46 0.351
SQRT_MT IDFitts 8.668 2.6420 0.991 4.90 0.610
SQRT_MT IDWelford 10.181 2.9120 0.994 3.97 0.255
SQRT_MT IDShannon 9.078 3.166 0.996 3.20 0.206

Amplitude = 8 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts −35.5 101.50 0.994 5.91 0.566
MT IDWelford 38.9 106.87 0.996 5.62 0.603
MT IDShannon 12.3 111.87 0.997 5.23 0.549

Power
√

A/W 122.3 82.55 0.992 7.19 0.25
SQRT_MT IDFitts 9.129 2.4902 0.998 3.87 0.186
SQRT_MT IDWelford 10.960 2.6177 0.999 3.06 0.616
SQRT_MT IDShannon 10.314 2.7409 0.999 3.14 0.691

Amplitude = 16 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts −779.9 114.30 0.993 6.58 0.052
MT IDWelford 16.0 117.31 0.994 6.57 0.058
MT IDShannon −2.1 120.25 0.995 6.56 0.065

Power
√

A/W 211.4 65.68 0.995 7.33 0.314
SQRT_MT IDFitts 9.801 2.4479 0.999 6.57 0.075
SQRT_MT IDWelford 11.860 2.5114 0.999 6.56 0.062
SQRT_MT IDShannon 11.475 2.5737 0.999 6.58 0.056

Table 4 shows the performances of 1 lb stylus tapping with the same amplitude.
Equally, IDShannon had the highest R-squared results, followed by IDWelford and IDFitts, in
the Canon and SQRT_MT models for each amplitude. However, the R-squared results of
the Power model were better than those of the SQRT_MT and the Canon models for all
but the 16-inch amplitude. However, both the maximum and minimum PRESS/SSE ratios
occurred with the 16-inch amplitude. The Power model had the worst performance, with
a ratio of 6.80. In contrast, the SQRT_MT model with IDFitts performed the best, with
a ratio of 2.97.
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Figure 4. Movement time vs. IDFitts in the 1 oz stylus tapping task with the same amplitude. All the plots show upward
curves, which cause the PRESS to be much worse than the SSE.

The upward curve is a design flaw in that there is only one observation for each
predictor variable. Due to this flaw, none of the models in Tables 3 and 4 with a high
PRESS/SSE ratio were appropriate for the regression analysis. The SQRT_MT model’s
advantage was not shown at the same amplitude; however, the SQRT_MT model performed
excellently with the pooled amplitude in Tables 1 and 2.

If there is strong evidence that the linear regression is not appropriate, the next
step in the regression analysis is to conduct a transformation. The Box–Cox procedure
automatically executes the family of power transformations on the response variable.
Generally, the user specifies a numerical range for the parameter lambda: the response
variable’s power. When the lambda is equal to 0.5 for the Canon model, it is identical to
the proposed SQRT_MT model, Equation (14), in this study. Nevertheless, the inspiration
from the physiological aspect inspiration makes the SQRT_MT a causality and not just
a statistical relation between MT and ID.

In summary, the SQRT_MT model demonstrates better results in the statistical require-
ments for the regression analysis than do the Canon and the Power models. Additionally,
IDShannon achieves better performance than do IDWelford and IDFitts. With IDShannon applied,
the SQRT_MT model might be the robust option for Fitts’ law application.

This study’s first purpose was to propose an alternative to the Canon model with sat-
isfaction of the normality of residuals assumption and the statistical principle of regression
analysis for researchers, and it has been achieved by succinct derivation and validation
using historical data in the literature. The results in Tables 1 and 2, as well as those
in Figure 3, also demonstrated that purpose 2, applicability to ballistic movement, was
also achieved.
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Table 4. Performances of 1 lb stylus tapping at the same amplitude using Fitts’ data [14]. The performances in all statistics
but PRESS/SSE were good.

Amplitude = 2 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts 86.5 73.8 0.927 6.52 0.145
MT IDWelford 111.1 89.3 0.949 6.57 0.161
MT IDShannon 62.1 103.4 0.963 6.70 0.191

Power
√

A/W 46.7 123.9 0.985 7.36 0.330
SQRT_MT IDFitts 10.747 2.208 0.952 6.56 0.094
SQRT_MT IDWelford 11.495 2.664 0.970 6.59 0.119

Amplitude = 4 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts 3.5 97.0 0.962 6.58 0.047
MT IDWelford 58.1 107.3 0.972 6.56 0.067
MT IDShannon 16.6 116.9 0.978 6.58 0.088

Power
√

A/W 51.8 113.73 0.998 6.18 0.539
SQRT_MT IDFitts 9.162 2.607 0.981 6.54 0.166
SQRT_MT IDWelford 10.641 2.878 0.988 6.49 0.124
SQRT_MT IDShannon 9.539 3.133 0.982 6.45 0.141
SQRT_MT IDShannon 10.045 3.081 0.980 6.70 0.175

