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Abstract: International large-scale assessments (ILSAs) provide several measures as a representation
of educational outcomes, the so-called plausible values, which are frequently interpreted as a repre-
sentation of the ability range of students. In this paper, we focus on how this information should be
incorporated into the estimation of efficiency measures of student or school performance using data
envelopment analysis (DEA). Thus far, previous studies that have adopted this approach using data
from ILSAs have used only one of the available plausible values or an average of all of them. We
propose an approach based on the fuzzy DEA, which allows us to consider the whole distribution of
results as a proxy of student abilities. To assess the extent to which our proposal offers similar results
to those obtained in previous studies, we provide an empirical example using PISA data from 2015.
Our results suggest that the performance measures estimated using the fuzzy DEA approach are
strongly correlated with measures calculated using just one plausible value or an average measure.
Therefore, we conclude that the studies that decide upon using one of these options do not seem to
be making a significant error in their estimates.

Keywords: data envelopment analysis; fuzzy; PISA; plausible values

1. Introduction

Since the pioneering work carried out in the early days of educational economics, the
exploration of the educational and societal factors that affect educational attainment has
attracted the interest of researchers working in this field. Several authors have named this
educational effectiveness research [1,2], which in recent years has been growing rapidly due
to the development of new learning methods and the use of information technologies [3,4].

In this context, the rich and extensive information provided by large-scale international
assessments (hereafter ILSAs) has become a very useful tool for analyzing the performance
of education systems around the world and promoting reforms of national education poli-
cies [5,6]. Although the Program for International Student Assessment (PISA) conducted by
the OECD is undoubtedly the best known, several other studies can also be included within
this group, including the Trends in International Mathematics and Science Study (TIMSS)
and the Progress in International Reading Literacy Study (PIRLS), both coordinated by the
International Association for the Evaluation of Educational Achievement (IEA).

The technical complexities of these large-scale assessments often create multiple
challenges for applied researchers when analyzing their data [7] (Sjøberg [8] described
the data generated by PISA as a playground for psychometricians). In this paper, we
focus on the construction of measures representing the competences of students, a very
relevant issue that has been generating enormous interest in the recent literature [9]. On
this issue, it is widely assumed that the competences of students cannot be measured with
a simple score derived from the answers provided by students in standardized tests, but by
several values randomly obtained from the distribution function of test results, known in
the psychometric literature as plausible values. These values should be interpreted as the
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representation of the ability range for each student [10], which is very difficult to measure
in a precise way.

The procedure for handling these values in econometric analyses (where they are fre-
quently included as the dependent variable) is well known for users of these databases, since
technical reports and user manuals of international databases describe it in detail [11–13].
As we explain in Section 2.2, this procedure requires estimating the model several times:
once using each of the plausible values, and then by computing the average of the estimates.
However, this issue has been overlooked in studies using these data to estimate efficiency
measures of performance using frontier methods, such as data envelopment analysis (DEA)
(this nonparametric approach is the most used in these types of studies due to its greater
flexibility [14]), which allows the best practices that can serve as benchmarks for the rest
to be identified. Such studies have become increasingly common due to restrictions on
increasing public spending in education in most countries; thus, policy makers and re-
searchers are very interested in identifying the references that can provide them with some
guidelines to improve student and school outcomes without spending more money in
educational resources.

In this framework, plausible values are often used as the output measures representing
educational outcomes. Nevertheless, researchers often forget that, when selecting a single
plausible value or the average of all available plausible values, some of the available infor-
mation about students’ abilities is overlooked. This is because, in contrast to econometric
analysis, when applying traditional frontier methods, it is not possible to account for the
fact that the plausible values represent a distribution of results and, therefore, out measures
are imprecise.

In this paper, we intend to bridge this knowledge gap by proposing an innovative way
of dealing with imprecise data in output measures when applying frontier methods to data
from ILSAs. This approach is based on the notion of fuzziness [15] and, more precisely,
we rely on the so-called fuzzy DEA (FDEA), which allows for the consideration of the
whole distribution of test scores into the estimation of efficiency measures. Among all the
many existing approaches to implement FDEA [16], we apply the methodology proposed
by Kao and Liu [17], which basically transforms the fuzzy “radial” DEA model to several
conventional DEA models by applying the so-called α-cut procedure.

We apply this technique to assess the performance of Spanish students participating
in PISA 2015. In our model, we include three outputs (test scores in mathematics, reading
and sciences) that are treated as fuzzy in an FDEA model since they are represented by ten
different plausible values. Since the estimated efficiency measures are represented using
membership functions, it is possible to provide more precise information for decision making.

The research problem that we intend to solve is whether the consideration of all the
information provided by plausible values can lead to different results than those obtained
when using traditional methods, which only incorporate limited information to represent
educational output. Thus, the efficiency estimates derived from the application of the FDEA
approach are compared with the estimates obtained with the traditional DEA method using
one single plausible value or the average of plausible values.

The remainder of the paper is organized as follows. In Section 2, we explain the
concept of plausible values and some guidelines for handling them in empirical studies.
Section 3 introduces the necessary notation and background of the proposed FDEA method-
ology. Subsequently, in Section 4, we explain the main characteristics of our dataset and the
variables selected for our empirical analysis. In Section 5, we present and discuss the main
results comparing the estimates obtained with the proposed FDEA approach with those
obtained with the traditional DEA approach. Finally, we present the main conclusions in
Section 6.
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2. Plausible Values and How to Use Them in Empirical Analyses
2.1. What Are Plausible Values?

