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1. Introduction

Serge [1] made a pioneering attempt in the development of special algebra. He
conceptualized commutative generalization of complex numbers, bicomplex numbers,
tricomplex numbers, etc. as elements of an infinite set of algebra. Subsequently, in the
1930s, researchers contributed in this area [2—4]. The next fifty years failed to witness any
advancement in this field. Later, Price [5] developed the bicomplex algebra and function
theory. Recent works in this subject [6] find some significant applications in different
fields of mathematical sciences as well as other “branches of science and technology
(see, for instance [7-9] and reference therein)”. An impressive body of work has been
developed by a number of researchers. Among them, an important work on elementary
functions of bicomplex numbers has been done by Luna-Elizaarrards, Shapiro, Struppa and
Vajiac [10]. Choi, Datta, Biswa, and Islam [11] proved some common fixed point theorems
in connection with two weakly compatible mappings in bicomplex valued metric spaces.
Jebril [12] proved some common fixed point theorems under rational contractions for a
pair of mappings in bicomplex valued metric spaces. In 2017, Dhivya and Marudai [13]
introduced the concept of complex partial metric space and suggested a plan to expand
the results and proved the following common fixed point theorems under the rational
expression contraction condition.

Theorem 1. Let (20, <) be a partially ordered set and suppose that there exists a complex partial
metric o, in 20 such that (W, 0.p) is a complete complex partial metric space. Let I', A : 20 — 20
be a pair of weakly increasing mapping and suppose that, for every comparable o, € 20, we
have either

0 (T, Ap) = 227 )0 (4, A9)

b 7 7
ch((f, l/J) + ch(O' 4’)
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foroep(o,¢) #O0witha >0,b>0,a+b<1,or

0 (Lo, Ap) = 0 if ocp(0, ) = 0.

If T or Ais continuous; then, I' and A have a common fixed point <& 20 and o (cx, ) = 0.

In 2019, Gunaseelan and Mishra [14] proved coupled fixed point theorems on complex
partial metric space using different types of contractive conditions. In 2021, Gunaseelan,
Arul Joseph, Yongji, and Zhaohui [15] proved common fixed point theorems on complex
partial metric space. In 2021, Beg, Kumar Datta, and Pal [16] proved fixed point theorems
on bicomplex valued metric spaces. Usually, in a metric space, self distance is zero (i.e.,
0 (0, ) = 0), but, in partial metric space, the self distance need not be equal to zero.
In this paper, inspired by Theorem 1, here we prove some common fixed point theorems
on bicomplex partial metric space with an application.

2. Preliminaries

Throughout this paper, we denote the set of real, complex, and bicomplex numbers
respectively as Cy, C; and C;. Segre [1] defined the bicomplex number as follows:

¢ = a1 + axiq + agip + agiqip,

where ay,ap,a3,a4 € Cp, and independent units 7y, ip are such that i% = i% = —1and
i1ip = ipi1, we denote that the set of bicomplex numbers C; is defined as:

Co ={C:¢ = a1 + apiy + azip + agiyip, a1, a2, a3, a4 € Co},
ie.,
Co={¢:C =13 +is231,3 €Ci},

where 31 = a1 +ai; € Cyand 3p = a3 +a4i; € Cq. If § = 31 +ix32 and 7 = 11 + iztoy
be any two bicomplex numbers, then the sum is { £ = (31 + i232) £ (to1 + ixtv) =
31 £ 7 +i2(32 = 2) and the product is ¢.i7 = (31 + i232) (101 + i2M02) = (31101 — 2t02) +
i2 (31102 + 32101).

Definition 1. Ref. [5] Let & and 1 be elements in Cy. If & = &, then { is called an idempotent
element. If § # 0,1 # 0, and ¢y = 0, then ¢ and y are called divisors of zero.

There are four idempotent elements in C;, they are 0,1,¢; = #, e = 1751 2 out of
which ¢ and ¢, are nontrivial such that ¢; + ¢; = 1 and e¢jep = 0. Every bicomplex number

31 + 1232 can be uniquely expressed as the combination of ¢; and e, namely

& =131 +ig = (31 —i132)e1 + (31 +i132)e2.

This representation of ¢ is known as the idempotent representation of bicomplex
number and the complex coefficients & = (31 — i132) and & = (31 + i132) are known as
idempotent components of the bicomplex number ¢.

An element ¢ = 31 + 1232 € C; is said to be invertible if there exists another element 7
in C, such that {7 = 1 and 7 is said to be inverse (multiplicative) of . Consequently, ¢ is
said to be the inverse (multiplicative) of . An element which has an inverse in C; is said
to be the non-singular element of C; and an element which does not have an inverse in C,
is said to be the singular element of C,.
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An element ¢ = 31 + x5 € Cj is non-singular if and only if | 3% + 3%\ # 0 and singular
if and only if |33 + 33| = 0. The inverse of ¢ is defined as

_ 3— 232
C 1 = ]7 = .
32+

Zero is the only element in Cy which does not have multiplicative inverse and in Cy,
0 = 0+ i0 is the only element which does not have a multiplicative inverse. We denote the
set of singular elements of Cy and C; by Og and O, respectively. However, there is more
than one element in C,, which does not have multiplicative inverse, and we denote this set
by 97 and clearly 9y = O C Os.

A bicomplex number § = a1 + apiy + azip + agijiy € C, is said to be degenerated if

the matrix
ap a
as ag4

is degenerated. In that case, ¢ —1 exists, and it is also degenerated.
The norm ||.|| of C; is a positive real valued function and ||.|| : C, — C{ is defined by

. 1
1611 = lls1 + 2zl = {[31* + 1317} 2

. . 1
(1 — 132) | + | (31 + 1132) |*]
2

1
= (a‘%+a§+a%+a§+aﬁ)2,

where ¢ = a1 + apiy + agiz + aqiip = 31 + 232 € Co.