Amplitude = 8 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts −95.4 120.7 0.981 6.47 0.206
MT IDWelford −7.3 127.1 0.984 6.45 0.240
MT IDShannon −39.4 133.2 0.987 6.44 0.276

Power
√

A/W 88.45 99.2 0.999 4.07 0.368
SQRT_MT IDFitts 8.055 2.858 0.994 6.40 0.281
SQRT_MT IDWelford 10.150 3.006 0.996 6.32 0.384
SQRT_MT IDShannon 9.400 3.150 0.997 6.18 0.487

Amplitude = 16 Inches

Time ID a b R2 PRESS/SSE AD Test p-Value

MT IDFitts −80.2 121.90 0.997 6.12 0.510
MT IDWelford 22.3 125.09 0.998 5.95 0.551
MT IDShannon 3.0 128.18 0.998 5.73 0.536

Power
√

A/W 232.2 69.90 0.990 6.83 0.163
SQRT_MT IDFitts 10.240 2.5255 0.999 2.97 0.829
SQRT_MT IDWelford 12.367 2.5903 0.999 3.22 0.419
SQRT_MT IDShannon 11.973 2.6539 0.999 3.85 0.202

2.3. Design of Experiment for Study Purpose 3: MT Is Related to ID with the Same Amplitude Limitation

A 24-inch/full HD resolution projected capacitive touch monitor (model: Nextech
NTSP240) and an optical mouse (model: ASUS MM-5113) were applied in the experiment.
The experimenter developed specific software to display the targets and record hit positions
and durations. A conservative and straightforward rule proposed by Zhai et al. [50] was
used to remove hitting outliers. Figure 5 illustrates the set-up of the experiment.

Twelve students (5 males and 7 females) served as the participants. They were
25.3 ± 2.6 (mean ± standard deviation) years old and 164.7 ± 7.3 cm in height. All were
right-handed with no history of upper arm injury. Figure 6 shows the procedure of the
experiment. In each treatment, the participants were asked to tap the targets 25 times.
The timing began at the first hit and ended at the twenty-fifth hit. Twenty-four response
times of twelve participants in the same treatment were averaged as the MT. Session 1 was
designed as a training session to familiarize the participants with the tasks. Data acquired
from sessions 2 and 3 were used for the analysis.
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Figure 5. The apparatus set-up in this study. The screen was located on a 66 cm high desk and angled
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bottom edge of the screen was 34 cm from the desk edge near the participant. Participants sat on
a chair and adjusted the seat height until they felt comfortable operating the apparatus.
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Instead of the traditional manipulation of target width as an independent variable to
vary the ID values at the same amplitude, this research fixed ID values at 2, 3, 4, 5, and
6 (ID2, ID3, ID4, ID5, and ID6) within the amplitude. The movement amplitudes were set
at 128, 256, 512, and 1024 (A128, A256, A512, and A1024) device-independent pixels. One
device-independent pixel is equal to a square 0.265 mm in width. We treated the index
of difficulty under a specific amplitude, ID(A), as a factor in this research. Accordingly,
the target widths (W) were determined by the ID and A. Every participant completed
the experiment in three sessions on the same day. There were 20 randomized treatments,
20 ID(A), in each session.

This study challenged Fitts’ argument that MT is related only to ID regardless of
amplitude, based on the reported results in the literature. Instead, this research hypothe-
sized that MT was related to ID, but the relationship should be considered under the same
amplitude. Thus, the null hypotheses are:

H0 : µMTID(A)=µMTID(A′)
∀ A 6= A′. (15)

Thirty tests (5 IDs× C4
2 paired amplitudes = 30) were planned to test the hypothesis

of this research for the third purpose. The Dunn–Šidák procedure, one of the a priori tests
suggested by Kirk (Kirk, 2013), was applied in this study. The familywise confidence level
was 0.95. Consequently, the individual confidence level was 0.9983.
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To explore the effects of amplitude and target width, these two variables were applied
in analysis of variance (ANOVA) with a significance level of 5%. Tukey’s test with a 5%
familywise level of significance was utilized for the significant factors in the ANOVA.

The experimental data were used to compare the coefficient parameters and perfor-
mance indexes of the Canon, Power, and SQRT_MT models. Model performance was
assessed by the normality of the residuals, the adequacy of the fitting, and the criteria for
model selection.

3. Results and Discussion
3.1. Hypothesis Test on MT Is Related Only to ID

One of Fitts’ hypotheses [1] is as follows: “The average time per response will be
directly proportional to the minimum average amount of information by the particular
conditions of amplitude and tolerance.” This statement implies that the average movement
time will be identical for the same ID even with variations in movement amplitude and
target width. Fitts thought the logarithmic term of the amplitude/width ratio was the
minimum average amount of information. To achieve the third purpose of this study,
namely, testing the hypothesis that MT is related only to ID, as claimed by Fitts, this study
designed an experiment with repetition of each ID for each amplitude. Table 5 presents the
a priori test of the hypothesis mentioned in Equation (15). Generally, 26 out of 30 planned
contrasts differed significantly. Consequently, MT might not be related only to ID. The
possible reason might be the confounding factor, ID, as Guiard [43] indicated. The proper
solution to this problem is to disaggregate ID into two individual factors, A and W.