Measuring cognitive outcomes is one of the main concerns of international large-scale
assessments, such as PISA, TIMSS or PIRLS. The assessment instrument often includes
multiple questions or items and is carried out in a limited period of time with the aim
of providing comparable information about the ability of students and their knowledge
in different domains, such as reading, mathematics or science. They rely on a complex
psychometric design that involves considering different sub-domains within each subject
area. This results in an enormous amount of test material to be covered, since it is not
possible to ask every pupil all the available questions. Therefore, all the tested items are
divided into multiple blocks or clusters. Since test administration can only take place
during a maximum of two hours (this limitation on testing time is based on considerations
with respect to reducing student burden, minimizing interruptions in the school schedule
and other financial and/or time constraints), students are randomly assigned to complete
one particular test booklet, each of which includes a subset of tested items consisting of
items from one or more clusters; thus, he/she responds to only a fraction of what constitutes
the total assessment pool [18].

As pupils answer only a limited number of questions from the total test item pool,
the measurement of individual proficiency is achieved with a substantial amount of mea-
surement error [19]. Thus, traditional methods of estimating individual proficiency would
result in biased or inconsistent variance estimates. As an alternative to this problem, plau-
sible value methods are employed as a viable technique to generate proficiency estimates
from the limited fraction of administered cognitive items and student background informa-
tion. Since student ability is not directly observed, it is a latent variable (or latent ability)
that could be treated as a missing value; thus, it is necessary to use multiple imputation
methods [20,21] to estimate the distribution of proficiency for each student in each subject
area (see [22–24] for further details).

Plausible values can be defined as several random values drawn from the distribution
of proficiency estimates [11,25]. They are used by applied researchers for different purposes,
such as estimating the plausible range and the location of proficiency for groups of students
or exploring the relationship between proficiency and various social and educational
variables in secondary analysis. However, it is worth mentioning that plausible values
are not individual scores in the traditional sense and should, therefore, not be analyzed as
multiple indicators of the same score or latent variables [26].

In practice, five plausible values are reported for each student in overall mathematics
and science (TIMSS) and another five for each student in overall reading (PIRLS), since this
number is sufficient for the accurate estimation of population-level statistics [27]. However,
in recent years, some of the large-scale assessment surveys have increased the number of
plausible values with the aim of providing better estimates of the variability when a large
amount of imputation is required. For example, ten plausible values were used for PISA
2015 and PISA 2018 for each domain (mathematics, reading and science) [28], while only
five plausible values were used for PISA 2000 to PISA 2012. There are very few studies that
have provided justifications for increasing the number of plausible values used beyond five.
One of the few exceptions is the recent work by Bibby [29], which concludes that the sample
size has a larger impact on the estimations of population parameters than an increase in
the number of plausible values used. The reported plausible values are in scale scores with
a mean of 500 and standard deviation of 100 overall, across all participating countries.

2.2. How to Use Plausible Values in Secondary Analyses

Researchers should be aware that secondary analyses should be performed inde-
pendently on each of the available plausible values so that they can provide appropriate
estimates of population statistics, such as means and variances [30]. Specifically, the correct
procedure for handling the plausible values provided in the international achievement
databases can be divided into four steps, based on the original work of [20]: (i) estimate
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the statistic/model of interest five times (or ten in the last waves of PISA) using each of
the plausible values to obtain five (or ten) separate parameter estimates (β_pv) and the
corresponding estimates of the sampling error (σ_pv); (ii) calculate the average of those
estimates; (iii) estimate the magnitude of the imputation error; and (iv) calculate the value
of the final standard error by combining the average sampling error and the imputation
error (note that the secondary analysis model is typically a subset of the latent regression
model used to generate the plausible values [31]). Finally, the final parameter estimates
and their standard error can be used to conduct hypothesis tests and construct confidence
intervals following the usual methods. In order to facilitate the correct implementation of
this procedure in secondary analyses, most software specialized in data processing has
specific routines or commands to perform estimations with plausible values (for instance,
PV [32] or REPEST [33] in Stata).

Although this procedure is clearly described in technical reports and user manuals
of different international large-scale assessments, in some empirical studies dealing with
plausible values, it is common to find two different shortcuts in the implementation of
secondary analyses with econometric techniques, both of which are incorrect. First, analysts
often choose to use just one of the five plausible values. With this option, the standard
errors of the statistics of interest are generally underestimated, as the uncertainty associated
with the measurement of proficiency distributions is ignored. However, PISA analysts
indicate that using one or five plausible values in a large sample does not really make
a substantial difference [34]. In fact, during the exploratory phase of the data, statistical
analyses can be based on a single plausible value, although it is highly recommended to
use all the available values in order to improve the accuracy of the estimates, even for
large samples.

The second shortcut employed by some authors is to calculate the average of the
existing plausible values (five or ten) and use it as if it were the only available estimate of
student performance. The main problem with the calculation of this average value as a
proxy for performance is that standard errors are severely underestimated (particularly
if only a single plausible value is being used), which might lead to misleading results.
Therefore, the mean of the available plausible values should never be used in empirical
analyses with econometric techniques [19].

2.3. Plausible Values in Efficiency Analyses

In contrast to the existing clear instructions for secondary studies with econometric
techniques, the way to proceed when using frontier methods in empirical studies exploiting
data from ILSAs generates much more doubt for researchers. In these studies, test scores
(or rather plausible values) achieved by students in different domains are usually identified
as proxies for the educational output (see Cordero et al. [35] for a review). However, they
follow different criteria to deal with plausible values. The most common option consists
of using only one plausible value [36–40], usually the first of all available values, i.e., the
first shortcut identified in the previous section. Likewise, other studies follow the second
shortcut and use the average of all plausible values to estimate efficiency measures [41,42].
Finally, there is a more cumbersome process, which implies estimating one efficiency score
for each plausible value and, subsequently, calculating the average efficiency score [43,44].

