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Abstract: This article deals with the general linearization problem of Jacobi polynomials. We
provide two approaches for finding closed analytical forms of the linearization coefficients of these
polynomials. The first approach is built on establishing a new formula in which the moments of the
shifted Jacobi polynomials are expressed in terms of other shifted Jacobi polynomials. The derived
moments formula involves a hypergeometric function of the type 4F3(1), which cannot be summed in
general, but for special choices of the involved parameters, it can be summed. The reduced moments
formulas lead to establishing new linearization formulas of certain parameters of Jacobi polynomials.
Another approach for obtaining other linearization formulas of some Jacobi polynomials depends
on making use of the connection formulas between two different Jacobi polynomials. In the two
suggested approaches, we utilize some standard reduction formulas for certain hypergeometric
functions of the unit argument such as Watson’s and Chu-Vandermonde identities. Furthermore,
some symbolic algebraic computations such as the algorithms of Zeilberger, Petkovsek and van
Hoeij may be utilized for the same purpose. As an application of some of the derived linearization
formulas, we propose a numerical algorithm to solve the non-linear Riccati differential equation
based on the application of the spectral tau method.

Keywords: Jacobi polynomials; generalized hypergeometric functions; Chebyshev polynomials;
linearization coefficients; connection formulas; moments formulas; symbolic computation;
Riccati differential equation; tau method

1. Introduction

Special functions are crucial in several disciplines such as mathematical physics and
numerical analysis. A large number of researchers are interested in investigating different
special functions from numerical and practical points of view; see, for example, [1–3].

Jacobi polynomials are of basic importance in mathematical analysis from both the-
oretical and practical points of view. There are six important particular classes of Jacobi
polynomials. In fact, ultraspherical, Legendre, and Chebyshev polynomials of the first-
and second- kinds are symmetric Jacobi polynomials, while the two classes of Chebyshev
polynomials of third- and fourth- kinds are non-symmetric Jacobi polynomials (see, for
example, [4–6]). The linearization and connection problems of different orthogonal polyno-
mials are of fundamental importance. They play a role in the computation of physical and
chemical properties of quantum-mechanical systems [7]. The standard linearization for-
mula is applied in the calculation of the position and momentum information entropies of
quantum systems (see Dehesa et al. [8]). Furthermore, they are useful in treating some kinds
of differential equations. For example, Abd-Elhameed [9] has employed some linearization
formulas to solve a non-linear Riccati differential equation. Recently, Abd-Elhameed in [10]
employed the linearization formula of the shifted Chebyshev polynomials of the sixth-kind
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along with some other formulas to develop a spectral solution to the one-dimensional
non-linear Burgers’ equation. Due to the importance of the linearization formulas, intensive
studies regarding these problems have been performed. Linearization and connection
problems for a variety of classical continuous and discrete orthogonal polynomials have
been established by many methods (see, for instance, [11–20]).

If we assume three families of polynomials {φi(x)}i≥0 {ψj(x)}j≥0 and {θk(x)}k≥0,
then to solve the general linearization problem

φi(x)ψj(x) =
i+j

∑
k=0

Ak,i,j θk(x),

we have to find the linearization coefficients Ak,i,j.
It is worth mentioning here that among the important problems that are related to the

linearization problems are the problems concerned with summing the finite products of
several special functions. In this direction, the authors of [21], developed some results for
the sums of finite products of the second, third, and fourth kinds Chebyshev polynomials.
In [22], the authors studied the connection problem for sums of finite products of Chebyshev
polynomials of the third and fourth kinds. Expressions for sums of finite products of
Legendre and Laguerre polynomials can be found in [23]. In [24], the authors established
representations by several orthogonal polynomials for sums of finite products of Chebyshev
polynomials of the first kind and Lucas polynomials. Fourier series expansions for functions
related to sums of finite products of Chebyshev polynomials of the first kind, and those
of Lucas polynomials are derived in [25]. In [26], the authors represented by orthogonal
polynomials the sums of finite products of Fubini polynomials. Some new formulas that
express the sums of finite products of balancing polynomials can be found in [27]. In the
series of papers [28–31], the authors developed specific linearization formulas of Jacobi
polynomials of certain parameters. The linearization coefficients were often expressed
in terms of certain terminating hypergeometric functions of unit argument that can be
reduced for some particular cases. In [28], the authors derived new linearization formulas
of Chebyshev polynomials of the third and fourth kinds. The authors in [32,33] established
some formulas of the squares of certain Jacobi polynomials. In addition, in [30], the author
derived a product formula of two certain Jacobi polynomials in terms of the squares of
ultraspherical polynomials. The coefficients are expressed in terms of a certain terminating
6F5(1). This product formula led to some simplified linearization formulas for certain
choices of the involved parameters. In [34], the authors established some specific and
general linearization formulas of some classes of Jacobi polynomials based on the reduction
of certain hypergeometric functions of unit arguments. For some other articles concerned
with linearization problem, one can refer to [35–39]. The principal aim of the current paper
is to derive new expressions for the linearization coefficients Bp,i,j in the problem

R(α,β)
i (x) R(λ,µ)

j (x) =
i+j

∑
p=0

Bp,i,j R(γ,δ)
i+j−p(x), (1)

where R(α,β)
i (x) is the normalized Jacobi polynomial defined in [15] for certain choices of

the involved parameters.
We point out here that the main difference between our study in the current paper

and the study in the recent paper [34] is that the authors in [34] investigated the lineariza-
tion formula

R(α,β)
i (x) R(λ,µ)

j (x) =
i+j

∑
p=0

Bp,i,j R(α+λ,β+µ)
i+j−p (x). (2)

It is clear that the linearization formula in (2) is a special case of the linearization
Formula (1).
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The linearization coefficients of problem (2) were found in terms of a product of two
terminating hypergeometric functions of the type 3F2(1) (see [17]). In [34], the authors
found closed forms for one or two of the appearing 3F2(1) for some specific choices of
the involved parameters, and therefore, some new reduced linearization formulas were
developed. In the current paper, we follow two different approaches to develop some
linearization formulas in the form of (1). In fact, we follow the following two approaches:

• An approach based on deriving a new formula of the moments of the shifted normal-
ized Jacobi polynomials in terms of their original shifted Jacobi polynomials but with
different parameters;

• An approach based on making use of the connection formulas between two different
normalized Jacobi polynomials.

We comment here that the main advantages of our two presented methods to establish
the linearization formulas in this paper compared with some of the previously published
papers can be listed as follows:

• In the articles [28,31,34], the linearization formulas were established by reducing some
exiting ones in the literature with the aid of some celebrated reduction formulas or
via some symbolic algorithms; however, in the current article, we establish two new
approaches for deriving some linearization formulas, and after that reduce these
linearization formulas by symbolic computation.

• The articles [9,29,30] deal with some special linearization formulas. In fact, the ap-
proaches followed were based on expressing products of hypergeometric functions
in terms of a single generalized hypergeometric function using some suitable trans-
formation formulas; however, the current article deals with some general lineariza-
tion formulas.

• We do believe that the approach based on the moments formulas can be followed to
establish linearization formulas of different orthogonal polynomials and not restricted
to Jacobi polynomials.

The rest of the paper is as follows. Section 2 presents some properties of Jacobi
polynomials and their shifted ones. Section 3 is interested in establishing a new unified
formula for the moments of the four kinds of Chebyshev polynomials. Furthermore, in
this section, a general moments formula of the shifted normalized Jacobi polynomials of
general parameters is given explicitly in terms of a certain terminating 4F3(1). Section 4
is devoted to presenting new linearization formulas based on employing the moments
formulas derived in Section 3. Another approach based on making use of the connection
formulas between two different Jacobi polynomials is followed in Section 5. To show the
importance and applicability of the presented formulas, we propose a numerical algorithm
in Section 6 to solve the non-linear Riccati differential equation based on the application of
the spectral tau method. Finally, the conclusion is given in Section 7.