Table 5. Dunn-Šidák simultaneous test for the planned contrasts, indicating that most of the tasks with the same ID do not
have identical MTs.

Difference of
ID(A) Levels Difference of Mean Standard Error

of Difference
Simultaneous 95%

Confidence Interval
Significant
Difference

2(128) − 2(1024) −158.9 11.6 (−195.9, −121.9) Yes
2(256) − 2(1024) −130.5 11.6 (−167.5, −93.5) Yes
2(512) − 2(1024) −54.1 11.6 (−91.1, −17.1) Yes
2(256) − 2(128) 28.4 11.6 (−8.6, 65.4) No
2(512) − 2(128) 104.7 11.6 (67.7, 141.7) Yes
2(512) − 2(256) 76.4 11.6 (39.4, 113.4) Yes
3(128) − 3(1024) −149.0 11.6 (−186.0, −112.0) Yes
3(256) − 3(1024) −137.5 11.6 (−174.5, −100.5) Yes
3(512) − 3(1024) −76.8 11.6 (−113.8, −39.8) Yes
3(256) − 3(128) 11.5 11.6 (−25.5, 48.5) No
3(512) − 3(128) 72.2 11.6 (35.2, 109.2) Yes
3(512) − 3(256) 60.7 11.6 (23.7, 97.7) Yes
4(128) − 4(1024) −105.2 11.6 (−142.2, −68.2) Yes
4(256) − 4(1024) −105.9 11.6 (−142.9, −68.9) Yes
4(512) − 4(1024) −65.8 11.6 (−102.8, −28.8) Yes
4(256) − 4(128) −0.7 11.6 (−37.7, 36.3) No
4(512) − 4(128) 39.4 11.6 (−2.4, 76.4) Yes
4(512) − 4(256) 40.1 11.6 (−3.1, 77.1) Yes
5(128) − 5(1024) −126.1 11.6 (−163.1, −89.1) Yes
5(256) − 5(1024) −90.2 11.6 (−127.2, −53.2) Yes
5(512) − 5(1024) −53.0 11.6 (−90.0, −16.0) Yes
5(256) − 5(128) 36.0 11.6 (−1.0, 73.0) No
5(512 − 5(128) 73.1 11.6 (36.1, 110.1) Yes
5(512) − 5(256) 37.1 11.6 (0.1, 74.1) Yes
6(128) − 6(1024) −145.3 11.6 (−182.3, −108.3) Yes
6(256) − 6(1024) −95.0 11.6 (−23.0, −58.0) Yes
6(512) − 6(1024) −54.3 11.6 (−91.3, −17.3) Yes
6(256) − 6(128) 50.3 11.6 (13.3, 87.3) Yes
6(512) − 6(128) 91.1 11.6 (54.1, 128.1) Yes
6(512) − 6(256) 40.8 11.6 (3.8, 77.8) Yes

Individual confidence level = 99.83%.
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Since the ID cannot be the only dominant factor in MT, this study was examined the
effects of amplitude and target width on MT. An ANOVA showed both A (F3,33 = 148.49)
and W (F7,77 = 40.18) were significant, with p-values less than 0.001. Table 6 presents the
post hoc test for amplitude. All the p-values of the Tukey pairwise comparisons were less
than 0.001. This result implied that the MT is dependent on varied amplitude: a greater
amplitude requires more MT. Likewise, Table 7 presents the results of the post hoc test for
target width. Almost all p-values of the Tukey pairwise comparisons were less than 0.001,
except that of 256 − 128, which was 0.002. The result implied that MT is dependent on
varied target width, as well. However, MT is negatively related to target width; a smaller
target width requires more MT.

Table 6. Tukey simultaneous tests for differences of means in amplitude. The larger the amplitude was, the longer the
MT was.

Difference of
Amplitude Levels

Difference of
Mean

Standard Error of
Difference

Simultaneous 95%
Confidence Interval T-Value p-Value

256 − 128 80.0 5.5 (65.8, 94.2) 14.47 < 0.001
512 − 128 184.9 5.9 (169.7, 200.2) 31.16 < 0.001

1024 − 128 298.3 6.5 (281.7, 314.9) 46.09 < 0.001
512 − 256 104.9 5.4 (91.0, 118.8) 19.32 < 0.001

1024 − 256 218.3 5.9 (203.7, 233.5) 36.79 < 0.001
1024 − 512 113.4 5.5 (99.2, 127.6) 20.52 < 0.001

Individual confidence level = 98.93%.

Table 7. Tukey simultaneous tests for differences of means in width. The smaller the width was, the longer the MT was.