The main problem of all the aforementioned alternatives is that none of them explicitly
considers the fact that the output measures are imprecise since they treat plausible values
as crisp values (precise measurements) when they are actually representing a distribution
of results. The results obtained from using these crisp values may not adequately reflect
the performance of the units evaluated because some of the available information about
students’ abilities is overlooked.

The present study attempts to shed light on this issue by exploring the extent to
which the use of these procedures may affect the results and, more specifically, present
an innovative method that allows the incorporation of data on the whole distribution of
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results into the estimation of efficiency measures of educational performance. This method
is described in depth in the following section.

3. Methodology

First, we provide a brief description of the traditional DEA model, before going on to
explain the method we propose to use in our empirical analysis. Therefore, let us consider
n DMUs to be evaluated (such as students within our frame of reference). DMUj consumes
xj =

(
x1j, . . . , xmj

)
∈ Rm

+, xj 6= 0m amounts of inputs to generate yj =
(
y1j, . . . , ysj

)
∈ Rs

+,
yj 6= 0s, amounts of outputs. From the data, it is possible to construct an estimation of the
underlying technology from which the DMUs were generated. The technology represents
the set of all feasible input–output bundles (x, y) ∈ Rm+s

+ [45]. Data Envelopment Analysis
provides the following estimator of the technology under variable returns to scale (VRS):

TVRS =

{
(x, y) ∈ Rm

+ × Rs
+ : x ≥

n
∑

j=1
λjxj, y ≤

n
∑

j=1
λjyj,

n
∑

j=1
λj = 1; 0 ≤ λj ≤ 1; j = 1, . . . , n

}
(1)

Technical inefficiency can then be calculated as the distance from a DMU to the
border of the estimated technology. This distance is usually implemented in practice
through two types of approaches: input-oriented models and output-oriented models. For
convenience, we only present the output-oriented DEA approach, since this is what we
use in our practical example, on the premise that students are always trying to improve
their results. Output-oriented models assume that each DMU strives to maximize outputs
while using the same level of inputs. Among the existing output-oriented models, the
output-oriented radial model is probably the most famous. This approach keeps the
inputs of the assessed unit constant but equi-proportionally augments the bundle of
outputs. In this way, the output-oriented radial model assuming variable returns to scale
for evaluating the unit (x0, y0) can be mathematically implemented through the following
linear optimization program.

Max φ0
s.t.

n
∑

j=1
λj0xij ≤ xi0, i = 1, . . . , m (2.1)

n
∑

j=1
λj0yrj ≥ φ0yr0, r = 1, . . . , s (2.2)

n
∑

j=1
λj0 = 1, (2.3)

λj0 ≥ 0, j = 1, . . . , n (2.4)

, (2)

The optimal value φ∗0 of the above program is the efficiency scores associated with the
unit (x0, y0). It can be proved that φ∗0 > 1, and with φ∗0 = 1 signaling, that the evaluated
DMU is technically efficient. Otherwise, φ∗0 > 1, and there is leeway for improving the
outputs while using the same level of inputs.

Additionally, the dual program of (2) is the following linear program:

Min
m
∑

i=1
vi0xi0 − π0

s.t.
s
∑

r=1
ur0yr0 = 1, (3.1)

m
∑

i=1
vi0xij −

s
∑

r=1
ur0yrj − π0 ≥ 0, j = 1, . . . , n (3.2)

vi0 ≥ 0, i = 1, . . . , m (3.3)
ur0 ≥ 0, r = 1, . . . , s (3.4)

. (3)
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Usual approaches assume that input and output values are precise information (also
called “crisp”). However, it may be that the observed values of the variables (inputs and
outputs) are imprecise. Within the framework of our research, we elaborate in Section 2
on how student abilities cannot be defined by a unique value (test score), but rather a
range or distribution from which we extract different random values. These values (or
their average) are frequently used in model (2) to solve the “crisp” traditional DEA radial
model. However, they may not necessarily be the most appropriate representation of
students’ abilities, especially if there is a high spread or variation in the distribution of
results. Therefore, it might happen that two students presenting similar values for a single
plausible value (or even similar average plausible values) may exhibit a differing pattern
with respect to the unobserved distribution of results; so, when it comes to technical
efficiency, they could be categorized differently.

Data imprecision may be included in DEA efficiency models through Fuzzy Data
Envelopment Analysis (FDEA), where scores in different competences are included as
fuzzy numbers, as opposed to crisp numbers, in the DEA model. Emrouznejad et al. [46]
provide a taxonomy and review of the FDEA methods in six categories and that can be
found in the literature, namely, the fuzzy ranking approach, the fuzzy random/type-2
fuzzy set, the tolerance approach, the fuzzy arithmetic, the possibility approach, and the
α-level based approach. Among them, the α-level based approach is probably the most
popular FDEA model. In particular, the one proposed by Kao and Liu [17] is the most
popular and the most applied in empirical studies. Consequently, this is the option we use
in our analysis. We now review the main characteristics of this approach.

The model of Kao and Liu [17] is based on the notion of α-cuts, also known as α-
possibility level sets, and the transformation of the FDEA model into a set of standard crisp
DEA models. In this framework,

(
x̃ij
)

α
=
{

z : µx̃ij (z) ≥ α
}

and
(
ỹrj
)

α
=
{

z : µỹrj(z) ≥ α
}

represent the α-cut of x̃ij and ỹrj, respectively. Additionally, µ(z) represents the membership
function, which quantifies the degree of truth of the z element. Each α-cut somehow
represents a confidence interval for the considered input or output value.