2. Some Elementary Properties of the Classical Jacobi Polynomials and Their
Shifted Ones

In this section, we display some properties of the classical Jacobi polynomials and their
shifted ones, which are useful in the following. The sequence of orthogonal polynomials
P(γ,δ)

j (x), x ∈ [−1, 1], j ≥ 0, and γ > −1, δ > −1, (see Olver et al. [40], Andrews et al. [41]
and Rainville [42]), may be constructed by means of the following Rodrigues’ formula:

P(γ,δ)
j (x) =

(−1)j

2j j!
(1− x)−γ(1 + x)−δDj

[
(1− x)γ+j(1 + x)δ+j

]
,

where D ≡ d
dx .

They also may be represented by means of the following hypergeometric form:

P(γ,δ)
j (x) =

(γ + 1)j

j! 2F1

(
−j, j + γ + δ + 1

γ + 1

∣∣∣∣1− x
2

)
.
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It is useful to use the normalized Jacobi polynomials, which were introduced in [15]
and used in [43]. They are given by the following formula:

R(γ,δ)
j (x) = 2F1

(
−j, j + γ + δ + 1

γ + 1

∣∣∣∣1− x
2

)
. (3)

The definition in (3) has the advantage that

R(γ,δ)
j (1) = 1, j = 0, 1, 2, . . . .

All relations and formulas of P(γ,δ)
j (x) can be easily transformed to give their counter-

parts for R(γ,δ)
j (x). The polynomials R(γ,δ)

j (x) satisfy the following orthogonality relation:

∫ 1

−1
(1− x)γ(1 + x)δ R(γ,δ)

j (x) R(γ,δ)
k (x) dx =

{
0, k 6= j,
hγ,δ

j , k = j,
(4)

where

hγ,δ
j =

2γ+δ+1 j! Γ(j + δ + 1) (Γ(γ + 1))2

(2j + γ + δ + 1) Γ(j + γ + δ + 1) Γ(j + γ + 1)
. (5)

It is worth mentioning that the six special families of polynomials of the normalized
Jacobi polynomials R(γ,δ)

j (x) are given by the following relations:

Tj(x) = R(− 1
2 ,− 1

2 )
j (x), Uj(x) = (j + 1) R( 1

2 , 1
2 )

j (x),

Vj(x) = R(− 1
2 , 1

2 )
j (x), Wj(x) = (2j + 1) R( 1

2 ,− 1
2 )

j (x),

C(α)
j (x) = R(α− 1

2 ,α− 1
2 )

j (x), Lj(x) = R(0,0)
j (x),

where Tj(x), Uj(x), Vj(x), Wj(x) represent, respectively, the first, second, third, and

fourth kinds Chebyshev polynomials, while C(α)
j (x) and Lj(x) denote, respectively, the

ultraspherical and Legendre polynomials.
Regarding the four kinds of Chebyshev polynomials, they have the following trigonometric
representations (see, [44]):

Tj(x) = cos(j θ), Uj(x) =
sin((j + 1) θ)

sin θ
,

Vj(x) =
cos
((

j + 1
2

)
θ
)

cos
(

θ
2

) , Wj(x) =
sin
((

j + 1
2

)
θ
)

sin
(

θ
2

) ,

where θ = cos−1(x).
It can be noted that the polynomials Wj(x) are linked with the polynomials Vj(x) by

the relation:
Wj(x) = (−1)j Vj(−x),

and therefore any relation of Vj(x) has a corresponding one of Wj(x).
In what follows, we will denote by φj(x) any Chebyshev polynomial of degree j of the
well-known four kinds, and let φ∗j (x) denote the shifted Chebyshev polynomial on [0, 1],
defined as

φ∗j (x) = φj(2x− 1).
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One of the important properties of Chebyshev polynomials is that they can be con-
structed by a unified recurrence relation but with different initials. In fact, the polynomials
φj(x) satisfies the following recurrence relation:

φj(x) = 2 x φj−1(x)− φj−2(x), j ≥ 2, (6)

but with the following different initial values:

T0(x) = 1, T1(x) = x, U0(x) = 1, U1(x) = 2x,

V0(x) = 1, V1(x) = 2x− 1, W0(x) = 1, W1(x) = 2x + 1.

Furthermore, note that the polynomials φ−j(x), j ≥ 0 can be defined in terms of φj(x).
In fact, we have the following explicit relations

T−j(x) = Tj(x), U−j(x) = −Uj−2(x),

V−j(x) = Vj−1(x), W−j(x) = −Wj−1(x).

The shifted normalized Jacobi polynomials R̃(γ,δ)
j (x) on [0, 1] are defined by:

R̃(γ,δ)
j (x) = R(γ,δ)

j (2x− 1).

All relations of the normalized Jacobi polynomials R(γ,δ)
j (x) can be transformed to

give their counterparts of their shifted ones. The orthogonality relation of R̃(γ,δ)
j (x) is

given by ∫ 1

0
(1− x)γ xδ R̃(γ,δ)

j (x) R̃(γ,δ)
k (x) dx =

{
0, k 6= j,
h̃γ,δ

j , k = j,
(7)

where

h̃γ,δ
j =

k! Γ(γ + 1)2 Γ(k + δ + 1)
(2k + γ + δ + 1) Γ(k + γ + 1) Γ(k + γ + δ + 1)

. (8)

In addition, among the most important properties of the shifted normalized Jacobi
polynomials R̃(γ,δ)

j (x) are their power form and inversion formulas ([41]). The power from
representation is

R̃(γ,δ)
j (x) =

j

∑
r=0

(−1)r j! Γ(γ + 1) (δ + 1)j (γ + δ + 1)2j−r

r! (j− r)! Γ(j + γ + 1) (γ + δ + 1)j (δ + 1)j−r
xj−r, (9)

while the inversion formula is

xj =
j

∑
r=0

( j
r)(γ + 1)j−r(j− r + δ + 1)r

(2j− 2r + γ + δ + 2)r(j− r + γ + δ + 1)j−r
R̃(γ,δ)

j−r (x). (10)

Furthermore, the Rodrigues’ formula of R̃(γ,δ)
j (x) is given by

R̃(γ,δ)
j (x) =

(−1)j Γ(γ + 1)
Γ(j + γ + 1)

(1− x)−γ x−δDj
[
(1− x)γ+j xδ+j

]
. (11)

For more properties of Jacobi polynomials in general and their special polynomials in
particular, one can be referred to the useful books of Andrews et al. [41] and Mason and
Handscomb [44].
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3. New Moments Formulas of the Shifted Normalized Jacobi Polynomials

In this section, we develop a unified formula for computing the moments of any one
of the four kinds of the shifted Chebyshev polynomials in terms of their original shifted
polynomials. In addition, we establish a new formula that expresses the moments of the
shifted normalized Jacobi polynomials of any degree in terms of their original shifted
polynomials but with other parameters. We show that the moments coefficients involve
a hypergeometric function of the type 4F3(1), which can be summed in closed analytical
formulas for special choices of the involved parameters. In this regard, we state and prove
the following two main theorems.

Theorem 1. Let φ∗n(x) be any kind of the four kinds of shifted Chebyshev polynomials. For every
non-negative integers r and n, one has

xr φ∗n(x) =
1

22r

2r

∑
`=0

(
2r
`

)
φ∗n+r−`(x). (12)

Proof. We will proceed by induction on r. For r = 1, if x is replaced by (2x − 1) in the
recurrence relation (6), then it is easy to see that

x φ∗n(x) =
1
4
{

φ∗n+1(x) + 2 φ∗n(x) + φ∗n−1(x)
}

, (13)

and therefore, the result is true for r = 1. Now assume the validity of relation (12); hence,
to complete the proof of Theorem 1, we have to prove the following formula:

xr+1 φ∗n(x) =
1

22r+2

2r+2

∑
`=0

(
2r + 2

`

)
φ∗n+r+1−`(x).

If we make use of the valid relation (12) along with relation (13), then we get

xr+1 φ∗n(x) =
1

22r

2r

∑
`=0

(2r
` ) x φ∗n+r−`(x)

=
1

22r+2

2r

∑
`=0

(2r
` )
{

φ∗n+r−`+1(x) + 2 φ∗n+r−`(x) + φ∗n+r−`−1(x)
}

=
1

22r+2

(
2r

∑
`=0

(2r
` ) φ∗n+r−`+1(x) + 2

2r+1

∑
`=1

( 2r
`−1) φ∗n+r−`+1(x) +

2r+2

∑
`=2

( 2r
`−2) φ∗n+r−`+1(x)

)

=
1

22r+2

(
2r

∑
`=2

{
(2r
` ) + 2 ( 2r

`−1) + ( 2r
`−2)

}
φ∗n+r−`+1(x) + (2r + 2)φ∗n+r(x)

+ (2r + 2)φ∗n−r(x) + φ∗n+r+1(x) + φ∗n−r−1(x)

)
.