Difference of
Width Levels Difference of Mean Standard Error

of Difference
Simultaneous 95%

Confidence Interval T-Value p-Value

8 − 4 −34.7 10.3 (−160.0, −88.3) −3.38 <0.001
16 − 4 −88.3 9.9 (−275.8, −200.8) −8.91 <0.001
32 − 4 −159.9 9.8 (−352.6, −278.6) −16.34 <0.001
64 − 4 −223.0 9.8 (−427.1, −353.1) −22.80 <0.001

128 − 4 −274.6 10.6 (−480.7, −400.5) −25.92 <0.001
256 − 4 −304.1 11.3 (−521.3, −435.5) −26.81 <0.001
512 − 4 −351.3 13.1 (−589.2, −489.9) −26.77 <0.001
16 − 8 −53.7 7.6 (−139.8, −82.6) −7.11 <0.001
32 − 8 −125.2 7.3 (−216.3, −160.7) −17.05 <0.001
64 − 8 −188.4 7.3 (−290.8, −235.2) −25.65 <0.001

128 − 8 −239.9 8.1 (−344.0, −283.0) −29.80 <0.001
256 − 8 −269.5 9.2 (−386.2, −316.3) −29.17 <0.001
512 − 8 −316.7 11.3 (−455.4, −369.5) −27.92 <0.001
32 − 16 −71.5 6.3 (−101.1, −53.5) −11.37 <0.001
64 − 16 −134.7 6.3 (−175.6, −128.0) −21.40 <0.001

128 − 16 −186.2 6.9 (−228.6, −176.1) −26.85 <0.001
256 − 16 −215.8 8.1 (−270.6, −209.6) −26.80 <0.001
512 − 16 −263.0 10.6 (−341.3, −261.2) −24.83 <0.001
64 − 32 −63.1 5.7 (−96.1, −52.9) −11.06 <0.001

128 − 32 −114.7 6.3 (−148.9, −101.2) −18.23 <0.001
256 − 32 −144.2 7.3 (−190.6, −135.0) −19.64 <0.001
512 − 32 −191.5 9.8 (−261.0, −187.0) −19.57 <0.001
128 − 64 −51.6 6.3 (−74.3, −26.7) −8.19 <0.001
256 − 64 −81.1 7.3 (−116.1, −60.5) −11.05 <0.001
512 − 64 −128.3 9.8 (−186.5, −112.4) −13.12 <0.001
256 − 128 −29.6 7.6 (−66.4, −9.2) −3.91 0.002
512 − 128 −76.8 9.9 (−136.4, −61.4) −7.74 <0.001
512 − 256 −47.2 10.3 (−100.0, −22.3) −4.60 <0.001

Individual confidence level = 99.74%.
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In Table 5, all six planned contrasts were significant at ID2 except (128, 256). When
the difference between the paired amplitude was not huge, as in the cases of (128, 256),
the contrast in MTs was just marginally not significant, since the lower bound of the
simultaneous 95% confidence interval was near zero. In contrast, when the difference
between the amplitudes increased, the difference in MT tended to be more significant. In
the easiest task, the contribution of movement amplitude to MT was more than that of
target width. For example, for target widths of 64 and 512, the amplitudes were 128 and
1024 pixels in the 2(128) − 2(1024) contrast. The absolute mean difference in MT of the
128 − 1024 contrast in the movement amplitude was 298.3 msec, and that of 64 − 512 in the
target width was 128.3 msec. Similarly, this study found that the contribution of amplitude
was more than that of width in all six planned contrasts at ID2. The smallest target width
was 64 pixels at ID2, which was still wide enough for participants to hit the target quickly.
The trade-off effect of speed vs. accuracy was not evident in the easiest task.

Results similar to those for ID2 occurred at ID3, ID4, and ID5. With increases in
difficulty, the effect of width was gradually revealed. The 3(256) − 3(128), 4(256) − 4(128),
and 5(256) − 5(128) contrasts were again the only non-significant contrasts at ID3, ID4,
and ID5. However, two contrasts, 4(512) − 4(256) and 4(512) − 4(128), were marginally
significant at ID4. Equally, 5(512) − 5(256) and 5(512) − 5(128) were marginally significant
at ID5. All the adjacent amplitudes that were less than 128 pixels were not significant at ID2
to ID5. However, all six planned contrasts were significant at ID6. Only 6(512)− 6(256) and
6(256) − 6(128), but not 6(512) − 6(128), were marginally significant at ID6. Generally, the
significance increased gradually as the difference in adjacent amplitudes increased. Such
results imply that a reduced target width in a harder task causes participants to employ
a speed–accuracy trade-off policy.