The linear space C, with respect to defined norm is a normed linear space; in addition,
C, is complete; therefore, C; is the Banach space. If &5 € Cy, then ||¢y|| < v2||€]/||7]]
holds instead of ||&7|| < ||¢]|||7||- Therefore, Cy is not the Banach algebra. The partial order
relation <;, on C; is defined as: Let C; be the set of bicomplex numbers and ¢ = 31 + i232,
7 =11 +ixwy € Cy then § =;, 77 if and only if 3; < vy and 320 < 1y, ie., ¢ =, 7 if one of
the following conditions is satisfied:

(@) 31 =171, =1y,
(b) 31 < 11,5 =12,
(€) 31 =11, 5 <ty and
(d) 31 < 11,5 <oy,
In particular, we can write ¢ S, 7if § =;, 7.and & # 7 i.e., one of (b), (c), and (d) is
satisfied, and we will write ¢ <;, 7 if only (d) is satisfied.
For any two bicomplex numbers ¢, 77 € C;, we can verify the following:

(1) & =i = |IEll < lnll,
@) g+l < Ig]] +[lrll,

(3) |lag|| = a||&||, where a is a non-negative real number,

@ &1l < V2||¢]lllm]| and the equality holds only when at least one of & and 7 is
degenerated,

(5) ||¢7 Y| = ||¢]|7 Y if & is a degenerated bicomplex number with 0 < ¢,

(6) ||%|| = %, if i is a degenerated bicomplex number.

Now, let us recall some basic concepts and notations, which will be used in the sequel.

Definition 2. A bicomplex partial metric on a non-void set 20 is a function pep, : 20 X W — (C;’
such that, for all o, ¢, ¢ € 20:

() 0=y, 0pev(0,0) =i, 0pep (0, ¥), (small self-distances)
(i) oper(0,Y) = Qper (3, 0) (symmetry)
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(iti) Qe (0, 0) = Quep (0, ) = Quer (Y, ) if and only if o = ¢ (equality)
(@) Qpep (0, ) =i Qben (0, 8) + Qoet (8, ) — Quen (8, 9) (triangularity).

A bicomplex partial metric space is a pair (20, 0pep) such that 20 is a non-void set, and oy is
the bicomplex partial metric on 20.

Example 1. Let 20 = {1,3,4,7} be a set endowed with the classical bicomplex partial metric
veb (0, 9) = (1 + i) max{o, ¢}, Vo, ¢ €2,

oct (7, ) 1 3 i 7

1 (1+1ip) (1+1)3 (1+41ip)4 (1+1p)7
3 (1+1i)3 (1+12)3 (1+1i2)4 (1+1iy)7
4 (1+1ir)4 (1+ip)4 (1+1iy)4 (1+1)7
7 (1+1ip)7 (1+1ip)7 (1+1ip)7 (1+1ip)7

Then, (i), (ii), and (iii) of Definition 2 are obvious for the function pep. Let 0 =1, 1 =3,
¢ = 4 € 20 be arbitrary.
Now,

0pcb(1,3) = (1 +1i2)3 =, 4(1 +1p) +4(1 +ip) — 4(1 4 1p)
= 0peb(1,4) + 0pev(4,3) — 0pep (4,4).

Therefore, Qpcb (0, ) =iy Qbeh (7, 8) + Qb (9, 9) — Qper (9, 8). Hence, (2W, gpep) is a bicom-
plex partial metric space.

For the bicomplex partial metric space gp., on 20, the function d,,,, : 20 x 20 — CJ
givenby 0, . = 20pct (0, ) — 0pet (0, 0) — Qper (P, P) is a usual metric on W. Each bicomplex
partial metric g, on 2 generates a topology T,,, on 20 with the base family of open
Opcp-balls {B,, ,(0,€) : 0 € W,e =;, 0}, where By, ,(0,€) = {p € W : gp(0, 9) <y,
0peb(0,0) + €} forallo € Wand 0 <;, € € C; .

A bicomplex valued metric space is a bicomplex partial metric space. However, a
bicomplex partial metric space need not be a bicomplex valued metric space. The above
Example 1 illustrates such a bicomplex partial metric space.

Note that self distance need not be zero, for example 05¢5(1,1) = 1+ iy # 0. Now, the
metric induced by 0y, is as follows: 3y, , = 20pch (0, P) — 0per (0, ) — 0pep (P, P); Without
loss of generality, suppose o > i then d,, , = 2{max{c, ¢} +ir max{c, ¢} } — {o +ir0} —
{¥ +i2¢}. Therefore, vy, , (0, ¢) = |0 — ¢| +iz|o — ¢|.

Theorem 2. Let (20, 0pcp) be a bicomplex partial metric space, then (20, 0pep) is To.
Proof. Supposing o, € 20 and ¢ # ¢, from condition (i) and (iii) in Definition 2, we get

0beb (0,0) =iy Qpen (0, )
OR

0bet (¥, §) <y Qben (0, P).

Suppose that gpc,(0,0) =i, 0pey(0,9). Then, we have 0 <, 04y (0, 1) — Oper(0, 7).
Now, let v € C5 such that 0 <;, v <, 0pet(0, §) — 0pep (0, ). Therefore, o € B,, , (7,t) and
P & By, (0,v). Hence, (2, 0pep) is To. O

Definition 3. Let (20, 0y ) be a bicomplex partial metric space. A sequence {0y} in 20 is said to
be a convergent and converges to o € 2 if, for every 0 <;, € € C5, there exists N € N such that
0y € By, (0,€) forall x > N, and it is denoted by lgn Oy = 0.

n—r 00
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Lemma 1. Let (20, 0pcp) be a bicomplex partial metric space. A sequence {0y} € 20 converges to
0 € Wiff epep(0,0) = lim 0y (7, o).