With the aid of the simple combinatorial identity:

(2r
` ) + 2 ( 2r

`−1) + ( 2r
`−2) = (2r+2

` ), ` ≥ 2,

it is easy to see that

xr+1 φ∗n(x) =
1

22r+2

2r+2

∑
`=0

(2r+2
` ) φ∗n+r+1−`(x).

Theorem 1 is now proved.
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Now, we shall state and prove a new important theorem in which the moments of the
shifted normalized Jacobi polynomials R̃(α,β)

i (x) are expressed in terms of R̃(γ,δ)
i (x).

Theorem 2. For all non-negative integers r and i, one has the following moments relation:

xr R̃(α,β)
i (x) =

(i + r)! Γ(α + 1) Γ(2i + α + β + 1) Γ(i + r + δ + 1)
Γ(γ + 1) Γ(i + α + 1) Γ(i + α + β + 1)

×
i+r

∑
m=0

(γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + 1) Γ(i−m + r + γ + δ + 1)
m! (i−m + r)! Γ(i−m + r + δ + 1) Γ(2i−m + 2r + γ + δ + 2)

× 4F3

(
−m,−i,−β− i,−γ− δ− 2i + m− 2r− 1

−i− r,−α− β− 2i,−δ− i− r

∣∣∣∣1) R̃(γ,δ)
i+r−m(x).

(14)

Proof. First, since xr R̃(α,β)
i (x) is a polynomial of degree (i + r), we can assume the formula

xr R̃(α,β)
i (x) =

i+r

∑
m=0

Am,i,r R̃(γ,δ)
i+r−m(x),

where Am,i,r are the moments coefficients to be determined. The orthogonality relation of

R̃(γ,δ)
i (x) over [0, 1] enables one to express Am,i,r in the following integral form:

Am,i,r =
1

hγ,δ
i−m+r

1∫
0

(1− x)γ xδ R̃(γ,δ)
i+r−m(x)

(
xr R̃(α,β)

i (x)
)

dx,

and with the aid of Rodrigues’ formula of the shifted normalized Jacobi polynomials (11),
the last integral form turns into

Am,i,r =
(−1)i−m+r Γ(γ + 1)

hγ,δ
i−m+r Γ(i−m + r + γ + 1)

1∫
0

Di−m+r
{
(1− x)γ+i−m+rxδ+i−m+r

} (
xr R̃(α,β)

i (x)
)

dx, (15)

where hγ,δ
k is given by (5).

If we integrate the right-hand side of (15) by parts (i + r−m) times, then we get

Am,i,r =
(γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + δ + 1)

Γ(γ + 1) (i−m + r)! Γ(i−m + r + δ + 1)

×
1∫

0

(1− x)γ+i−m+rxδ+i−m+r Di−m+r
(

xr R̃(α,β)
i (x)

)
dx.

The power form representation of R̃(α,β)
i (x) in (9), together with the simple identity

Dsx` = (`− s + 1)s x`−s,

leads to the following formula for Am,i,r

Am,i,r =
i! Γ(α + 1) (γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + δ + 1) (β + 1)i
(i−m + r)! Γ(γ + 1) Γ(i + α + 1) Γ(i−m + r + δ + 1) (α + β + 1)i

×
i

∑
`=0

(−1)` (−`+ m + 1)i−m+r (α + β + 1)2i−`
`! (i− `)! (β + 1)i−`

1∫
0

(1− x)γ+i−m+rxδ+i+r−` dx.



Mathematics 2021, 9, 1573 8 of 28

It is easy to show the validity of the following identity:

1∫
0

(1− x)γ+i−m+rxδ+i−m+r−` dx =B(γ + i−m + r + 1, δ + i− `+ r + 1)

=
Γ(γ + i−m + r + 1) Γ(δ + i− `+ r + 1)

Γ(γ + δ + 2i− `−m + 2r + 2)
,

and therefore, the coefficients Am,i,r are given by

Am,i,r =
i! Γ(α + 1) (β + 1)i (γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + δ + 1)
(i−m + r)! Γ(γ + 1) Γ(i + α + 1) Γ(i−m + r + δ + 1) (α + β + 1)i

×
m

∑
`=0

(−1)` (−`+ m + 1)i−m+r (α + β + 1)2i−` Γ(i− `+ r + δ + 1) Γ(i−m + r + γ + 1)
`! (i− `)! (β + 1)i−` Γ(2i− `−m + 2r + γ + δ + 2)

.
(16)

The sum that appears in the right-hand side of (16) can be written in the following
hypergeometric representation

m

∑
`=0

(−1)` (−`+ m + 1)i−m+r (α + β + 1)2i−` Γ(i− `+ r + δ + 1) Γ(i−m + r + γ + 1)
`! (i− `)! (β + 1)i−` Γ(2i− `−m + 2r + γ + δ + 2)

=

(i + r)! Γ(β + 1) Γ(2i + α + β + 1) Γ(i + r + δ + 1) Γ(i−m + r + γ + 1)
i! m! Γ(α + β + 1) Γ(i + β + 1) Γ(2i−m + 2r + γ + δ + 2)

× 4F3

(
−m,−i,−β− i,−γ− δ− 2i + m− 2r− 1

−i− r,−α− β− 2i,−δ− i− r

∣∣∣∣1),

and this leads to the desired moments relation (14).

Corollary 1. For all non-negative integers r and i, the following moments relation of the normalized
Jacobi polynomials is obtained:

xr R̃(α,β)
i (x) =

(i + r)! Γ(α + 1) Γ(2i + α + β + 1) Γ(i + r + δ + 1)
Γ(γ + 1) Γ(i + α + 1) Γ(i + α + β + 1)

×
i+r

∑
m=0

(γ + δ + 2i− 2m + 2r + 1) Γ(i−m + r + γ + 1) Γ(i−m + r + γ + δ + 1)
m! (i−m + r)! Γ(i−m + r + δ + 1) Γ(2i−m + 2r + γ + δ + 2)

× 4F3

(
−m,−i,−β− i,−γ− δ− 2i + m− 2r− 1

−i− r,−α− β− 2i,−δ− i− r

∣∣∣∣1) R̃(α,β)
i+r−m(x).

(17)

Proof. If we set γ = α, δ = β in Formula (14), then Formula (17) can be obtained.

Remark 1. For some particular choices of α, β, γ, δ, the hypergeometric series that appears in
(14) can be summed, and hence some moments relations can be obtained in reduced forms. In the
following, we give some of these cases.

Corollary 2. For all non-negative integers i and r, one has

xr T∗i (x) =
(2r + 1)!

22r+1

2r+1

∑
m=0

1
m! (−m + 2r + 1)!

V∗i+r−m(x). (18)
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Proof. The substitution by α = β = γ = − 1
2 , and δ = 1

2 , into relation (14) yields

xr T∗i (x) =
(2i + 2r + 1)!

22r+1

i+r

∑
m=0

1
m! (2i−m + 2r + 1)!

× 4F3

(
−m,−i, 1

2 − i,−2i + m− 2r− 1
1− 2i,−i− r− 1

2 ,−i− r

∣∣∣∣1)V∗i+r−m(x).

(19)

We note that the terminating 4F3(1) that appears in (19) involves the two non-negative
integers i and m in the numerator parameters. In order to reduce it, we set

Sm,i,r = 4F3

(
−m,−i, 1

2 − i,−2i + m− 2r− 1
1− 2i,−i− r− 1

2 ,−i− r

∣∣∣∣1),

and we consider the following two cases:
(i) If m ≤ i, and then the ue Zeilberger’s algorithm [45], it can be shown that Sm,i,r satisfies
the following recurrence relation

(1 + m)(−1 + m− 2r)Sm,i,r + (1 + i(2 + 4m− 4r)− 2m(1 + m− 2r) + 6r) Sm+1,i,r

+ (−2 + 2i−m)(2i−m + 2r) Sm+2,i,r = 0, S0,i,r = 1, S1,i,r =
2r + 1
2r + 3

,

which can be solved exactly to give

Sm,i,r = 4F3

(
−m,−i, 1

2 − i,−2i + m− 2r− 1
1− 2i,−i− r− 1

2 ,−i− r

∣∣∣∣1) =
(2r + 1)! (2i−m + 2r + 1)!
(2i + 2r + 1)! (2r−m + 1)!