Given that crisp inputs and outputs can be represented as degenerated membership
functions with only one value in their domain, we can assume that all inputs and outputs
are fuzzy. In this way, the dual of the output-oriented radial model, i.e., model (3), can be
formulated as follows:

φ̃∗0 = Min
m
∑

i=1
vi0 x̃i0 − π0

s.t.
s
∑

r=1
ur0ỹr0 = 1, (4.1)

m
∑

i=1
vi0 x̃ij −

s
∑

r=1
ur0ỹrj − π0 ≥ 0, j = 1, . . . , n (4.2)

vi0 ≥ 0, i = 1, . . . , m (4.3)
ur0 ≥ 0, r = 1, . . . , s (4.4)

, (4)

Additionally, the efficiency score φ̃∗0 is also a fuzzy number due to the nature of the
data used in the model. That fuzzy number is linked to a membership function. Kao and
Liu’s model allows this membership function to be calculated from different α-cuts. Next,
given a certain level α (0 < α ≤ 1), we show how the lowest and the highest values of the
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corresponding α-cut for the membership function of φ̃∗0 can be calculated. In particular, the
lowest value is determined through program (5):

(
φ̃∗0
)L

α
= Min

m
∑

i=1
vi0(x̃i0)

U
α − π0

s.t.
s
∑

r=1
ur0(ỹr0)

L
α = 1, (5.1)

m
∑

i=1
vi0
(

x̃ij
)L

α
−

s
∑

r=1
ur0
(
ỹrj
)U

α
− π0 ≥ 0, j 6= 0 (5.2)

m
∑

i=1
vi0(x̃i0)

U
α −

s
∑

r=1
ur0(ỹr0)

L
α − π0 ≥ 0, (5.3)

vi0 ≥ 0, i = 1, . . . , m (5.4)
ur0 ≥ 0, r = 1, . . . , s (5.5)

. (5)

In model (5), note that the inputs of the evaluated DMU and the outputs of all other
units were set to their greatest values, while the outputs of the assessed unit and the inputs
of all other DMUs were set to their lowest values. This is the essence of the approach
by Kao and Liu [17]. Regarding the highest value of the corresponding α-cut, it can be
implemented through model (6):

(
φ̃∗0
)U

α
= Min

m
∑

i=1
vi0(x̃i0)

L
α − π0

s.t.
s
∑

r=1
ur0(ỹr0)

U
α = 1, (6.1)

m
∑

i=1
vi0
(

x̃ij
)U

α
−

s
∑

r=1
ur0
(
ỹrj
)L

α
− π0 ≥ 0, j 6= 0 (6.2)

m
∑

i=1
vi0(x̃i0)

L
α −

s
∑

r=1
ur0(ỹr0)

U
α − π0 ≥ 0, (6.3)

vi0 ≥ 0, i = 1, . . . , m (6.4)
ur0 ≥ 0, r = 1, . . . , s (6.5)

. (6)

Models (5) and (6) allow the interval
[(

φ̃∗0
)L

α
,
(
φ̃∗0
)U

α

]
to be determined for different

values of α (0 < α ≤ 1).
Finally, ranking units to ascertain better performance is a procedure of interest in

efficiency analysis. In the case of the Fuzzy Data Envelopment Analysis, there are a few
approaches that could be applied. In this paper, again following [1], we implemented the
following index:

I0 =

[
h

∑
k=0

((
φ̃∗0
)U

αk
− c
)]

/

[
h

∑
k=0

((
φ̃∗0
)U

αk
− c
)
−

h

∑
k=0

((
φ̃∗0
)L

αk
− d
)]

, (7)

where c = min
j,k

{(
φ̃∗j

)L

αk

}
and d = max

j,k

{(
φ̃∗j

)U

αk

}
.

4. Data and Variables

We used data from PISA 2015 in our empirical study. PISA is a triennial study
that provides international comparative data on the performance of 15-year-old students
in three main domains (in each cycle, one of the domains is in focus, with reading in
2000 and 2009, mathematics in 2003 and 2012, and science in 2006 and 2015) (reading,
science and mathematics). In addition, this database contains information about many
potential factors that might affect those results, such as variables representing student
family background, home resources, school environment or class characteristics (in total,
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there are more than two hundred variables, including the original variables and the
composite indexes constructed from the original information). This information is derived
from the responses given by students and school principals to different questionnaires [11].

We selected students as the unit of analysis because they represent the group for
which we have imprecise measures of educational output approximated by plausible
values. Moreover, there are some additional reasons. First, if we consider that the main
purpose pursued in education is the improvement of results, it makes sense that students
represent the evaluated units, since they are the ones who must develop their skills based on
the resources they have at their disposal [47]. Second, if the observations were aggregated
at the school level, the fact that the level of resource utilization by students may differ
according to their characteristics cannot be taken into account [48]. Additionally, using
school-level averages does not consider the existing dispersion of the data, which may
result in inaccurate measures of performance, especially regarding the identification of
efficient units [49] For the purpose of our study, we used a representative dataset for Spain,
composed of 6700 students from 201 schools (the original dataset includes 6378 students,
but we excluded 38 students due to the absence of data in some variables).

With regard to the selection of input variables, we followed a very restrictive effi-
ciency notion that consists of using only one input representing student socioeconomic
background as a proxy for the academic quality of the student (this approach is also used
in other previous studies [41,50]). Specifically, the input at student level was measured
by the students’ socioeconomic background (ESCS): an index of the economic, social and
cultural status of students created by PISA analysts that captures a range of aspects of a stu-
dent’s family and home background and combines information on parents’ education and
occupations and cultural possessions at home. The first variable is the higher educational
level of any of the students’ parents according to the International Standard Classification
of Education (ISCED). The second variable is the highest occupational status of any of the
students’ parents according to the International Socio-economic Index of Occupational
Status (ISEI [51]). The third variable is an index of educational possessions related to
household economy. This indicator is continuous and is positively correlated with output
variables. Using this single input, we evaluated the extent to which a student is making
the most of his/her potential abilities, considering his/her socioeconomic background as a
proxy for this concept, or to which his/her performance is below the expected level.