Proof. Assume that {0, } converges to o. Let € > 0 be any real number. Suppose

t= S b i iy +iyipe
T Ty TRy TR,

Then, 0 <;, v € C; and, for this t, there is a natural number 9 € N such that
0y € By, (0, ) forall a > Ni.e., 0pep (0w, ) <y, t + Qpes (0, 7). Therefore,

|1Qbeb (0w, &) — Qpep (0, 0)|| < € forall a > 9.

Therefore, 0y (0w, 0) — 0pep(0,0) as w — co.
Conversely, assume that 0y (0%, ) — 0pey(0,0) as @ — 0. Then, for each 0 <;, v €
C5, there exists a real € > 0 such that, forall ¢ € CJ,

Il <e= <
Then, for this € > 0, there exists 91 € N such that
[lopey (0w, 0) — Opep(0,0)|| < € forall @ > M.
Therefore,
0pcb (0w, ) =iy t+ Qpep(0,0) forall & > N.
Hence, {0, } converges to a pointo. [J

Definition 4. Let (20, 0p¢) be a bicomplex partial metric space. A sequence {oy} in 20 is said
to be a Cauchy sequence in (20, 0pep) if, for any € > 0, there exist a € C5 and N € N such that
\|Qber (08, 00) —al| < e foralla,p € Nand a,p > N.

Definition 5. Let (20, 0pcp) be a bicomplex partial metric space. Let {0y} be any sequence in
0. Then,

(i) If every Cauchy sequence in 20 is convergent in 20, then (20, 0p¢p) is said to be a complete
bicomplex partial metric space.

(ii) A mapping I' : 20 — 20 is said to be continuous at oy € 2 if, for every € > 0, there exists
& > 0such that I'(B,,,(00,0)) C By, (I'(00,€)).

Lemma 2. Let (20, 0pcp) be a bicomplex partial metric space and {0, } be a sequence in 20. Then,
{ow} is a Cauchy sequence in 20 zﬁ(ah_r)]r;<> 0beb (Oa, 08) = 0pep (0, 7).

Proof. Assume that {0, } is a Cauchy sequence in 20. Let € > 0 be any real number.
Suppose

A
T Ty TRy AR,

Then, 0 <;, v € C; and, for this t, there is a natural number 9t € N such that
Ox € By, (0p,v) forall a, B > Nie., opep(0a, 0p) <, ¢+ Opep (0, 7). Therefore,

||Qbet (0w, o) — Qpep (0, 0)|| < € forall &, B > M.

Therefore, 0pcy (0u, 0p) — 0pep(0,0) as a, B — .
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Conversely, assume that gy, (04, 08) — 0pep(0,0) as &, B — 0. Then, for each 0 <;,
tE C; , there exists a real € > 0 such that, for all & € C;,

gl <e= & =i,
Then, for this € > 0, there exists 91 € N such that
||Qvet (0w, o) — Qpep (0, 0)|| < € forall &, > M.
Therefore,
Qvet (0w, 0) =i, t+ Qpep(0, 0) forall a, f > N.
Hence, {0, } is a Cauchy sequence. [

Definition 6. Let I" and A be self mappings of non-void set 20. A point o € 20 is called a common
fixed point of I’ and Aif o = I'c = Ao.

3. Main Results

Theorem 3. Let (20, 0pcp) be a complete bicomplex partial metric space and I', A: 20 — 20 be
two continuous mappings such that

Qvet (T, AY) =4, A max{Qpey (0, ), 0bet (0, TT), Qper (Y, AY),
2 (@1 (0, A%) + 01y (9, T0)) ), 0

forall o, € 20, where 0 < A < 1. Then, the pair (I', A) has a unique common fixed point and
Qe (0", 0%) = 0.

Proof. Let oy be arbitrary point in 20 and define a sequence {o } as follows:
O2u1 = T02y  and 03410 = Aoppy1,2 =0,1,2,.... 2
Then, by (1) and (2), we obtain

chb(02a+1r 0'21x+2) = chb(FUZarA02a+l)
=i, A max{0pch (020, 02441)s Obeh (020, T024), Opeh (02041, AT2611),
1
E(chb(02a1A02a+l) + 0beb (02041, T024)) }
=i, Amax{0pct (024, 02a+1)s Obeh (2as O2041) s Qbet (02041, O2042),

1
(chb (Uth/ ‘721x+2) + Obeb (02411, 020 +1 ) )}

1

(
412 A max{ 0pep (024, 020+1) s Obcb (O20+1, T2042),
(chb ((7204/ ‘7204+1 =+ Obch (‘721x+1/ ‘72a+2) Obeb (02a+lr 02w+1)

=+ Obeb (02a+1/ O2a+1 ) ) }
= A max{0pcp (20, O20+1), Obcb (2041, O20+2),

1
E(chb(UZou O20+1) + Obcb (2041, 02042)) }-

Case I: If max{@bcb (‘7204/ 02a+1 )/ Qbcb ((720(+1/ (72vc+2)r

§(chb(¢72m (Tza+1) + chb(UzaH, Uza+2))} = chb(02a+1, 02a+2)/ then we have

Qbet (02041, 020 42) = i, AQbeb (02041, 02042)-
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This implies A > 1, which is a contradiction.