. (20)

(ii) If m > i, then it can be shown that Sm,i,r satisfies the following recurrence relation:

(−4 + 2i−m)(−3 + 2i−m)(−1 + 4i− 2m + 2r)(−2 + 2i−m + 2r)(−1 + 2i−m + 2r)Sm,i−2,r

− 4(−1 + i + r)(−1 + 2i + 2r)(−3 + 4i− 2m + 2r)

×
(

2− 6i + 4i2 + 3m− 4im + m2 − r + 4ir− 2mr + 2r2
)

Sm,i−1,r

+ 4(−1 + i + r)(i + r)(−1 + 2i + 2r)(1 + 2i + 2r)(−5 + 4i− 2m + 2r)Sm,i,r = 0,

Sm,0,r = 1, Sm,1,r =
m2 − 2mr− 3m + 2r2 + 5r + 3

(r + 1)(2r + 3)
.

which can be exactly solved to give

Sm,i,r =
(2r + 1)!

(
m!

(m−2i)! +
(2i−m+2r+1)!
(2r−m+1)!

)
(2i + 2r + 1)!

.

Now, if we take into consideration the reduction of Sm,i,r for the two cases (i) and (ii),
then we can write the following two formulas

xr T∗i (x) =
r+i

∑
`=0

B`,r,iV∗` (x), r ≥ i,

and

xr T∗i (x) =
r+i

∑
`=0

B̄`,r,iV∗` (x), r < i,

where the coefficients B`,r,i and B̄`,r,i are given by
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B`,r,i =
(2r + 1)!

22r+1

×


1

(i− `+ r)!(`+ r− i + 1)!
+

1
(−i− `+ r)!(`+ r + i + 1)!

, 0 ≤ ` ≤ r− i,

1
(i− `+ r)! (1− i + `+ r)!

, r− i + 1 ≤ ` ≤ r + i,

(21)

and

B̄`,r,i =
(2r + 1)!

22r+1 (i− `+ r)! (1− i + `+ r)!
, 0 ≤ ` ≤ r + i. (22)

For the case corresponding to r ≥ i. Based on (21), relation (19) turns into

xr T∗i (x) =
(2r + 1)!

22r+1

r−i

∑
`=0

(
1

(i− `+ r)! (1− i + `+ r)!
+

1
(−i− `+ r)! (1 + i + `+ r)!

)
V∗` (x)

+
(2r + 1)!

22r+1

r+i

∑
`=r−i+1

1
(i− `+ r)! (1− i + `+ r)!

V∗` (x)

=
(2r + 1)!

22r+1

(
i+r

∑
`=0

1
(i− `+ r)! (1− i + `+ r)!

V∗` (x) +
r−i

∑
`=0

1
(−i− `+ r)! (1 + i + `+ r)!

V∗` (x)

)

=
(2r + 1)!

22r+1

(
i+r

∑
m=0

1
m! (2r−m + 1)!

V∗i+r−m(x) +
2r+1

∑
m=i+r+1

1
m! (2r−m + 1)!

V∗m−i−r−1(x)

)
.

Based on the well-known identity:

Vp(x) = V−p−1(x), p ≥ 0,

we can write

xr T∗i (x) =
(2r + 1)!

22r+1

(
i+r

∑
m=0

1
m! (2r−m + 1)!

V∗i+r−m(x) +
2r+1

∑
m=i+r+1

1
m! (2r−m + 1)!

V∗i+r+m(x)

)
.

=
(2r + 1)!

22r+1

2r+1

∑
m=0

1
m! (−m + 2r + 1)!

V∗i+r−m(x).

In addition, for the case that corresponds to i > r, we can see that

xr T∗i (x) =
(2r + 1)!

22r+1

2r+1

∑
m=0

1
m! (−m + 2r + 1)!

V∗i+r−m(x).

Therefore, the unified moments relation (18) is proved for all i and r.

Corollary 3. For all non-negative integers i and r, one has

xr T∗i (x) =
(2r + 1)!

22r

2r+2

∑
m=0

(−m + r + 1)
m! (−m + 2r + 2)!

U∗i+r−m(x). (23)

Corollary 4. For all non-negative integers i and r, one has

xr V∗i (x) =
(2r)!
22r

2r+1

∑
m=0

2r− 2m + 1
m! (−m + 2r + 1)!

U∗i+r−m(x). (24)
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Proof. Proofs of Corollaries 3 and 4 are similar to the proof of Corollary 2.

Remark 2. When employing Zeilberger’s algorithm for the reduction of certain hypergeometric
functions of the unit argument, a recurrence relation is obtained. The exact solution of this
recurrence relation can be found by a suitable computer algebra algorithm. Petkovsek’s and van
Hoeij algorithms may be useful for obtaining the desired solutions (see, [45,46]).

4. A New Approach for Solving Jacobi Linearization Problem via Moments Formulas

This section is confined to developing new linearization formulas of the normalized
Jacobi polynomials of different parameters based on utilizing the new moments formulas
derived in Section 3.

Theorem 3. Let i and j be any two non-negative integers, and let φk(x) be any polynomial of the
four kinds of Chebyshev polynomials. The following linearization formula is valid

R(α,β)
i (x) φj(x) =

(2i)! Γ(α + 1) Γ(2i + α + β + 1)
22i Γ(i + α + 1) Γ(i + α + β + 1)

×
2i

∑
p=0

1
p! (2i− p)! 3F2

(
−p, p− 2i,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1) φi+j−p(x).
(25)

Proof. The power form representation of R̃(α,β)
i (x) (9) together with the result of Theorem 1

yield

R̃(α,β)
i (x) φ∗j (x) =

i! Γ(α + 1) (β + 1)i
Γ(i + α + 1) (α + β + 1)i

i

∑
r=0

(−1)r 4r−i (α + β + 1)2i−r
r! (i− r)! (β + 1)i−r

2i−2r

∑
s=0

(2i−2r
s ) φ∗j+i−r−s(x).

Expanding the right-hand side of the last relation and performing some algebraic
calculations lead to the following relation:

R̃(α,β)
i (x) φ∗j (x) =

i! Γ(α + 1) (β + 1)i
Γ(i + α + 1) (α + β + 1)i

2i

∑
p=0

p

∑
r=0

(−1)r 4r−i (2 i−2 r
p−r ) (α + β + 1)2i−r

r! (i− r)! (β + 1)i−r
φ∗j+i−p(x),

but it can be shown that

p

∑
r=0

(−1)r 4r−i (2 i−2 r
p−r ) (α + β + 1)2i−r

r! (i− r)! (β + 1)i−r
=

(2i)! Γ(β + 1) Γ(2i + α + β + 1)
22 i p! (2i− p)! Γ(α + β + 1) Γ(i + β + 1)

× 3F2

(
−p, p− 2i,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1),

and therefore, the following linearization formula is obtained:

R̃(α,β)
i (x) φ∗j (x) =

(2i)! Γ(α + 1) Γ(2i + α + β + 1)
22i Γ(i + α + 1) Γ(i + α + β + 1)

×
2i

∑
p=0

1
p! (2i− p)! 3F2

(
−p, p− 2i,−β− i
1
2 − i,−α− β− 2i

∣∣∣∣1) φ∗i+j−p(x).

In the last formula, if x is replaced by 1+x
2 , then the linearization Formula (25) is

obtained.
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Corollary 5. For all non-negative integers i and j, the following linearization formula holds

C(α)
i (x) φj(x) =

i! 22α−1 Γ
(

α + 1
2

)
√

π Γ(α)Γ(i + 2α)

i

∑
p=0

Γ(p + α) Γ(i− p + α)

p! (i− p)!
φj+i−2 p(x). (26)

Proof. If we set β = α in (25), and each of them is replaced by
(

α− 1
2

)
, then we get

C(α)
i (x) φj(x) =

22 α−1 (2i− 1)! Γ
(

α + 1
2

)
Γ(i + α)

√
π Γ(i + 2α)

2i

∑
p=0

1
p! (2i− p)!