This study reanalyzed Fitts’ data (Fitts, 1954) by considering amplitude and width
as factors. The ANOVA results indicated that both amplitude (F3,9 = 101.08) and width
(F3,9 = 98.56) had p-values less than 0.001 in the 1 oz stylus tapping task. Equally, amplitude
(F3,9 = 77.40) and width (F3,9 = 81.40) had p-values less than 0.001 in the 1 lb stylus tapping.
All factors’ levels were significantly different, since they were in different groups, according
to the Tukey pairwise comparison test (Table 8). Thus, MT increases as A increases or W
decreases. Although the apparatus in this study differed from that in Fitts’, the effects of
amplitude and target width on movement time were consistent. This raises a new question
that we may have to examine carefully. Fitts’ law combines two significant factors into
a single factor. Could this factor indicate that the effects of the two factors on the response
time are still an unknown issue? Fortunately, we could overcome this issue by considering
Fitts’ law with an underlying constant amplitude, since we would like to reject the null
hypothesis. In this way, the only factor we have to investigate is the target width.

Table 8. Tukey simultaneous tests for the effects of amplitude and target width effect on MT in 1 oz and 1 lb stylus tapping
from Fitts’ data [1] had results consistent with those in this study.

1-oz Stylus 1-lb Stylus

A * Sample Size Mean MT Grouping Mean MT Grouping

16 4 548.8 A 590.3 A
8 4 421.3 B 447.8 B
4 4 329.8 C 343.0 C
2 4 266.3 D 271.0 D

W * Sample Size Mean MT Mean MT

0.25 4 546.8 A 586.5 A
0.50 4 429.3 B 444.3 B
1.00 4 327.5 C 346.8 C
2.00 4 262.5 D 274.5 D

*: units in inches.
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In summary, this study suggests applying Fitts’ law with an underlying constant
amplitude. Based on our findings: (1) target width is a significant factor in MT. This result
is consistent with Hoffmann and Sheikh’s findings [51]. When the width is sufficiently
narrow, people extend the MT due to the speed–accuracy trade-off. (2) The fact that
amplitude significantly affects MT is consistent with Accot and Zhai [52]. (3) This paper
is the first to develop a statistical inference about Fitts’ law’s implication that MT is not
related only to ID. Our results support Gan and Hoffmann’s argument that amplitude
affects MT and is independent of the index of difficulty [5].

3.2. Validation of the SQRT_MT Model for the Same Amplitude

The robustness of the proposed SQRT_MT model was verified with the data of this
research. Since in this research, the practice effect, unlike the results in the literature [53,54],
was more significant in session 1 than in sessions 2 and 3, the regression analysis was
processed by excluding the data from session 1.

Table 9 presents the regression analysis using data with all the amplitudes. Although
all the models fitted the linearity well and the PRESS/SSE ratios were almost perfect,
around 1.11, the R-squared values, which were around 0.80, were somewhat lower than the
reported value of 0.95 in the literature. IDShannon produced a higher R-squared value than
IDWelford and IDFitts in both the Canon and SQRT_MT models. Additionally, the R-squared
values of the SQRT_MT model were always higher than those of the Canon model for each
ID type. The R-squared value of the Power model was between those of the SQRT_MT
model and the Canon model. Nevertheless, none of the models satisfied the residual
normality requirement.

Table 9. Regression analysis using data for all amplitudes. The R-squared values were much lower than the value reported
in the literature, possibly due to the equal observations of each ID. Additionally, the normality in all models was significant.

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test’s p-Value

Canon IDFitts 379.2 72.22 0.797 1.11 0.417 0.026
Canon IDWelford 423.7 78.10 0.802 1.11 0.597 0.014
Canon IDShannon 397.4 83.53 0.806 1.11 0.744 0.009
Power

√
A/W 451.7 68.05 0.809 1.10 0.902 0.011

SQRT_MT IDFitts 19.656 1.471 0.820 1.11 0.771 0.017
SQRT_MT IDWelford 20.570 1.589 0.822 1.11 0.915 0.010
SQRT_MT IDShannon 20.041 1.697 0.824 1.11 0.978 0.010

Figure 7 illustrates the results. The scatter points in the graph on the left, distributed
straight along the regression line, satisfy the linearity adequately in the lack-of-fit test.
A straight line passes through the dots’ centers at each ID, making the PRESS deviate from
SSE slightly. The equal observations of each ID differed from the pattern of Fitts’ data [1],
which caused the worse R-squared values. However, the variance of the fitted values
increased as the ID decreased. Such a result implies a violation of the constant variance
assumption in the regression analysis. The graph on the right in Figure 7 presents the
regression analysis under the same amplitude. The slopes of these regression lines are
different, which explains the unsatisfied residual normality.

It was expected that the residual normality would not be satisfied. Table 5 implies
that the MTs of a specific ID with varied amplitude would be entirely different from one
another at a low ID. When the difference in adjacent amplitudes at a more difficult ID is
sufficiently small, the MT does not differ much. With increases in ID, the narrow width
extends the MT due to participants’ speed–accuracy trade-off to compensate for the gap
due to the amplitude. Such a result implies the unequal slopes of the regression lines
with the varied constant amplitude. The unequal slopes also imply a possible interaction
between amplitude and target width. The graph on the right in Figure 7 supports the
existence of such an interaction.
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in the Canon model with all observations. It implies that the variances of varied ID were not equal. For the same amplitude
for regression analysis, the graph on the right shows that the slopes of the lines are different.