1
Case IT: If max{ 0pcy (020, O2a+1), Ok (C20+1, 020+2), ) (0beh (020, 0204+1) + Qb (0201, 020+2) )
= 0pcb (024, 020+1), then we have

Obcb (02a+1/ 02a+2) =i, AQbeh (0'204/ U'sz-&-l)- 3)

From the next step, we have

Obeb (0202, 020 43) Riy A Max{0pcy (02041, 02012), ek (02042, 020 13),
1
E(chb(02a+1/‘72zx+2) + Opeb (2042, 02443)) }-

The following three cases arise, and we have
Case Ila:

Qbeb (02042, 024 +3) =i, AQbeb (02042, 020 43),

which implies A > 1 and is a contradiction.
Case IIb:

Obeb (02042, 02043) Siy AOpeb (C2011, T2042)- 4)

From (3) and (4), Va = 0,1,2,..., we get

et (Cus1, Oat2) =iy A0pep (0u, Oai1) =iy -+ =iy A opep (00, 01).

For B,a € N, with f > a, we have

0beb (Ta, 0) =iy Obcb (0w, Oat1) + Qe (Tu+1,08) — Qbek (Tat1, Out1)
=iy Qb (Tas Oat1) + Qbeb (Ta+1,0p)
=iy Qbeb (Tws Oat1) + Qbek (Ta+1, Oa+2) + Qb (Out2, 0p)
— 0peb (Ou+2, Ou+2)
=iy Qe (Tas Oat1) + Qbek (Oa+1, Oa+2) + Qe (Oat2, 0p)
=iy Qb (Tws Oat1) + Qbeh (Tu+1, Oat2) + Qpeb (Oat2, 0at3)
+ o4 Qoo (02, 0p-1) + Qv (-1, 0p)-

Moreover, by using (4), we get

0ve (00, 08) =iy A%0bep (00, 01) + A 0 (00, 01) + A2 gpep (00, 01)
+ oo+ AP 200 (00,01) + AP opep (00, 01)

B—a
=Y A gy (00, 01).
=

Therefore,
- B—1
lopes (0w, o) || < Y A H]opep (00, 01) || = Y Af[lapen (o0, 01|

i=1 t=«
o0

<Y Mlopen (0, 01) ||
i=a

AIX
= l|Qper (00, 1) |-

1— A



Mathematics 2021, 9, 1584 8 of 19
Then, we have
)\D(
[HQbe (00, p)[| < 3= ll@ver (00, 01)[] = 0 as & — co.
Hence, {0, } is a Cauchy sequence in 20.
Case Ilc:
1
0beb (O2a+2, 020 43) =iy )\E(chb(02a+1102a+2) + 0peb (02042, 02613) ).
This implies that
A
0beb (02012, 020 43) 2y mghch(UZaJrlrUZa-i-Z)- 5)

. A .
Since a := % < 1, we get 0pcp (Ou41,0ut2) =i, A0pch(0a, Opy1). Using Case IIb, we

get that {0, }4en is a Cauchy sequence in 20.
Case III:

1
If maX{chb ((72041 O20+1 )/ Obcb (‘7213(4-1/ 02a+2>/ ) (chb (UZa/ (72a+1) ~+ Qpeb (02a+1/ (72a+2) )} =

(0beb (020, 026 41) + Obeb (02041, 020+2) ). Then, we have

N[ —

A
Obeb (O20+1, 020 42) =iy E(chh(ifzaftfzaﬂ) + 0peb (2041, 020 42))-

Hence,

A
0beb (2041, O20+2) =i 7 Qbeb (020, 02041)- (6)
For the next step, we have

chb(UzaJrz, 024+3) =i, )\maX{thh(02a+1r0'2a+2)rchb(02a+21 02043),
1
E(chb(02a+1/‘72a+2) + Opeb (2042, 02443)) }-

Then, we have the following three cases:
Case Illa:

Qbeb (02042, 024 +3) =i, AQbeb (02042, 020 43),

which implies A > 1, which is a contradiction.
Case IIIb:

Obeb (02042, 02043) Siy AOpcb (O2011, T2042)- 7)

Then, by (6) and (7), we get 0yt (Tu+1,0a+2) =iy YQpeb (0a, Tay1),
where v = max {
Case Illc:

A
A 2—)\} < 1. Hence, {04 }4en is a Cauchy sequence in 20.

1
0peb (02042, 020 43) =i, E(chb(02a+1ro'21x+2) + Opeb (02042, 020443) )-

Hence, we obtain

A
b (02042, 020+3) =i 2=y et (02041, 020+2)- ®)
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Using (6) and (8) yield

Obcb (a1, 0ut2) =iy Wb (Ous Oat1), )

where0§2=L < 1.
2— A
Then, Va =0,1,2,..., we get
Obeb (Tat1, Tat2) =iy Wheb (Oas Tui1) iy -+ Ziy & open(00,01).

For B,a € N, with B > «a, we have

Qbet (0w, 08) =iy Qe (Oas Oat1) + Qbeb (Tat1,0p) — Qbet (Out1, 0at1)
=iy Qbeb (Tws Oat1) + Qbeh (Ta+1,0p)
=iy O (0, Out1) + Qe (Tat1, Oav2) + Qveh (Tut2, )
— Qpeb (Out2, Ouy2)
=iy O (0, Out1) + Qe (Oat1, Oat2) + Qveh (Tut2, p)
=iy Qbeb (Tws Oat1) + Qbeh (Tu+1, Oa+2) + Qpeb (0at2, 0at3)
+ oo+ 0 (0p—2,08-1)) + Qb (051, 05)-

Using (9), we get

0beb (T, 08) =iy ¥ 0peb (90, 1) + ¥ g (00, 1) + 12 0pe (00, 01)

+ o P 20p0 (00, 01) + ¥ L opep (00, 01)

p—a
=Y ' o0, 01).
i=1
Therefore,
B—u ) B—1
loper (00, ) || < Y ¥ ]opep (00, 1) || = Y ¥l |0pes (00, 01)]|
i=1 t=u