Since the ESCS index presented negative values (the values of the PISA index of
economic, social and cultural status were standardized to a mean of zero for the total
population of students in OECD countries), the values of this variable were rescaled by
adding the maximum negative value to all of them; thus, all the new quantities were
positive. As a result, the variable fulfils the requirement of isotonicity (i.e., ceteris paribus,
more input implies equal or higher level of output), which allows us to preserve the
desirable property of translation invariance [52]. This variable was treated as crisp in our
empirical analysis.

Output variables are represented by students´ test scores in the three domains assessed
by PISA (mathematics, reading and science). For each domain, PISA 2015 provides ten
plausible values; thus, we can define our output by using different alternatives that we
intend to compare. Thus, we can use a single crisp value for each domain, which in turn
could consist of the use of only one plausible value (e.g., PV1MATH, PV1READ or PV1SCIE)
or the mean of all the available plausible values (PVMATH, PVREAD or PVSCIE). The
other alternative is to treat them as fuzzy numbers. This possibility implies considering the
existing variation among different plausible values, which can be higher or lower for each
of the observations, as shown in Table 1, for two randomly selected students.



Mathematics 2021, 9, 1579 9 of 16

Table 1. Statistics of fuzzy variables for two randomly selected students.

Student Domains Mean SD Variation Coefficient

1635
MATHS 497.14 41.98 0.08

READING 511.04 45.79 0.09
SCIENCE 496.84 23.64 0.05

5102
MATHS 479.41 13.48 0.03

READING 504.24 10.68 0.02
SCIENCE 526.04 17.65 0.03

As a preliminary step to the application of the approach suggested by Kao and Liu [17],
we need to model the values of the three variables representing the output (PVMATH,
PVREAD and PVSCIE) as a particular fuzzy number. To this end, we estimated a kernel
function for each student from the data corresponding to each variable. We also calculated
the skewness coefficient for each kernel, obtaining values close to zero, which is indicative
that the kernel functions are quite symmetrical. This implies that the mean values of the
distributions are close to the median and the mode. Figure 1 presents several examples of
the shape of the estimated kernel functions for the PVMATH variable for different students.
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Figure 1. Examples of kernel functions for the PVMATH variable.

Kao and Liu’s approach determines the α-cut for each value α, with 0 < α ≤ 1. The
α-cut corresponds to an interval. To this end, the y-axis in the kernel must be rescaled
so that the maximum is equal to one for the rescaled kernel function. For example, if we
consider student #1635 from the data sample, we obtain different intervals (α-cuts) for the
values α = 0.7, α = 0.8, α = 0.9 and α = 1. The corresponding α-cuts are shown in Table 2.
Given the set of α-cuts, we may determine the membership function of the fuzzy efficiency
score of each DMU (student), following the steps described in Section 3. Table 3 reports the
descriptive statistics for all the variables employed in our study.
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Table 2. α-cuts for student 1635 (randomly selected).

MATH READ SCIE

α MATHL MATHU READL READU SCIEL SCIEU

0.7 445.1619 533.7739 459.1364 547.8178 474.0604 514.9951
0.8 453.0232 520.3045 468.1629 537.2065 478.1630 510.2898
0.9 462.4251 507.2320 478.7103 525.5529 482.8929 504.7852
1 483.6888 483.6888 501.9167 501.9167 493.4934 493.4934

Table 3. Descriptive statistics.

Variable Mean SD Min Max

Input ESCS (Crisp) 4.06 1.18 0.15 7.59

Outputs

MATH
(Fuzzy)

PV1MATH 490.56 82.97 182.21 763.90
PV2MATH 490.30 82.91 188.22 743.36
PV3MATH 491.45 83.53 202.83 822.88
PV4MATH 490.00 83.04 120.56 793.86
PV5MATH 490.05 82.97 192.22 800.69
PV6MATH 489.15 82.57 145.55 766.85
PV7MATH 491.03 85.34 181.32 796.75
PV8MATH 490.78 83.51 188.53 755.75
PV9MATH 492.13 83.50 189.36 770.91
PV10MATH 491.21 83.86 163.28 797.26

READ
(Fuzzy)

PV1READ 499.63 85.55 161.77 779.97
PV2READ 498.72 85.83 190.47 757.95
PV3READ 500.65 86.00 174.56 789.86
PV4READ 498.52 85.83 162.16 746.98
PV5READ 500.42 86.98 158.96 758.82
PV6READ 500.86 86.70 164.17 734.15
PV7READ 499.96 86.75 118.88 752.60
PV8READ 501.32 85.36 192.69 767.53
PV9READ 499.77 84.13 175.96 755.31
PV10READ 499.89 86.66 163.25 767.98

SCIE
(Fuzzy)

PV1SCIE 497.14 86.47 210.70 754.33
PV2SCIE 497.53 86.81 190.18 763.32
PV3SCIE 497.60 85.94 186.66 805.02
PV4SCIE 497.23 87.48 147.04 789.23
PV5SCIE 497.27 87.13 191.37 760.99
PV6SCIE 497.50 86.80 187.20 745.63
PV7SCIE 497.07 86.78 194.79 752.90
PV8SCIE 497.70 87.01 222.69 763.39
PV9SCIE 497.37 86.53 214.96 755.82