This study’s hypothesis, namely, that MT is related to the ID at the same amplitude,
was validated in Section 3.1. A further regression analysis considering the same amplitude
was executed. Table 10 presents the parameters and test statistics required for an apprecia-
ble linear regression line considering the varied constant amplitude. Generally, the results
were almost perfect, except that the Canon model applying IDFitts failed the lack-of-fit test
at an amplitude of 256 pixels.

All the models strongly satisfied the residual normality requirement. The PRESS/SSE
ratios, which ranged between 1.51 and 1.89, also performed well. For the effect of ID type
on PRESS/SSE ratio, all three IDs were compatible. However, the SQRT_MT model had
a minor advantage over the Canon model. The Power model provided the best and the
worst ratios twice, respectively.

The R-squared values ranged from 0.964 to 0.991, and the mean was 0.978. The
maximum resulted at an amplitude of 128 pixels when the SQRT_MT model with IDShannon
was applied. In contrast, the minimum resulted at an amplitude of 256 pixels when the
Canon model with IDFitts was applied. Among the four amplitudes, the values of IDShannon
were the highest or second highest, with a difference of 0.001.

This research utilized a heuristic procedure for model selection (Table 10). The proce-
dure was as follows: (1) both the lack-of-fit and the residual diagnostics must be satisfied.
(2) Consider both the PRESS/SSE and the R-squared simultaneously, and take a trade-off
policy, such as the difference between a PRESS/SSE within 0.01 and an R-squared of less
than 0.1. Researchers could set the threshold values themselves. Overall, the SQRT_MT
model performed slightly better in terms of R-squared than did the Power and the Canon
models at the four constant amplitudes.

As mentioned in Section 2.2, the regression formulations at the same amplitude using
Fitts’ data did not satisfy the linearity due to only one observation being conducted for
each predictor variable’s level, which caused the scatter points to resemble a curve. The
experiment in this study remedied this flaw, and the results in Table 9 imply that the last
piece of the puzzle in the argument of this research, namely, that Fitts’ law should consider
IDs at the same amplitude, was found.

In summary, when Fitts’ law is considered at the same amplitude, Tables 3, 4 and 10
show that all models pass the residual normality test and the lack-of-fit test except the
amplitude of 256 pixels with IDFitts in the Canon model. The effects of IDShannon, IDWelford,
and IDFitts on R-squared consistently range from high to low, whether in the Canon or
the SQRT_MT model. The same ID type always has a higher R-squared value in the
SQRT_MT model than in the Canon model. Conversely, the results in Tables 1, 2 and 9,
for which different amplitudes were used in the formulation, show the insufficiencies in
the normality assumption or the inadequacy in the data fitting. Comparison of the results
between Tables 1–4, 9 and 10 implies that the SQRT_MT model considering the same
amplitude of movement is a better choice than the Canon model using all the amplitudes
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simultaneously in a Fitts’ law application. Additionally, the SQRT_MT model with IDShannon
performed excellently and robustly with both the data from the experiment in this study
and the historical data in the literature, suggesting that it might be an excellent option for
applications of Fitts’ law.

Table 10. Regression analysis with the amplitudes separated; only one failed the test of normality (Canon IDFitts).

Amplitude 128

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test p-Value

Canon IDFitts 251.4 95.99 0.971 1.70 0.081 0.697
Canon IDWelford 310.5 103.81 0.978 1.71 0.153 0.636
Canon IDShannon 275.5 111.04 0.983 1.72 0.259 0.694
Power

√
A/W 347.7 90.48 0.988 1.87 0.522 0.238

SQRT_MT IDFitts 17.184 1.926 0.985 1.69 0.236 0.649
SQRT_MT IDWelford 18.379 2.080 0.989 1.69 0.460 0.527
SQRT_MT IDShannon 17.685 2.222 0.991 1.71 0.700 0.357

Amplitude 256

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test p-Value

Canon IDFitts 332.6 76.71 0.964 1.70 0.030 0.423
Canon IDWelford 379.7 83.03 0.972 1.69 0.057 0.540
Canon IDShannon 351.4 88.86 0.978 1.67 0.098 0.542
Power

√
A/W 408.9 72.64 0.989 1.53 0.451 0.536

SQRT_MT IDFitts 18.687 1.575 0.979 1.68 0.090 0.812
SQRT_MT IDWelford 19.661 1.702 0.985 1.65 0.185 0.893
SQRT_MT IDShannon 19.089 1.819 0.988 1.62 0.322 0.581

Amplitude 512

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test p-Value

Canon IDFitts 410.2 61.90 0.965 1.65 0.202 0.910
Canon IDWelford 448.3 66.95 0.972 1.63 0.332 0.605
Canon IDShannon 425.7 71.61 0.977 1.61 0.484 0.547
Power

√
A/W 472.5 58.30 0.979 1.54 0.623 0.166

SQRT_MT IDFitts 20.200 1.292 0.979 1.62 0.445 0.250
SQRT_MT IDWelford 21.002 1.396 0.983 1.59 0.678 0.361
SQRT_MT IDShannon 20.536 1.491 0.985 1.57 0.851 0.335