× 3F2

(
−p, p− 2i,−α− i + 1

2
1
2 − i,−2α− 2i + 1

∣∣∣∣1) φj+i−p(x).

(27)

The 3F2(1) in (27) can be summed with the aid of Watson’s identity to give

3F2

(
−p, p− 2i,−α− i + 1

2
1
2 − i,−2α− 2i + 1

∣∣∣∣1) =


Γ
(

p+1
2

)
(α) p

2√
π
(

i− p
2 + 1

2

)
p
2

(
i− p

2 + α
)

p
2

, p even,

0, p odd,

and accordingly, relation (26) can be obtained.

Corollary 6. For all non-negative integers i and j, the following linearization formulas hold

Li(x) φj(x) =
1
π

i

∑
p=0

Γ(p + 1
2 ) Γ(i− p + 1

2 )

p! (i− p)!
φj+i−2p(x), (28)

Ui(x) φj(x) =
i

∑
p=0

φj+i−2p(x), (29)

Ti(x) φj(x) =
1
2
(
φj+i(x) + φj−i(x)

)
. (30)

Proof. The above three formulas can be easily obtained if we substitute by α = 1
2 , 1, 0,

respectively, in Formula (26).

Corollary 7. For all non-negative integers i and j, the following linearization formula holds

J(α,− 1
2 )

i (x) φj(x) =
(2i)! Γ(α + 1) Γ

(
2i + α + 1

2

)
22i Γ

(
i + α + 1

2

)
Γ(i + α + 1)

2i

∑
p=0

(
−p− α + 1

2

)
p

p! (2i− p)!
(
−2i− α + 1

2

)
p

φj+i−p(x). (31)

Proof. Setting β = − 1
2 in (25) yields

R̃(α,− 1
2 )

i (x) φj(x) =
(2i)! Γ(α + 1) Γ

(
2i + α + 1

2

)
22i Γ

(
i + α + 1

2

)
Γ(i + α + 1)

2i

∑
p=0

2F1

(
−p, p− 2i
−2i− α + 1

2

∣∣∣∣1)
p!(2i− p)!

φj+i−p(x).

The last 2F1(1) can be summed with the aid of Chu-Vandermonde identity, and
consequently, formula (31) can be obtained.

Corollary 8. For all non-negative integers i and j, the following linearization formula holds
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J(α,α+1)
i (x) φj(x) =

(2i)! Γ(α + 1) Γ(2 i + 2 α + 2)√
π 22 i Γ(i + α + 1) Γ(i + 2α + 2)

×
i

∑
p=0

Γ
(

p + 1
2

) (
α + 3

2
)

p

(2p)! (2i− 2p)!
(

i− p + 1
2

)
p

(
i− p + α + 3

2
)

p

{
φi+j−2p(x)− 2 (i− p)

2α + 2i− 2p + 1
φi+j−2p−1(x)

}
.

(32)

Proof. Substitution by β = α + 1 into the linearization Formula (25) yields

R̃(α,α+1)
i (x) φj(x) =

(2i)! Γ(α + 1) Γ(2i + 2 α + 2)
22 i Γ(i + α + 1) Γ(i + 2 α + 2)

×
2i

∑
p=0

1
p! (2i− p)! 3F2

(
−p, p− 2i,−α− i− 1

1
2 − i,−2α− 2i− 1

∣∣∣∣1) φj+i−p(x).

Regarding the 3F2(1) that appears in the last formula, and to the best of our knowledge,
no standard formula exists in the literature to sum it. Therefore, we resort to Zeilberger’s
algorithm for summing it, so we set

Ap,i = 3F2

(
−p, p− 2i,−α− i− 1

1
2 − i,−2α− 2i− 1

∣∣∣∣1),

it can be shown that Ap,i satisfies the following recurrence relation of order two:

(2i− p− 1) (2α + 2i− p) Gp+2,i + 2 (i− p− 1) Gp+1,i − (p + 1)(2α + p + 2) Gp,i = 0,

with the initial values:
G0,i = 1, G1,i =

−1
2i + 2α + 1

,

whose exact solution is given by

Ap,i = 3F2

(
−p, p− 2i,−α− i− 1

1
2 − i,−2α− 2i− 1

∣∣∣∣1) =



Γ
(

p+1
2

)(
α + 3

2
)

p
2√

π
(

i− p
2 + 1

2

)
p
2

(
i− p

2 + α + 3
2
)

p
2

, p even,

−Γ
( p

2 + 1
)
Γ
(
i− p

2 + 1
)(

α + 3
2
)

p−1
2√

π Γ
(

i + 1
2

)(
i− p

2 + α + 1
)

p+1
2

, p odd.

Making use of the above reduction and performing some calculations yield the fol-
lowing linearization formula

R̃(α,α+1)
i (x) φ∗j (x) =

(2i)! Γ(α + 1) Γ(2(i + α + 1))√
π 22 i Γ(i + α + 1) Γ(i + 2α + 2)

×
i

∑
p=0

Γ
(

p + 1
2

)(
α + 3

2
)

p

(2p)! (2i− 2p)!
(

i− p + 1
2

)
p

(
i− p + α + 3

2
)

p

{
φ∗i+j−2p(x)− 2(i− p)

2α + 2i− 2p + 1
φ∗i+j−2p−1(x)

}
.

In the last formula, if x is replaced by 1+x
2 , then Formula (32) is obtained.

The proof of Corollary 8 is now complete.

Now, and based on the general formula of the moments of the shifted normalized
Jacobi polynomials, we will state and prove a theorem in which a general linearization
formula of Jacobi polynomials is given.
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Theorem 4. For all non-negative integers i and j, the following linearization formula holds

R(α,β)
i (x) R(λ,µ)

j (x) =
i! Γ(α + 1) Γ(λ + 1) Γ(2j + λ + µ + 1) (β + 1)i

Γ(γ + 1) × Γ(i + α + 1) Γ(j + λ + 1) Γ(j + λ + µ + 1) (α + β + 1)i

×
i+j

∑
p=0

(γ + δ + 2i + 2j− 2p + 1) Γ(i + j− p + γ + 1) Γ(i + j− p + γ + δ + 1)
(i + j− p)! Γ(i + j− p + δ + 1)

×
p

∑
m=0

(−1)p+m (i + j + m− p)! Γ(i + j + m− p + δ + 1) (α + β + 1)2i+m−p

m! (p−m)! (i + m− p)! (β + 1)i+m−p Γ(2i + 2j + m− 2p + γ + δ + 2)

× 4F3

(
−j,−m,−γ− δ− 2i− 2j−m + 2p− 1,−j− µ
−i− j−m + p,−δ− i− j−m + p,−2j− λ− µ

∣∣∣∣1) R(γ,δ)
i+j−p(x).

(33)

Proof. Starting with the power form representation of the shifted normalized Jacobi poly-
nomials (9) enables one to write

R̃(α,β)
i (x) R̃(λ,µ)

j (x) =
i

∑
r=0

Ar,i xi−r R̃(λ,µ)
j (x), (34)

where

Ar,i =
(−1)r i! Γ(α + 1) (β + 1)i (α + β + 1)2i−r

r! (i− r)! Γ(i + α + 1) (α + β + 1)i (β + 1)i−r
.

Theorem 2 enables one to convert (34) into the following formula

R̃(α,β)
i (x) R̃(λ,µ)

j (x) =
i

∑
r=0

j+i−r

∑
m=0

Ar,i Bm,i,r,j R̃(γ,δ)
j+i−r−m(x), (35)

and

Bm,i,r,j =
(i + j− r)! Γ(λ + 1) Γ(2j + λ + µ + 1)(γ + δ + 2i + 2j− 2m− 2r + 1)

m! (i + j−m− r)! Γ(γ + 1) Γ(j + λ + 1)

× Γ(i + j− r + δ + 1)Γ(i + j−m− r + γ + 1)Γ(i + j−m− r + γ + δ + 1)
Γ(j + λ + µ + 1)Γ(i + j−m− r + δ + 1)Γ(2i + 2j−m− 2r + γ + δ + 2)

× 4F3

(
−j,−m,−γ− δ− 2i− 2j + m + 2r− 1,−j− µ
−i− j + r,−δ− i− j + r,−2j− λ− µ

∣∣∣∣1).