PV10SCIE 496.99 86.73 195.06 758.77

5. Results

In this section, we illustrate the potential divergences that might arise in efficiency
measures depending on how we deal with plausible values by applying different ap-
proaches to the data from PISA. We chose three alternative methods (the resolution of these
approaches was carried out by programming algorithms with R software [53]). First, we
estimated a standard DEA using ESCS as our input and the mean values of all the plausible
values for each domain as our outputs, i.e., treating PVMATH, PVREAD and PVSCIE as
crisp (Model A). Second, we also treated PVMATH, PVREAD and PVSCIE as crisp, but
we calculated a standard DEA for each set of plausible values (ten values), once more
including ESCS as the only input (Model B) (these estimations were conducted using the R
package “lpSolveAPI” [54]). Both estimations are relatively simple, since we only need to
solve linear programming models. Finally, we obtained fuzzy efficiency estimates using
the approach by Kao and Liu [17] for different α-cuts (α = 0.7, 0.8, 0.9 and 1) incorporating
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PVMATH, PVREAD and PVSCIE as fuzzy numbers through kernel functions and ESCS as
a crisp input variable (Model C) (we also estimated efficiency scores for other values (e.g.,
α = 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6), but we do not report these results because the intervals
are too wide). This is much more complex, since it is necessary to previously estimate
the kernel functions of each of the fuzzy variables (PVMATH, PVREAD and PVSCIE) (we
obtained these estimates using the “density” function, implemented within the R stats
package [53], opting for the use of the “Gaussian” smoothing method). Once the kernels
were estimated, we performed the α-cuts on the kernels, generating, for each fuzzy variable
and for each α, an interval of values. Next, we created a database for each α-cut with
the interval data of all the fuzzy variables and incorporated the information of the rest of
the crisp variables. Finally, after obtaining these databases, we applied the fuzzy linear
programming model (5) and (6) of Kao and Liu [17] (again, this was also solved using the
R package “lpSolveAPI” [54]), which allowed us to obtain, for each student, the values of
the efficiency associated with each α.

Table 4 reports the main descriptive statistics of efficiency estimates for each alternative.
For Model 3, we present for each α both the lowest and the highest values of the confidence
interval for the fuzzy efficiency score. Therefore, we obtained intervals as

[(
φ̃∗0
)L

α
,
(
φ̃∗0
)U

α

]
.

Moreover, we also calculated the index I0 (Equation (7)), which reflects a summary of the
different results determined for the set of αs. We assume variable returns to scale and an
output orientation in all estimations.

Table 4. Descriptive statistics of efficiency scores for different approaches.

MIN Q1 Median Mean Q3 MAX

Model A Score 1 1.22 1.34 1.38 1.49 2.78

Model B

PV1 1 1.27 1.39 1.43 1.55 3.37
PV2 1 1.26 1.38 1.42 1.54 3.16
PV3 1 1.29 1.41 1.45 1.57 2.92
PV4 1 1.27 1.39 1.44 1.55 4.33
PV5 1 1.27 1.38 1.42 1.55 2.78
PV6 1 1.25 1.37 1.42 1.54 3.26
PV7 1 1.24 1.36 1.40 1.52 3.39
PV8 1 1.26 1.38 1.42 1.54 2.84
PV9 1 1.26 1.37 1.41 1.53 2.68

PV10 1 1.27 1.39 1.43 1.55 2.98

Model C
FDEA

(different
α-cuts)

0.7
EL 1 1.10 1.20 1.23 1.33 2.18
EU 1 1.36 1.49 1.55 1.68 3.44

0.8
EL 1 1.13 1.23 1.26 1.36 2.27
EU 1 1.33 1.46 1.51 1.64 3.27

0.9
EL 1 1.16 1.27 1.30 1.40 2.40
EU 1 1.31 1.43 1.48 1.60 3.08

1
EL 1 1.24 1.35 1.40 1.51 2.72
EU 1 1.24 1.35 1.40 1.51 2.72

Ij * 1 1.07 1.10 1.11 1.13 1.65
(*) All p-values are approximately 0.000 with a level of 0.1%.

From our results, we observe that, in general terms, the average scores calculated
with the traditional DEA are similar to the estimated values obtained with fuzzy DEA for
α = 1. Indeed, the correlation among them is higher than 0.9 (and statistically significant)
in all cases, as we can see in Table 5. In our opinion, this is due to two main reasons. First,
considering α = 1, it yields the mode of the data for each variable and student as the
corresponding α-cut. Second, the modes are generally close to the means of the data in
this real example due to the symmetry of the data distributions. Consequently, the results
of programs (5) and (6) for α = 1 are identical and generate an optimal value (score) very
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similar to the optimal value of model (2), where PVMATH, PVREAD and PVSCIE are
incorporated as crisp variables. Of course, in the case of asymmetric data distributions, the
efficiency scores for the traditional model and for α = 1 could be different.

Table 5. Correlation coefficients among efficiency scores estimated with different approaches.

Model A

Model B Model C

PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV9 PV10 FDEA
(α = 1) Ij *

Model A 1.000

Model B

PV1 0.931 1.000
PV2 0.924 0.854 1.000
PV3 0.925 0.856 0.839 1.000
PV4 0.931 0.858 0.859 0.848 1.000
PV5 0.932 0.861 0.853 0.858 0.859 1.000
PV6 0.933 0.860 0.858 0.850 0.862 0.857 1.000
PV7 0.938 0.865 0.857 0.856 0.869 0.869 0.869 1.000
PV8 0.925 0.852 0.859 0.835 0.854 0.852 0.857 0.863 1.000
PV9 0.934 0.865 0.856 0.856 0.865 0.862 0.865 0.871 0.860 1.000

PV10 0.933 0.867 0.851 0.862 0.856 0.855 0.860 0.865 0.856 0.864 1.000

Model C

FDEA
(α = 1) 0.991 0.926 0.918 0.920 0.925 0.926 0.923 0.931 0.918 0.929 0.926 1.000

Ij * 0.983 0.921 0.917 0.912 0.922 0.916 0.923 0.927 0.911 0.924 0.919 0.979 1.000

(*) All p-values are approximately 0.000 with a level of 0.1%.