Amplitude 1024

Model ID a b R2 PRESS/SSE Lack-of-Fit AD Test p-Value

Canon IDFitts 522.6 54.30 0.966 1.54 0.189 0.309
Canon IDWelford 556.4 58.60 0.969 1.53 0.232 0.194
Canon IDShannon 536.9 62.59 0.971 1.53 0.262 0.111
Power

√
A/W 578.4 50.78 0.967 1.59 0.199 0.297

SQRT_MT IDFitts 22.553 1.092 0.977 1.51 0.220 0.273
SQRT_MT IDWelford 23.239 1.177 0.977 1.52 0.218 0.120
SQRT_MT IDShannon 22.852 1.256 0.976 1.53 0.200 0.188

3.3. Model Selection for Application

The Canon model cannot describe the relationship between movement time and
index of difficulty, possibly due to ballistic movement, as has been reported [5,22–25].
Researchers proposed the Power model to deal with this phenomenon. Furthermore, the
most up-to-date theoretical literature in 2018 reported a non-linear model of the speed–
accuracy trade-off [55], indicating that researchers are still looking for a consistent model
for cross-comparison of results from different studies. Although proponents of the Power
law emphasized that the information theory-based formulation was an invalid analogy
to Shannon’s Theorem 17 and derived the power law from a human’s theoretically opti-
mal movement, this ideal optimal behavior might be challenging to validate in the real
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world. Additionally, the Power model resulted in a higher R-squared value for Fitts’ data
compared with the information theory-based formulation using IDFitts [8,26]. Nevertheless,
the Canon model, based on information theory, remains mainstream in Fitts’ law appli-
cations. The possible reason might be the magic of information theory, which provides
an attractive explanation of the information transmitted in a specific task. This character-
istic facilitates the evaluation or comparison of the performances of various devices, not
just the times needed to complete the same job. Oppositely, the square root of the A/W
ratio is meaningless. Consequently, the Canon model is popular among researchers and
industrial practitioners.

Fitts was not entirely consistent on the analogy to information theory. As Fitts himself
stated, “The index of difficulty is not an exact measure of information” [56]. Additionally,
the statement “the analogy with Shannon’s Theorem 17 is not exact” was printed in note
3 in Fitts and Peterson [15]. On the other hand, Fitts tried to rationalize this analogy
aggressively even though he knew this analogy was problematic. Fitts defined IDFitts as
the only information necessary for a movement with the amplitude and the target width
specified by IDFitts [1]. IDFitts involves the amplitude and the width as metrics in length,
but not in power, as Shannon’s Theorem 17 does. However, Fitts still utilized ID as the
information in bits for various human movement analyses.

Since the first alternative to ID appeared in 1960 [14], the issue of which version is
valid has persisted. Fitts and Peterson [15] criticized the use of IDWelford and suggested
that the choice between IDFitts and IDWelford should rest on heuristic considerations, since
neither of them had been derived formally from a theory. By the same token, IDShannon
was not a formal derivation, either. MacKenzie also had similar thoughts, stating, “It is an
engineering issue to choose a higher correlation formulation” and “the only concern was
utility,” in his reply to Hoffmann’s challenge [16] on the valid version issue [42].

The Canon model describes movement time as related only to the index of difficulty,
which implies that movement time is the same for the same ID value regardless of the
A/W combination. After half a century, our research is the first study to test this essential
hypothesis. Our results indicate that movement time is positively related to index of
difficulty when the movement amplitude is the same for different ID values. Consequently,
Fitts’ law should be applied to each movement amplitude individually. In this way, the
failure in the normality of residuals and the lack of adequate fitting, which have long been
ignored and unreported in the literature, can be avoided.

This research focused on the facts about Fitts’ law in the literature that we have
mentioned but were ignored by researchers. Fitts [15] clearly stated that the analogy to
Shannon’s Theorem 17 is not proper [56], the ID is not formally derived from information
theory [11,15,17,26,42], and the selection between candidates relies on researchers’ heuristic
considerations. Despite the fact that the analogy of the Canon model to information theory
is still controversial in research [16,39,40], the mathematical proofs in these studies suffer
the same validation challenge in natural human movement as in the Power model. Human
movements might approximate the theoretical argument, but minor deviations could
impact the fitness of the formula. Nevertheless, the experimental data in the literature
published over the past sixty-five years demonstrate that the positive relationship between
movement time and index of difficulty holds true. This research proposes a modified
model, the SQRT_MT model, to improve the formula in terms of satisfying the underlying
statistical assumption. Furthermore, the SQRT_MT model combines findings from the
fields of psychology, physics, and physiology. It is a model that considers theoretical
advances in modern physics and physiology, and empirical results from psychology and
physiology can be considered simultaneously. This research has demonstrated that the
SQRT_MT model has advantages both in the statistical requirements and the realistic
fitness of ballistic movements. Hopefully, the SQRT_MT model will shed the light on the
unification of Fitts’ law in one formula.