(36)

Performing some lengthy manipulations on the right-hand side of (35) enables one to
rewrite Equation (35) as

R̃(α,β)
i (x) R̃(λ,µ)

j (x) =
j+i

∑
p=0

(
p

∑
m=0

Am,i Bp−m,i,m,j

)
R̃(γ,δ)

j+i−p(x).

The last relation leads to Formula (33), replacing x by 1+x
2 .

The following corollary gives the general linearization formula of ultraspherical
polynomials of different parameters. This relation of course generalizes the well-known
formula of Dougall [41].

Corollary 9. For all non-negative integers i and j, the following linearization formula holds
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C(α)
i (x)C(λ)

j (x) =
4j+λ i! Γ

(
α + 1

2

)
Γ
(

λ + 1
2

)
Γ(j + λ)

√
π Γ
(

γ + 1
2

)
Γ(i + 2α)Γ(j + 2λ)

i+j

∑
p=0

(γ + i + j− p) Γ(i + j− p + 2γ)

(i + j− p)!

×
p

∑
m=0

(−1)p−m (i + j + m− p)! Γ(2i + m− p + 2α) Γ
(

i + j + m− p + γ + 1
2

)
m! (p−m)! (i + m− p)! Γ

(
i + m− p + α + 1

2

)
Γ(2i + 2j + m− 2p + 2γ + 1)

× 4F3

(
−j,−m,−2γ− 2i− 2j−m + 2p,−j− λ + 1

2
−i− j−m + p,−γ− i− j−m + p + 1

2 ,−2j− 2λ + 1

∣∣∣∣1)C(γ)
i+j−p(x).

(37)

Now, we shall give some new linearization formulas based on the general formula in
Theorem 4.

Theorem 5. For all non-negative integers i and j, the following linearization formula holds:

R(α,β)
i (x) Tj(x) =

(2i + 1)! Γ(1 + α) Γ(1 + 2i + α + β)

22i Γ(1 + i + α) Γ(1 + i + α + β)

×
2i+2

∑
p=0

i− p + 1
p! (2i− p + 2)! 3F2

(
−p,−2i + p− 2,−β− i
−i− 1

2 ,−α− β− 2i

∣∣∣∣1)Ui+j−p(x).
(38)

Proof. The result of Theorem 5 is a special result of Theorem 4 for the case that corresponds
to the values: λ = µ = − 1

2 , γ = δ = 1
2 .

Corollary 10. For all non-negative integers i and j, the following linearization formula holds:

C(α)
i (x) Tj(x) =

22 α−2 i! Γ
(

1
2 + α

)
√

π Γ(i + 2α)

i+1

∑
p=0

(1 + i− 2p) Γ(i− p + α)(α− 1)p

p! (i− p + 1)!
Uj+i−2p(x). (39)

Proof. Setting β = α in (38) and replacing each with
(

α− 1
2

)
yields the following relation:

C(α)
i (x) Tj(x) =

22α−1 (2i + 1)! Γ
(

α + 1
2

)
Γ(i + α)

√
π Γ(i + 2α)

2i+2

∑
p=0

(i− p + 1)
p! (2i− p + 2)!

× 3F2

(
−p,−2i + p− 2,−α− i + 1

2
−i− 1

2 ,−2α− 2i + 1

∣∣∣∣1)Uj+i−p(x).

It can be shown with the aid of Watson’s identity that

3F2

(
−p,−2i + p− 2,−α− i + 1

2
−i− 1

2 ,−2α− 2i + 1

∣∣∣∣1) =


Γ
(

p+1
2

)
(α− 1) p

2
Γ
(
i− p

2 + α
)

√
π Γ(i + α)

(
i− p

2 + 3
2
)

p
2

, p even,

0, p odd,

and hence Formula (39) can be obtained.
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Corollary 11. For all non-negative integers i and j, the following linearization formulas hold:

Li(x) Tj(x) =
1

4 π

i+1

∑
p=0

(−i + 2p− 1) Γ
(

p− 1
2

)
Γ
(

i− p + 1
2

)
p! (i− p + 1)!

Ui+j−2 p(x), (40)

Ui(x) Tj(x) =
1
2
(
Uj+i(x)−Uj−i−2(x)

)
, (41)

Ti(x) Tj(x) =
1
4
(
Uj+i(x) + Uj−i(x)

)
− 1

4
(
Uj+i−2(x) + Uj−i−2(x)

)
. (42)

Proof. Formulas (40), (41), and (42) can be obtained as direct special cases of Formula (39)
by setting α = 1

2 , 1, 0, respectively.

Theorem 6. For all non-negative integers i and j, the following linearization formula holds:

R(α,β)
i (x)Vj(x) =

(2i)! Γ(α + 1) Γ(2i + α + β + 1)
22i Γ(i + α + 1) Γ(i + α + β + 1)

×
2i+1

∑
p=0

2i− 2p + 1
p! (2i− p + 1)! 3F2

(
−p,−2i + p− 1,−β− i

1
2 − i,−α− β− 2i

∣∣∣∣1)Ui+j−p(x).
(43)

Proof. The result of Theorem 6 is a special result of Theorem 4 for the case that corresponds
to the values λ = − 1

2 , µ = γ = δ = 1
2 .

Corollary 12. For all non-negative integers i and j, the following linearization formula holds

C(α)
i (x)Vj(x) =

22α−1 i! Γ
(

α + 1
2

)
√

π Γ(α) Γ(i + 2α)

i

∑
p=0

Γ(p + α) Γ(i− p + α)

p! (i− p)!

×
(
Uj+i−2p(x) + Uj+i−2p−1(x)

)
.

(44)

Proof. From (43), we get the following relation:

C(α)
i (x)Vj(x) =

22α−1 (2i)! Γ
(

α + 1
2

)
Γ(i + α)

√
π Γ(i + 2α)

×
i+j

∑
p=0

2i− 2p + 1
p! (2i− p + 1)! 3F2

(
−p,−2i + p− 1,−α− i + 1

2
1
2 − i,−2α− 2i + 1

∣∣∣∣1)Ui+j−p(x).

(45)

It can be shown with the aid of Zeilberger’s algorithm that

3F2

(
−p,−2i + p− 1,−α− i + 1

2
1
2 − i,−2α− 2i + 1

∣∣∣∣1) =
2

√
π(2i− 2p + 1)Γ

(
i + 1

2

)
Γ(i + α)

×


Γ
(

p+1
2

)
Γ
(
i− p

2 + 3
2
)

Γ
(
i− p

2 + α
)
(α) p

2
, p even,

−Γ
( p

2 + 1
)

Γ
(
i− p

2 + 1
)

Γ
(

p−1
2 + α

)
Γ
(

i− p
2 + α + 1

2

)
Γ(α)

, p odd.

Finally, some calculations lead to (44).
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Corollary 13. For all non-negative integers i and j, the following linearization formulas hold:

Li(x)Vj(x) =
1
π

i

∑
p=0

Γ
(

1
2 + i− p

)
Γ
(

1
2 + p

)
p! (i− p)!

(
Uj+i−2p(x)−Uj+i−2p−1(x)

)
, (46)

Ui(x)Vj(x) =
i

∑
p=0

(
Uj+i−2p(x)−Uj+i−2p−1(x)

)
, (47)

Ti(x)Vj(x) =
1
2
(
Uj−i(x)−Uj−i−1(x) + Uj+i(x)−Uj+i−1(x)

)
. (48)

Proof. Formulas (46), (47), and (48) can be obtained as direct special cases of the Formula (44)
by setting α = 1

2 , 1, 0, respectively.

Theorem 7. For all non-negative integers i and j, the following linearization formula holds:

R(α,β)
i (x) Tj(x) =

i! Γ(α + 1) Γ
(
i + 3

2
)

Γ(2i + α + β + 1)√
π Γ(i + α + 1) Γ(i + α + β + 1)

×
2i+1

∑
p=0

1
p! (2i− p + 1)! 3F2

(
−p,−1− 2i + p,−i− β

− 1
2 − i,−2i− α− β

∣∣∣∣1)Vi+j−p(x).