<, | 0pep (00, 01) ||

I
~ =

= 1_ Z||chb(0'0r0'1)||'

Hence, we have

ZlX
[lever (0w, op) | < 7 72||chb(‘70/01)|‘ —0 as a— oo

Hence, {O',X} is a Cauchy sequence in 2. In all the above discussed cases, we get that

the sequence {0, }cn is a Cauchy sequence. Since 20 is complete, there exists c* € 20 such
thato, — 0* as« — oo and

Queb (07, 07) = lim 0pep (0, 00) = lim Qpep (0, 0uc) = 0.
By the continuity of I, it follows that 0y, 11 = I'opy, — ['0* as a — 0.

ie, opep(Io”, To™) = D}glgo Obeh (L0, Tong) = v}g{;‘o 0beb (L' 020, T024)-
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However,
Qper (0™, T'o™) = lim Opeh (L' 020, T'02) = lim 0bcb (O2041,020+1) = 0.
Next, we have to prove that * is a fixed point of I.

Qb (T™,07) =i, Opep(I'0™, T02) + Qpep (T'020, ) — Qpep (T'020, T020).

As & — oo, we obtain ||opep(I'c*,0*)|| < 0. Thus, pup(I'c*,0*) = 0. Hence,
0pep (0%,0%) = 0pep (0%, T0*) = 0pep(I'0*,I'c*) = 0 and I'c* = o*. In the same way,
we have 0* € 20 such that o, — 0* asa — co and

Queb (07, 07) = lim 0pep (0, 00) = im Qpep (0, 0uc) = 0.
By the continuity of I', it follows 09,42 = Aopy41 — Ac™ as a — co.
ie., Opep (AJ*' AU*) = p}g{}o Obcb (Ao’*, A02a+1) = algl;lo Qbcb (A02a+1/ A0 +1 )
However,
Queh (AT", AT™) = im0y (A02a 11, ACopy1) = M Qpcy (02042, 02a42) = 0.
Next, we have to prove that ¢* is a fixed point of A.

0pcb (AT*,07) =iy 0pep (AT™, Ao 1) + 0pet (A2041,0) — Opet (A02a 41, T 020 41)-

As & — oo, we obtain ||opp(Ac*,0*)|| < 0. Thus, ppep(Ac*,c*) = 0. Hence,
0pep (0%,0%) = 0pep (0", AT*) = 0pep(Ac*, Ac™) = 0 and Ac* = o*. Therefore, c* is a
common fixed point of the pair (I', A).

To prove uniqueness, let us consider ¢* € 20 as another common fixed point for the
pair (I', A). Then,

Qveb (07, 97) = Qpep (Lo, AP™)
=i, Amax{Qpe, (0™, ¥*), 0per (7, T0), Qpep (V*, AY™),
2 (@0, AY) + @ (97, T0"))}
=i, Amax{ees (0", "), 0ber (07, 07), Qb (¥*, §°),
2 @@ 9) + e (97,0))
=i, Aueb(07,97).
This implies that c* = ¢*. O

In the absence of the continuity condition for the mappings I' and A, we get the the
following theorem.

Theorem 4. Let (20, 0pcp) be a complete bicomplex partial metric space and I', A: 20 — 20 be
two mappings such that

0veb (T'o, Ap) =i, A max{0per (0, ), Qbet (0, T0), Qper, (P, Ap),
2 (@1t (0, A%) + 01y (9, T0)) ), (10)

forall o, € 20, where 0 < A < 1. Then, the pair (I', A) has a unique common fixed point and
Qber(0",07) = 0.
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Proof. Following from Theorem 3, we get that the sequence {0, } is a Cauchy sequence.
Since 20 is complete, there exists ¢* € 20 such that 0, — 0™ as & — oo.

Since I' and A are not continuous, we have gy, (0", I'c*) = ¢ > 0.

Then, we estimate

O = gpev(c”, To™)
=iy Qbeb (07, 02042) + Qvet (02042, T0™) — Qbet (02042, 020 42)
=iy 0beb (0", 02042) + Qbet (02042, T'07)

+ 0pct (A024 11, T™)

)
)
=iy 0beb (0", 020 42)
) + Amax{0uct (024+1,"), 0ot (02011, A020 1), Qo (0, T ™),

*
i2 Qbet (0, 02012

(chb(‘Tth—&-lfF‘T*) + 0pep (07, Aoy 1)) }

*

12 Obcb (‘7 ’ UZK+2> + A max{@bcb (‘720(+1/ o )/ Obch (02a+1/ 02a+2)/ Obcb (‘7*/ re’ )/

1 *
*(chb(%xﬂr Io*) + 0pep (0™, 02042)) }

=iy Qbeb (07, 020 42) + AQpen(0*, T™)
—12 Obeb (U*/UZN+2) + AD.

This yields
1811 < llepe (¢, o2042) 1| + A[B]]-

Hence, A > 1, which is a contradiction. Then, ¢c* = I'c*. In the same way, we
obtain c* = Ac*. Hence, ¢* is a common fixed point for the pair (I, A) and g (0%, 0*) =
Opep (07, AT*) = 0pep(Ac™, Ac*) = 0. For uniqueness of the common fixed point, c* follows
from Theorem 3. [

For I' = A, we get the following fixed points results on bicomplex partial metric space.

Theorem 5. Let (2, 04c) be a complete bicomplex partial metric space and I': 20 — 20 be a
continuous mapping such that

Qvet (T, T'p) =iy Amax{opes (0, ¥), Qpep (0, T'), pep (P, TYP),
2@t (o,T9) + Qo (9, TO))}, a

forall o, € 20, where 0 < A < 1. Then, the pair I has a unique fixed point and 0yq,(0*,0*) = 0.