The above results imply that it is more suitable to treat all the Fitts’ law models simply
as prediction models for response time. Based on the results of this research listed in



Mathematics 2021, 9, 1585 23 of 26

Table 10, all the available options in Fitts’ law have excellent performance in a proper
experimental design. This research agrees with Fitts [17] and MacKenzie’s argument [42];
researchers can choose their preferred model heuristically. Therefore, the issue of which
version is valid should not persist in the community.

To summarize, the approach to modeling the prediction of movement time by applying
the same amplitude with repetition for each predictor variable and proper diagnostics for
the linear regression’s assumptions should be considered in Fitts’ law. Researchers can
select any prediction formulation they prefer: the Canon, the Power, or the SQRT_MT
model. The SQRT_MT model with IDShannon is suggested based on the high R-squared
value, the satisfied normality of residuals, and the adequate fitting with empirical data in
the historical and current experiments.

3.4. Meaning of the Intercept and the Slope

Some researchers have claimed that the non-zero intercept was caused by a modeling
error [24,57] or resulted from not using IDShannon [18,21]. Those authors might think that
movement time should be zero when ID is zero. However, ID is never zero in the real
world [15]. Fitts designed the ID to be more than zero [1]. No matter how easy a movement
is, it entails slight difficulty. Zero difficulty would imply a total lack of movement. That
might be the reason why Fitts added the constant multiplier, 2, in the definition of ID.

Other reasons, such as the time required for movement of zero distance [21], the dwell
time on the target in reciprocal tapping [17], and submovements such as the pressing time
of a mouse button [21], do not explain the zero intercept, either. Movement time is always
measured from the moment of departure from the starting point to the moment of contact
with the target. The time required for motor unit recruitment before the movement occurs,
i.e., the time for zero distance, might be impossible to record with the apparatus in the
reported literature.

Theoretically, whether the intercept equals zero or not should be determined by a t-test
based on empirical data. Many possible meanings of the intercept have been reviewed
in the literature [4,50]. Fitts designed the ID never to be zero by multiplying by 2 in the
logarithmic term. Additionally, neither IDWelford nor IDShannon is zero, theoretically. Since
the intercept is a derived value from the regression analysis and there is no theoretical
reason for it to be zero, its calculation and explanation must obey the statistical principle.
Kunter et al. [44] indicated that the intercept does not have any particular meaning if
a horizontal axis variable equal to zero does not exist. Fitts’ law satisfies this kind of case.
All of the arguments about the zero intercept might be unnecessary.

The most attractive index, slope “b” in Equation (2), was proposed to underlie the
analogy to Shannon’s Theorem 17. However, this explanation would not work if the
intercept, “a” in Equation (2), were not zero. Unfortunately, “a” is seldom zero in the
empirical data.

Moreover, we have argued that all the Fitts’ law models should be treated as simple
prediction equations for response time with the supporting evidence in the literature in
Section 3.3. In normal circumstances, ID is not required information, nor is the information
transmission rate.

In short, the intercept is meaningless because the predictor variable, ID, is never zero
in the real world. Similarly, the slope is the rate of change in movement time for the unit
change in ID.

4. Conclusions

To conclude, the present study presents primary research on Fitts’ paradigm. Still,
it reveals some essential requirements and assumptions of the linear regression analysis
that were not satisfied in past research. The major contributions of this research are as
follows: (1) this is the first study to conduct a formal hypothesis test for the essential
assumption, namely, that MT is related only to ID, in the literature. The results indicate
that MT is related to ID at the same amplitude. Researchers might apply Fitts’ law for
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varied amplitudes. (2) The SQRT_MT model provides excellent results in all the required
statistics of linear regression. The proposed SQRT_MT model, combining findings from
the fields of psychology, physics, and physiology, in combination with IDShannon, might
be a robust option for Fitts’ law application. In addition, it is a simple and easy-to-apply
model that tolerates both ballistic and visual feedback movement concurrently. (3) The
approach to modeling the prediction of movement time should utilize repetition in each
predictor variable, and proper diagnostics for the linear regression’s assumptions should
be considered. (4) The results of the experiment in this research show that all the available
models are excellent prediction equations. Researchers can choose their preferred model for
their investigations. (5) The proposed SQRT_MT model might shed light on the unification
of Fitts’ law in one formula.

Although this study’s three purposes were achieved, some limitations must be noted.
(1) The SQRT_MT model was demonstrated to tolerate both ballistic and visual feedback
movement concurrently with the historical data in the literature, but it is believed that
no ballistic movement was present in this study, since the shortest MT in this study was
much longer than 200 msec. (2) The linearity fitting and the residual assumption were
strongly satisfied by the results of the experiment, too. However, the repetition in each
predictor level at the same amplitude is two. Future research is suggested to improve the
two limitations to enhance the validity of the SQRT_MT model.
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