Proof. The result of Theorem 7 is a special result of Theorem 4 for the case that corresponds
to the values λ = µ = γ = − 1

2 , δ = 1
2 .

Corollary 14. For all non-negative integers i and j, the following linearization formula holds

C(α)
i (x) Tj(x) =

22 α−2 (2i + 1)! Γ
(

α + 1
2

)
π Γ(α) Γ

(
i + 3

2
)

Γ(i + 2α)

i

∑
p=0

Γ
(

p + 1
2

)
Γ(i− p + α) Γ(α + p) Γ

( 3
2 + i− p

)
(2p)! (2i− 2p + 1)!

×
(
Vj+i−2p(x) + Vj+i−2p−1(x)

)
.

(49)

Proof. Directly from Theorem 7.

Corollary 15. For all non-negative integers i and j, the following linearization formulas hold:

Li(x) Tj(x) =
1

2 π

i

∑
p=0

Γ
(

1
2 + i− p

)
Γ
(

1
2 + p

)
p!(i− p)!

(
Vj+i−2p(x)−Vj+i−2p−1(x)

)
, (50)

Ui(x) Tj(x) =
1
2

2i+1

∑
p=0

Vj−i+p−1(x), (51)

Ti(x) Tj(x) =
1
4
(
Vj−i(x) + Vj−i−1(x) + Vj+i(x) + Vj+i−1(x)

)
. (52)

Proof. Direct from Corollary 14, taking into consideration the three well-known special
classes of C(α)

i (x).
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Remark 3. Many linearization formulas developed in this section can be translated into their
trigonometric representations. For example, the linearization Formulas (47) and (51) are, respec-
tively, identical to the following trigonometric identities:

i

∑
p=0

{
sin(j + i− 2p + 1)θ − sin(j + i− 2p)θ

}
=

sin((i + 1)θ) cos
((

j + 1
2

)
θ
)

cos
(

θ
2

) ,

2i+1

∑
p=0

cos
(

j− i + p− 1
2

)
θ =

2 sin((i + 1)θ) cos
(

θ
2

)
cos(j θ)

sin θ
.

5. Some New Linearization Formulas of Chebyshev Polynomials Using the
Connection Coefficients Approach

In this section, we give other new linearization formulas of the products of Chebyshev
polynomials based on some connection formulas. First, the following theorem and corollary
serve in deriving the desired linearization formulas.

Theorem 8. For every non-negative integer j, the following connection formula holds

R(α,β)
j (x) =

j! Γ(α + 1) Γ(j + δ + 1) Γ(2j + α + β + 1)
Γ(γ + 1) Γ(j + α + 1) Γ(j + α + β + 1)

×
j

∑
p=0

(γ + δ + 2j− 2p + 1) Γ(j− p + γ + 1) Γ(j− p + γ + δ + 1)
p! (j− p)! Γ(j− p + δ + 1) Γ(2j− p + γ + δ + 2)

× 3F2

(
−p,−β− j,−γ− δ− 2j + p− 1

−α− β− 2j,−δ− j

∣∣∣∣1) R(γ,δ)
j−p (x).

(53)

Corollary 16. For every non-negative integer j, the following connection formula holds

C(λ)
j (x) =

j! 4λ−µ Γ
(

λ + 1
2

)
Γ(j + λ)

Γ
(

µ + 1
2

)
Γ(j + 2λ)

×

⌊
j
2

⌋
∑
p=0

(j + µ− 2p) Γ(j− 2p + 2µ) (λ− µ)p

p! (j− 2p)! Γ(j− p + µ + 1)(j− p + λ)p
C(µ)

j−2p(x).

(54)

Proof. For the proof of Theorem 8 and Corollary 16, one can refer to [41].

Theorem 9. For all non-negative integers i and j, and j ≥ i, the following linearization for-
mula holds:

Ti(x)Uj(x) =
j+i

∑
r=0

Fr,j,i R(γ,δ)
j+i−r(x) +

j−i

∑
r=0

Gr,j,i R(γ,δ)
j−i−r(x), (55)

where

Fr,i,j =
22i+2j−1 (i + j)! Γ(i + j + δ + 1) (γ + δ + 2(i + j)− 2r + 1)

Γ(γ + 1) r! (i + j− r)!

× Γ(i + j− r + γ + 1)Γ(i + j− r + γ + δ + 1)
Γ(i + j− r + δ + 1)Γ(2(i + j)− r + γ + δ + 2)

× 3F2

(
−r,−i− j− 1

2 ,−γ− δ− 2i− 2j + r− 1
−2i− 2j− 1,−δ− i− j

∣∣∣∣1),
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and

Gr,i,j =
2−2i+2j−1 (j− i)! Γ(−i + j + δ + 1) (γ + δ− 2i + 2j− 2r + 1)

r! Γ(γ + 1) (−i + j− r)!

× Γ(−i + j− r + γ + 1) Γ(−i + j− r + γ + δ + 1)
Γ(−i + j− r + δ + 1) Γ(−2i + 2j− r + γ + δ + 2)

× 3F2

(
−r, i− j− 1

2 ,−γ− δ + 2i− 2j + r− 1
2i− 2j− 1,−δ + i− j

∣∣∣∣1).

Proof. Relation (55) can be followed with the aid of linearization Formula (29) along with
Theorem 8.

Theorem 10. For all non-negative integers i and j, and j ≥ i, the following linearization for-
mula holds:

Ti(x)Uj(x) =
√

π

22µΓ
(

µ + 1
2

)×

⌊

j+i
2

⌋
∑
r=0

(−1)r (i + j− r)! (µ− r)r (i + j + µ− 2r) Γ(i + j− 2r + 2µ)

r! (i + j− 2r)! Γ(i + j− r + µ + 1)
C(µ)

j+i−2r(x)

+

⌊
j−i
2

⌋
∑
r=0

(−1)r (−i + j− r)! (µ− r)r (−i + j + µ− 2r)Γ(−i + j− 2r + 2µ)

r! (−i + j− 2r)! Γ(−i + j− r + µ + 1)
C(µ)

j−i−2r(x)

.

(56)

Proof. Relation (56) can be followed with the aid of linearization Formula (29) along with
Corollary 16.

Corollary 17. For all non-negative integers i and j with j ≥ i, the following linearization for-
mula holds

Ti(x)Uj(x) = θi,j + 2

⌊
j−i
2

⌋
∑
k=0

Tj−i−2 k(x) +
i−1

∑
k=0

Tj+i−2k(x),

and

θi,j =

{
−1, (i + j) even,
0, (i + j) odd.

Proof. The last formula can be obtained as a direct special case of the linearization Formula
(56) for the special case corresponding to µ = 0.

Remark 4. Some other linearization formulas can be derived using Formula (29) together with the
two connection Formulas (53) and (54).

Theorem 11. For all non-negative integers i and j with j ≥ i, one has

Ti(x) Tj(x) =
j+i

∑
p=0

ξp,i,j R(α,β)
j+i−p(x) +

j−i

∑
p=0

ηp,i,j R(α,β)
j−i−p(x), (57)

where
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ξp,i,j =
4−1+i+j (i + j)! (1 + 2i + 2j− 2p + α + β) Γ(1 + i + j− p + α) Γ(1 + i + j + β)

p! (i + j− p)! Γ(1 + α) Γ(1 + i + j− p + β)

× Γ(1 + i + j− p + α + β)

Γ(2 + 2i + 2j− p + α + β) 3F2

(
−p, 1

2 − i− j,−1− 2i− 2j + p− α− β
1− 2i− 2j,−i− j− β

∣∣∣∣1),
(58)

and

ηp,i,j =
4−1−i+j (1− 2i + 2j− 2p + α + β) (j− i)! Γ(1− i + j− p + α) Γ(1− i + j + β)

p! (j− i− p)! Γ(α + 1) Γ(1− i + j− p + β)

× Γ(1− i + j− p + α + β)

Γ(2− 2i + 2j− p + α + β) 3F2

(
−p, 1

2 + i− j,−1 + 2i− 2j + p− α− β
1 + 2i− 2j, i− j− β

∣∣∣∣1).

(59)

Proof. In view of the well-known linearization formula

Ti(x) Tj(x) =
1
2
(
Tj−i(x) + Tj+i(x)

)
,

together with the connection formula in (53), the linearization Formula (57) can be ob-
tained.