Although we note that the values of the index I0 are highly correlated with the
rest of scores calculated using traditional DEA, it is also noteworthy that their mean
values are significantly lower. This can be observed more clearly if we examine the
divergences for students presenting a high dispersion in output data. In Table 6, we report
the estimated scores for all the considered alternatives for students with the highest values
of standard deviation in the fuzzy variables. Here, we can see that the standard DEA tends
to overestimate the level of inefficiency, since their efficiency scores are clearly higher than
the value of the index I0. The information displayed in this table also highlights that there
is a high level of variation across efficiency scores calculated with each set of plausible
values, that cannot be detected when plausible values are aggregated (Model A).

If we focus on students identified as efficient according to standard DEA models,
which are presented in Table 7, we detect that most of them present an index I0 higher than
one and, for almost a half, are not considered as efficient in the fuzzy DEA model for α = 1.
Moreover, some students are fuzzy efficient exclusively for α = 1, but the upper bound of
the α-cuts for all other possible levels is greater than one. Thus, we cannot be totally sure
that these students are performing efficiently, although this would be the conclusion to be
drawn from an analysis performed with a standard DEA. Therefore, our results suggest
that the consideration of all the variability reported by the different plausible values using
an FDEA model may modify the conclusions obtained to a certain extent, at least as far as
the identification of efficient units is concerned.
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Table 6. Efficiency scores for students with the highest dispersion in their plausible values.

SD Model A Model B Model C
(FDEA)

Student MATH READ SCIE Score PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV9 PV10 α = 1 Ij *

185 38.37 77.36 46.35 2.20 1.92 2.40 2.24 2.18 1.91 2.93 1.69 2.42 2.10 2.60 2.24 1.36
557 32.81 58.84 31.50 1.97 1.72 2.16 1.99 1.82 1.81 2.34 2.10 1.88 1.93 1.81 1.96 1.26
583 46.70 43.38 55.29 2.00 1.75 2.23 1.94 2.38 2.05 2.64 2.08 2.02 2.37 1.95 2.05 1.32
906 51.18 32.09 41.62 2.11 2.24 1.91 1.95 2.44 2.14 2.48 2.47 2.14 2.11 2.44 2.22 1.36
958 46.23 57.57 37.43 2.28 2.76 1.91 2.19 2.13 1.95 2.41 2.41 2.64 2.44 2.13 2.38 1.45
1219 40.72 45.78 32.16 1.92 2.04 2.06 1.80 2.26 1.63 2.27 2.07 2.06 2.27 1.93 2.08 1.27
1226 60.37 48.15 53.14 2.78 3.37 2.47 2.92 4.33 2.78 3.02 3.39 2.23 2.37 2.54 2.72 1.65
2252 35.56 56.73 46.84 1.53 1.58 1.47 1.70 1.62 1.41 1.63 1.60 1.73 1.80 1.70 1.60 1.16
2900 36.67 60.53 33.98 1.63 1.60 1.90 1.53 1.72 1.79 1.64 1.79 1.76 1.88 1.54 1.81 1.20
2925 42.93 65.98 33.59 2.05 2.05 2.46 1.63 2.48 1.75 1.93 1.96 2.00 1.92 1.96 1.99 1.30
3258 55.95 37.06 40.64 2.12 2.71 2.02 2.05 1.83 1.69 1.95 2.58 1.89 2.15 2.36 2.04 1.38
3316 47.05 63.21 31.78 1.86 1.76 2.08 1.67 1.74 1.68 2.17 1.77 2.23 1.92 1.90 1.78 1.27
3381 48.36 55.56 47.17 1.94 1.68 2.61 1.83 1.78 1.92 2.00 2.32 1.99 2.06 2.13 1.93 1.30
3542 56.59 34.18 30.17 2.25 2.53 2.24 2.32 1.97 2.73 2.41 2.36 2.20 2.11 2.19 2.34 1.37
4010 53.58 25.39 31.14 2.02 1.62 2.38 2.07 1.90 2.05 2.37 1.86 1.94 2.20 1.82 2.04 1.29
4170 24.73 54.92 43.73 2.26 2.40 2.46 2.25 2.42 2.45 2.07 2.44 2.57 2.44 1.76 2.41 1.41
4351 33.06 44.46 41.12 2.04 2.15 2.18 2.27 2.34 2.28 2.13 1.94 1.75 2.49 2.10 2.10 1.30
4694 64.17 44.90 23.01 1.99 2.04 2.24 1.87 2.30 1.67 2.12 1.61 2.30 1.89 2.11 2.06 1.28
4888 22.12 61.87 41.77 1.96 1.92 1.92 2.18 2.01 1.86 1.88 2.08 1.91 2.24 2.17 1.98 1.25
5212 49.70 29.40 38.51 1.77 1.65 2.12 1.72 1.97 1.77 2.00 1.95 1.76 1.90 1.65 1.80 1.21
5963 34.25 63.22 34.64 2.26 2.52 1.98 2.48 2.37 2.19 2.50 2.09 1.99 1.96 2.06 2.12 1.35
6486 62.03 57.37 53.83 1.72 1.76 3.16 1.79 1.62 1.64 1.85 1.87 1.85 1.47 2.03 1.73 1.27
6489 29.86 50.01 33.10 1.77 2.04 1.70 1.86 1.99 2.11 1.90 1.64 1.97 1.74 1.83 1.89 1.22

(*) All p-values are approximately 0.000 with a level of 0.1%.

Table 7. Efficient units according to the traditional DEA compared to efficiency scores with other alternatives (FDEA and
each PV).