Remark 1. Similarly, we get a fixed point result in the absence of continuity condition for the
mapping I'.

Corollary 1. Let (20, 0pcp) be a complete bicomplex partial metric space and A: 20 — 20 be a
continuous mapping such that

Qveb (Ao, A*P) =y, A max{0per (0, ), Qpep (0, A*T), Qe (¥, A™P),
1
5 (@oer (0, A"Y) + Qver (9, A%0))

forall o, € 20, where0 < A < 1,a € N. Then, A has a unique fixed point and oyc,(0*,0*) = 0.
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Proof. By Theorem 3, we get 0 € 20 such that A*c™* = ¢* and oy (0", 0*) = 0. Then,
we get

0beb (AT™,07) = Qpep (AY 0™, A"0™) = Qper (A" Ac™, A'c™)

jiz A maX{Qbe (AU'*, 0'*), chb (AO-*, AIXAO'*), chh (U*,Aa(]’*)’
1
5 (@ (A", A%*) + 04 (07, A%A0™))}

=iy, Amax{opey (AT™, 0%), 0pep (AT™, AT), Qper (07, 0),
1
5 Qv (A", 0™) + Qe (07, Ac™)) }

= AQpep(ATH, 0%).

Hence, A*c™* = Ac* = ¢*. Then, A has a unique fixed point. O

Remark 2. From the above Corollary 1, similarly, we get a fixed point result in the absence of
continuity condition for the mapping A.

Next, we will present a new generalization of a common fixed point theorem on
bicomplex partial metric space.

Theorem 6. Let (20, 0pcp) be a complete bicomplex partial metric space with non singular 1 +
Ovep (0, ) and |1+ opep (0, )|| # 0and I', A: 20 — 20 be two continuous mappings such that

7 F c ,A
chb(FO’,Al[J) =i, A max {chb((f, l/))/ chb(f_f_ Zb)ilng,(zpp) ¢)

chb(U/FU)chb(FU/AlP)} 1
1+ 0pev (o, ¥) ’ 12

forall o, € 20, where 0 < A < 1. Then, the pair (I', A) has a unique common fixed point and
Qe (0", 0%) = 0.

Proof. Let oy be arbitrary point in 20 and define a sequence {o } as follows:
o1 = Tooq  and 0312 = Aoy, =0,1,2,.... (13)
Then, by (12) and (13), we obtain

0bcb (2041, 020 42) = Qpet (I'020, A02011)
jiz A max{chb(Usz/ 02a+1)/
chb(UZN/ U2a+1)@bcb(AUZa+1/ F(72zx)
1+ 0per (020, 020 41)
Obch (JZa/ 02&+1)chb (F‘TZM A(TZa-i-l) }
1+ 0peb (020, 020 41)
=i, A max{opep (024, 02041),
Obch (JZa/ 02a+1)chb (02a+1/ 02a+2)
1+ 0beb (020, 020 41)
0bet (020, 20+1) bt (02011, 020+2) )
1+ 0pet (020, 020 41)
=i, Amax{Qpey (020, 02041), Qe (02041, 020+2) }-

7

7

If max{0pcs (020, T20+1), Obck (O20+1, T20+2) } = Opeb (2041, 020+2), then

Obcb (02041, 020 42) =i, AOpeb (‘721x+1/ 02042)-
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This shows that A > 1, which is a contradiction. Therefore,

0bch (O2a+1,02042) =iy A0pcb (020, O2041)- (14)

Similarly, we obtain

Obeh (0202, 020+3) Ziy AOpcb (02041, 02042)- (15)

From (14) and (15), Va =0, 1,2, ..., we get

0beb (Oat1, Out2) =iy A0beh (Ous Oai1) =iy - =iy A opep (00, 07). (16)

For B,a € N, with B > «, we have

0beb (Tu, 08) =iy et (Oas Ouy1) + Qbeb (Out1,08) — Qpeb (Tat1, Oat1)
=i, b (0w, Out1) + Qe (0at1, 0p)
=iy Qbeb (0w, Out1) + Qpeb (Tut1, Oat2) + Qb (Ta+2,0p)
— Qpeb (Ou+2, Ou42)
=iy e (0, Out1) + Qe (Oat1, Oav2) + Qveh (Out2, )
=iy Qe (Tws Oat1) + Qbeb (Tu+1, Ou+2) + Qpeb (Tat2, 0at3)

+ .o+ b (02, 05-1) + 5P 0pep (051, 0p).
By using (16), we get

0beb (00, T8) =iy A% 0pet(00,01) + X 0pep (00, 01) + A4 204 (00, 1)
+ oo+ AP 204 (00, 1) + AP Loy (00, 01)

-
= Y A oy (00, 01).
i=1

Therefore,

B—a B—ua
lloven (0w, o)l < )= AT Hlapew (00, 01) || =} A'[lewes (o0, 01)]]
i=1 i=1

o0
<Y Alopes (00, 01) ]|

i=a
%

A
= 7= levev (@0, o1)]]-

Hence, we have

o

llQver (0w, 0p) || < llepen(00,01)[| = 0 as  a — oo

1-—Ai

Hence, {0, } is a Cauchy sequence in 20. Since 20 is complete, then there exists c* € 20
such that o, — ¢* asa — co and

Qe (07, 07%) = lim 0pe (0%, 00) = lim Qpep (0, 0u) = 0.
A being continuous yields

" = lim o = lim Ao = A lim o = Ac™.
e 20+2 el 20+1 oo 20+1
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Similarly, by the continuity of I', we get 0* = I'c*. Then, the pair (I', A) has a common
fixed point. To prove uniqueness, let us consider that ¢* € 20 is another common fixed
point for the pair (I', A). Then,

0beb (0", 9") = Qper (IT'c™, AP™)
=i, Amax{opep (0", 9"),

Qb (0%, T0*) Qper (AY*, T'o™)
1+ opep (0%, )
=iy AOper (07, 9").