Mod. A Mod. B
Mod. C—FDEA (Different α-Cuts)

0.7 0.8 0.9 1

Student Score PV1 PV2 PV3 PV4 PV5 PV6 PV7 PV8 PV9 PV10 EL EU EL EU EL EU EL EU Ij *

502 1.00 1.00 1.00 1.03 1.00 1.01 1.02 1.00 1.00 1.00 1.00 1 1.05 1 1.03 1 1.01 1.00 1.00 1.01

613 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 1.00 1 1.00 1 1.00 1.00 1.00 1.00

952 1.00 1.08 1.04 1.09 1.05 1.00 1.05 1.00 1.03 1.09 1.07 1 1.12 1 1.10 1 1.08 1.04 1.04 1.03

1098 1.00 1.00 1.03 1.00 1.00 1.07 1.01 1.04 1.06 1.04 1.01 1 1.11 1 1.07 1 1.05 1.02 1.02 1.02

1795 1.00 1.02 1.08 1.00 1.00 1.00 1.00 1.09 1.11 1.00 1.01 1 1.11 1 1.08 1 1.05 1.00 1.00 1.03

2062 1.00 1.00 1.11 1.01 1.10 1.00 1.02 1.04 1.02 1.14 1.09 1 1.12 1 1.10 1 1.08 1.01 1.01 1.03

2853 1.00 1.00 1.03 1.00 1.00 1.00 1.18 1.00 1.19 1.10 1.07 1 1.10 1 1.07 1 1.03 1.00 1.00 1.04

2863 1.00 1.00 1.05 1.08 1.06 1.02 1.00 1.00 1.00 1.04 1.01 1 1.04 1 1.02 1 1.00 1.00 1.00 1.01

2907 1.00 1.02 1.12 1.10 1.15 1.06 1.02 1.00 1.13 1.00 1.00 1 1.16 1 1.13 1 1.10 1.02 1.02 1.03

3312 1.00 1.00 1.00 1.00 1.02 1.00 1.00 1.00 1.04 1.00 1.00 1 1.06 1 1.05 1 1.03 1.00 1.00 1.02

4274 1.00 1.02 1.02 1.06 1.02 1.13 1.03 1.04 1.00 1.00 1.13 1 1.08 1 1.06 1 1.03 1.00 1.00 1.03

5874 1.00 1.01 1.03 1.11 1.00 1.00 1.09 1.00 1.05 1.04 1.10 1 1.12 1 1.09 1 1.05 1.00 1.00 1.03

6126 1.00 1.08 1.00 1.00 1.01 1.01 1.04 1.03 1.05 1.00 1.10 1 1.11 1 1.09 1 1.08 1.02 1.02 1.02

6467 1.00 1.00 1.03 1.00 1.13 1.03 1.01 1.00 1.07 1.00 1.00 1 1.06 1 1.05 1 1.01 1.00 1.00 1.02

6654 1.00 1.00 1.00 1.00 1.00 1.00 1.05 1.00 1.03 1.00 1.00 1 1.00 1 1.00 1 1.00 1.00 1.00 1.01

(*) All p-values are approximately 0.000 with a level of 0.1%.
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6. Conclusions

In this paper, we used a novel method to incorporate all the information provided
by the plausible values available in international large-scale educational databases as
an approximation of educational output to estimate efficiency measures. Specifically,
we applied the fuzzy DEA approach proposed by Kao and Liu [17]. This methodology
provides more precise information than conventional methods, such as DEA, which only
allows for incorporating a part of the available information about students as proxies of
educational output. Therefore, the main objective of this research was to determine the
extent to which having this additional information on the units evaluated can change
the results in terms of identifying best practices and ranking units. In order to be able to
make this comparison, we applied both methods to assess the performance of a sample of
Spanish students participating in PISA 2015.

Our results reveal that the estimated measures of performance obtained with the fuzzy
DEA approach present high levels of correlation with the efficiency scores calculated using
traditional DEA models. Therefore, in principle, when researchers use only one plausible
value or aggregate values into a single aggregate measure, they obtain similar results to
those obtained if they were to consider the whole distribution of results, represented by all
the available plausible values that are expressed by a kernel function within our framework.
This can be considered as a positive result for practitioners using traditional frontier meth-
ods in this area, since it appears that not considering all available information on students’
abilities does not seem to generate relevant biases in the estimated efficiency measures.

However, we also found some noteworthy divergences among the estimated scores
with both alternatives. First, we noticed that standard DEA may overestimate the level of
inefficiency for some students, especially those with a higher dispersion in their results,
i.e., plausible values more different from each other. Second, we also observed that a high
proportion of units identified as efficient in standard DEA models are not identified as
efficient in the fuzzy DEA model; thus, we cannot be completely sure that units identified
as being efficient by traditional DEA are actually efficient.

In view of the above, we claim that empirical studies using microdata from interna-
tional comparative surveys for estimating measures of performance using DEA should
try to account for the existing variation among plausible values as a representation of the
output (test scores). Otherwise, there might be an overestimation of the level of inefficiency
of some units as well as a misidentification of efficient units, which could also affect the
measures of the remaining evaluated units, since they are commonly used as references
in DEA.

Finally, we would like to mention that we are aware that our study presents a series
of limitations that should lead us to interpret the results with some caution. Probably the
most important of these limitations is that we only incorporated one input variable in our
empirical analysis, which is not very common in efficiency studies. However, this decision
was made in an attempt to minimize the potential problems of loss of discriminatory power
of nonparametric techniques, such as DEA or FDEA. Another potential limitation arises
from the fact that in our application, we only used data referring to one country (Spain), so
it would be advisable to extend the scope of the study to a broader context considering
information on other countries. In the same way, it could also be interesting to use more
recent information, such as the data available in PISA 2018, although in principle, this
change would not be relevant since the newest wave of this survey offers the same number
of plausible values for each student (10). Finally, it is also worth mentioning that we only
used one of the multiple existing models to implement FDEA, Kao and Liu´s procedure;
thus, a potential extension of the present study could be to applied other alternative FDEA
approaches to test the robustness of our results.
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