This implies that o™ = ¢*. [

b (0%, T0* ) Qpen (P, Ap™)
1+ opep (0%, ¥*) ’

}

In the absence of the continuity condition for the mapping I" and A in Theorem 6, we
obtain the following result.

Theorem 7. Let (20, 0pcp) be a complete bicomplex partial metric space with non singular 1 +
Opep (0, ) and ||1 + opep (0, )|| # 0and I', A: 20 — 20 be two mappings such that

7 F C 7 A
e e e

0beb (0, L) Qper (T'o, AY) }
1+ 0pep (0, 9) ’

forall o, € 20, where 0 < A < 1. Then, the pair (I', A) has a unique common fixed point and
Qe (0", 0%) = 0.

(17)

Proof. Following from Theorem 6, we get that the sequence {0, } is a Cauchy sequence.
Since 20 is complete, then there exists 0* € 20 such that 0, — ¢* as & — oo and

Qe (07, 07) = lim 0pep (0%, 00) = lim Qpep (0, 0u) = 0.

Since I and A are not continuous, we have gy, (0, I'c™) = ¢ > 0.
Then, we estimate

8 = oper(0", I'o™)
=iy Qbeb (0%, 02042) + Qb (02042, T0™) — 0bcp (02042, T2042)
=iy 00 (07, 02042) + 0per (0", 02042)
jiz Obcb (0'*, ‘72a+2) + Obeb (FU*rAUZa+l)
( ) 0bet (0%, T0*) 0pet (02041, A0 1 1)
1+ 0pen (0, 020+1)

*

=iy Opeb (0", 02042) + A max {chb(0*102a+1)/

7

Obch ((T*,FO'*)Qbe (FU*/ A0'2a+l) }
1+ 0peb (0%, 02041)

Obch (‘7*/ I'o* ) Obch (‘721x+1/ ‘721x+2)
1+ 0pen (0%, 02041)

7

=iy Opep (07, 020 42) + A max {chb(‘f*/Usz—&-l)/

0pcb (0", T0w) 0pcy (T'0", 024 12) }
14 open (U*/ 0'2a+1)

jiz chb(U*, U2a+2) + Achb(U*,fU*)Z
=iy 0peh (07, 0202) + A0
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This yields
1811 < Hl@ves (0%, o2as2) 1| + Al [8]]%.

Hence, A > 1, which is a contradiction. Then, c* = I'c*. In the same way, we obtain
o* = Ac*. Hence, 0* is a common fixed point for the pair (I', A). The uniqueness of the
common fixed point c* follows from Theorem 6. [

For I' = A, we get the following fixed points results on bicomplex partial metric space.

Theorem 8. Let (20, 0pcp) be a complete bicomplex partial metric space with non singular 1 +
0per (0, ) and ||1+ opep (0, ) || # 0 and I': 2 — W be a continuous mapping such that

b (0, L) Qper (P, I
over(I'o, TP) =5, Amax{gbcb(a,¢), Qb b(ﬁ ;)j?;/(f) 1/!),

b (0, T0)per (', T'P) }
1+ 0pen (0, 9) ’

forall o, ¢ € 20, where 0 < A < 1. Then, I has a unique fixed point and ope, (0, 0*) = 0.

Remark 3. Similarly, in the absence of the continuity condition, we can get a fixed point result on T.

Corollary 2. Let (20, 0pcp) be a complete bicomplex partial metric space with non singular 1+
Opep (0, ) and ||1 + opep (0, )|| # 0and I': 2 — 0 be a continuous mapping such that

,T40) 0pen (9, T9)
o, Ty) <, A ), 2l . /
opep (Mo, Tp) =i, A max {th’(g ¥) 1+ 0pen (0, )

0beb (0, T ) Qpep (T, T'Y) }
1+ oper (0, ) ’

forall o, € W, where 0 < A < 1. Then, I has a unique fixed point and oy, (0*,0*) = 0.

Proof. By Theorem 6, we get 0* € 20 such that I'*c* = ¢* and oy, (0*,0*) = 0. Then,
we get

chb(FO'*,O'*) = thb(rrao'*rrlxa*) = chb(rarg*/rlxa*)
Qvep (L™, T*T 0™ ) Qpen (0", T*0™)
1+chb(F0'*,0'*) ’
Qpep (L™, I T0™ ) Qpep (I L0, " 0™)
1+ chb(FU*,O'*) }

=i, Amax {chb(l"a*,a*),

chb(F(T*/FF’X(T*)chb(O’*,FO‘O’*)

=i, Amax {chb(l"a*,o*),

1+chb(r‘7*/‘7*) ’
Qvep (Lo, T 0" ) Qpep ([T, " 0™)
1—|—chb(r0*,0'*) }
= )\chh(TU'*,O'*).

Hence, I'*c* = I'c* = ¢*. Then, I has a unique fixed point. [

Remark 4. From the above Corollary 2, similarly, we get a fixed point result in the absence of
continuity condition for the mapping I'.

Example 2. Let 20 = {1,2,3,4} be endowed with the order o =;, ¢ if and only if o < . Then,
=, is a partial order in 0. Define the bicomplex partial metric space Qpe, : 20 x 2 — C5

as follows:
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(o0, 9) Qbeb (0, %)
(1,1),(2,2) 0
(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),(3,3) ei2*
(1,4),(41),(2,4), (4,2),(34), (4,3), (4,4) 3ei2*

Obviously, (2, 0pcp) is a complete bicomplex partial metric space for x € [0, %]. Define
T,A:90 — WhyTo=1,

o= {3 e

Clearly, I and A are continuous functions. Now, for A\ = %, we consider the following cases:

(A) Ifo=1and ¢ € G— {4}, then I'(0) = A(¢) = 1 and the conditions of Theorem 3 are
satisfied.
(B) IFfo=1¢=4thenTo=1Ap=2,

bt (T, AY) = €2* < 3 4 e
= A max{3¢2,0,3¢2,
%(ei” +3e2%)}
= A max{0pcs (7, P), Qpep (7, T'T), Qper (3, AY),
%(chb((% AP) + 0pe (9, T0)) },
(C) Ifo=29p=4thenTo=1 Ap =2,
ey (T0, AP) = 2% <, 3 4 2
= A max{3e2¥, e2%, 3¢2%,
%(0 +3e2%)}
= A max{0pcp (0, ), 0pep (0, T7), Qpep (P, AY),

1
5 (@ver (@, AY) + 0 (9, T0))
(D) Ife=3¢=4thenl'c=1 AP =2,
e (I'0, Ap) = €2* =, 3 12
= A max{3ei2x, ei2% 3pl2X
%(eizx + 3ei2x)}
= A maX{chb (Ur l/))r chb(o-r FO—)/ chb(lpl AIP);

(vt (0, AP) + 0per (¥, T0)) },

N~
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(E) Ifo=4¢=4thenTo=2 Ap =2,
ey (T0, APp) = 2% <, 3 k2
= A max{3e2%,3¢2%, 3¢2%,
%(Beiz" +3ei2%)}
= A max{0pey (7, ), Qpep (0, TT), Qpep (P, A),

%(chb(o,/h,b) + chb(lpr FU))}/

Moreover, for A = %, with A < 1, the conditions of Theorem 3 are satisfied. Therefore, 1 is
the unique common fixed point of I and A.

4. Application

Let 20 = C[x\1, 1] be a set of all real continuous functions on 1, x| equipped
with metric gpep (0, ) = (1 +i2) (max e, »,) lo(L) —p(U)] +2) forall o, € CPxg, X2,
where |.| is the usual real modulus. Then, (20, 05) is a complete bicomplex partial metric
space. Now, we consider the system of nonlinear Fredholm integral equation

(L) = o(U) + ﬁ /: f1(U,s,0(s))ds
and
o(U) = (L) + M%N /: R (U, 5,0 (s))ds,

where U, s € [X1,x\2]. Assume that &1, 8 : [~1,22] X N, 2] X2 — Rand v :
[»1, n2] — R are continuous, where v(Ll) is a given function in 20.

Theorem 9. Suppose that (20,d) is a bicomplex partial metric space equipped with metric
oper (0, 9) = (1 +i2)(max e, »,) [0(L) — (W) +2) forall o, € Wand T, A: W — W
be a continuous operator on 20 defined by

1 2
To() = o() + 5 A f1(U,s,0(s))ds (18)
and
1 2
AU(U) = U(|_|) + m />\ ﬁz(u,ﬁ, U(S))dS. (19)

If there exists ¢ > O such that, for all o, € 20 with o #  and s,11 € N1, N2] satisfying
the following inequality:

[R1(U5,0(s)) = Ra(U,5,9(s))| <tmax{lo(s) = ¢(s)],[o(s) — To(s)],
[9(s) = A(s)],

%(lU(S)—Al/J(S)I+|¢(S)—TU(S)|)}, (20)

then the integral operators defined by (18) and (19) have a common unique solution.
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Proof. Consider,

1+ (o) - ap(w) +2) = ST (] s atoas
—/N (L5, 9(s))ds +2>
>\12t1>2\1| ‘ﬁl U50( ))

— R (U,s,¢(s))|ds —|—2)

(1
_M+’§1|< maxjo(s) ~ 9(6)],

|o(s) = To(s)|, [(s) — Ap(s)],

3 (17(6) = Ap(S)| + 19(5) ~ Tols)} +2)

2 2 .
< T =l max{(1+1iz)|o(s) — ¢(s)| +2,
(1+i2)lo(s) ~ To(s)| +2,
(1-+02)[p(s) — Ap(s)]| +2,
S+ i)[o(s) ~ Ap(s)] +2
(14 B)p(s) — To(s) +2)).

Taking the maximum on both sides for all LI € [\1, X\,], we obtain

chb(FﬂffilJ))I(1+iz)(u€r[r;ax [To(U) — Ap(L)] +2)

< iy : max{(1+ )| (s) — p(s)| -2
(A1 i) lo(s) — To(s)] +2, (1 + i) p(s) — Ap(s)| +2,
L1+ i)lo(s) = AP +2+ (1+ )[p(s) ~ To(s)| +2))

l
< ————max| max 1+14)|o V)l +2,
= ‘>\27>\1‘ [V€[>\1>\2{( 2)| ( ) ( )l

(14)[0(7) = T9(V) | +2,(1+ ) [$() = T9(V)| +2
S((1+2)0(V) — Ap(V)| +2

X2
+ (1 +i)|p(V) = To(V)|+2)}] S ds
= )\maX{thb(U, l[)),chb(O', FU’),Qbe((PIAw),
%(chbwf AY) + Qper (¥, T0)) }-

Hence, all the conditions of Theorem 3 are satisfied and so the integral operators I"
and A defined by (18) and (19) have a common unique solution. O

5. Conclusions

In this paper, we proved some common fixed point theorems on bicomplex partial
metric space. In addition, we find a common unique solution of a system of nonlinear
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Fredholm integral equations, and we support our theoretical results by an example that
we explain.
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