Remark 5. The two hypergeometric functions appearing in the coefficients (58) and (59) can be
summed by Watson’s identity, and hence a reduced linearization formula of Chebyshev polynomials
of the first kind in terms of ultraspherical polynomials can be deduced. The following corollary
exhibits this result.

Corollary 18. For all non-negative integers i and j with j ≥ i, one has

Ti(x) Tj(x) =

2−1−2α (i + j)
√

π Γ(1 + α)

Γ
(

1
2 + α

) j+i
2

∑
p=0

(−1)p (i + j− 2p + α) (1 + i + j− 2p)−1+2α

p! Γ(1− p + α) (i + j− p)1+α
C(α)

j+i−2p(x)

+
2−1−2α (i− j)

√
π Γ(1 + α)

Γ
(

1
2 + α

) j−i
2

∑
p=0

(−1)p (i− j + 2p− α) (1− i + j− 2p)−1+2α

p! Γ(1− p + α) (−i + j− p)1+α
C(α)

j−i−2p(x).

(60)

Proof. If we set β = α in (57) and each is replaced by (α− 1
2 ), then the following formula

is obtained

Ti(x) Tj(x) =
2−1+2i+2j (i + j)! Γ

(
1
2 + i + j + α

)
Γ
(

1
2 + α

) j+i

∑
p=0

(i + j− p + α) Γ(i + j− p + 2α)

p! (i + j− p)! Γ(1 + 2i + 2j− p + 2α)

× 3F2

(
−p, 1

2 − i− j,−2i− 2j + p− 2α

1− 2i− 2j, 1
2 − i− j− α

∣∣∣∣1)C(α)
j+i−p(x)

+
2−1−2i+2j(j− i)! Γ

(
1
2 − i + j + α

)
Γ
(

1
2 + α

) j−i

∑
p=0

(−i + j− p + α) Γ(−i + j− p + 2α)

p! (−i + j− p)! Γ(1− 2i + 2j− p + 2α)

× 3F2

(
−p, 1

2 + i− j, 2i− 2j + p− 2α

1 + 2i− 2j, 1
2 + i− j− α

∣∣∣∣1)C(α)
j−i−p(x).

(61)
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Based on Watson’s formula, it can be shown that

3F2

(
−p, 1

2 − i− j,−2i− 2j + p− 2α

1− 2i− 2j, 1
2 − i− j− α

∣∣∣∣1) =
(−1)

p
2
(
i + j− p

2 − 1
)
! Γ
(

1+p
2

)(
1− p

2 + α
)

p
2√

π (i + j− 1)!
(

1
2 + i + j− p

2 + α
)

p
2

, p even,

0, p odd,

and

3F2

(
−p, 1

2 − i + j, 2i− 2j + p− 2α

1 + 2i− 2j, 1
2 i− j− α

∣∣∣∣1) =
(−1)

p
2
(
−i + j− p

2 − 1
)
! Γ
(

1+p
2

)(
1− p

2 + α
)

p
2√

π (−i + j− 1)!
(

1
2 − i + j− p

2 + α
)

p
2

, p even,

0, p odd,

and therefore, Formula (60) can be obtained.

Corollary 19. For all non-negative integers i and j with j ≥ i, the following two linearization
formulas are valid

Ti(x) Tj(x) =
(i + j)π

16

j+i
2

∑
p=0

(−1)p(1 + 2i + 2j− 4p)(i + j− p− 1)!
Γ
( 3

2 − p
)
Γ
( 3

2 + i + j− p
)

p!
Lj+i−2p(x)

+
(i− j)π

16

j−i
2

∑
p=0

(−1)p(−1 + 2i− 2j + 4p)(−i + j− p− 1)!
Γ
( 3

2 − p
)
Γ
( 3

2 − i + j− p
)

p!
Lj−i−2p(x),

(62)

and
Ti(x) Tj(x) =

1
4
(
Uj+i(x)−Uj+i−2(x) + Uj−i(x)−Uj−i−2(x)

)
. (63)

Proof. Setting α = 1
2 , 1, respectively, in Formula (60) yields the two special linearization

Formulas (62) and (63).

6. Numerical Application on the Non-Linear Riccati Equation

In this section, and aiming to illustrate the importance and applicability of the lin-
earization formulas presented in this paper, we shall present a numerical application to
a certain non-linear differential equation. More precisely, we will apply the tau spec-
tral method to solve the non-linear Riccai differential equation using some linearization
formulas that are established in this paper.

6.1. Tau Algorithm for the Non-Linear Riccati Differential Equation

Here, we are interested in proposing a spectral tau solution for the following non-linear
Riccati differential equation:

ξ ′(x) = b1 + b2 ξ(x) + b3 (ξ(x))2, x ∈ [0, 1], (64)

subject to the initial condition:
ξ(0) = ξ0, (65)

where b1, b2 and b3 are known real constants.
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We suggest the following approximate solution to ξ(x)

ξ(x) ≈ ξN(x) =
N

∑
k=0

ak C̃(α)
k (x); C̃(α)

k (x) = C(α)
k (2x− 1).

In order to proceed in our proposed tau method for solving (64)–(65), the following
two lemmas that are concerned with the shifted ultraspherical polynomials are required.

Lemma 1. For every k ≥ 1, the following derivative formula holds [47]:

D C̃(α)
k (x) =

k−1

∑
`=0

d`,k,α C̃(α)
` (x), (66)

where

d`,k,α =
4 θ`,k (`+ α) (1 + `)2α−1

(1 + k)2α−1
, (67)

and

θ`,k =

{
1, (`+ k) odd,
0, (`+ k) even.

Lemma 2. For all non-negative integers i and j, the following linearization formula holds

C̃(α)
i (x) C̃(α)

j (x) =
i+j

∑
p=0

p

∑
m=0

Lp,i,j,α,m C̃(α+ 1
2 )

i+j−p (x), (68)

where the coefficients Lp,i,j,α,m are given by

Lp,i,j,α,m =
(−1)−m+p 22(j+α)

(
1
2 + i + j− p + α

)
i! (i + j + m− p)!

(
Γ
(

1
2 + α

))2
Γ(j + α)

√
π m! (i + j− p)! (i + m− p)! (−m + p)! Γ(i + 2α) Γ(j + 2α)

× Γ(1 + i + j + m− p + α) Γ(1 + i + j− p + 2α) Γ(2i + m− p + 2α)

Γ(1 + α) Γ
(

1
2 + i + m− p + α

)
Γ(2 + 2i + 2j + m− 2p + 2α)

× 4F3

(
−j,−m,−1− 2i− 2j−m + 2p− 2α, 1

2 − j− α
−i− j−m + p, 1− 2j− 2α,−i− j−m + p− α

∣∣∣∣1).

(69)

Proof. From Corollary 9, if x is replaced by (2x− 1), and if we set λ = α and γ = α + 1
2 ,

then Formula (68) can be obtained.

Now, our strategy to solve (64) governed by (65) is to apply the spectral tau method.
Therefore, first, we have to compute the residual of Equation (64). Based on the two
expressions in (66) and (68), the residual R(x) can be written in the following form:

R(x) =ξ
′
N(x)− b3 (ξN(x))2 − b2 ξN(x)− b1

=
N

∑
k=1

k−1

∑
`=0

ak d`,k,α C̃(α)
` (x)− b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

ai aj Lp,i,j,α,m C̃(α+ 1
2 )

i+j−p (x)− b2

N

∑
k=0

ak C̃(α)
k (x)− b1,

(70)

where d`,k,α and Lp,i,j,α,m are as given, respectively, in (67) and (69).
Now, by replacing x by (2x− 1) in Formula (39), the following linearization formula

can be obtained

C̃(α)
m (x) T∗s (x) =

m+1

∑
r=0

χr,m,s,α U∗m+s−2r(x), (71)
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where

χr,m,s,α =
4−1+α (1 + m− 2r)m! Γ

(
1
2 + α

)
Γ(m− r + α)Γ(−1 + r + α)

√
π (1 + m− r)! r! Γ(−1 + α) Γ(m + 2α)

.

Now, Formula (71), along with (70), enables one to get the following formula :

R(x) T∗s (x) =
N

∑
k=1

k−1

∑
`=0

`+1

∑
r=0

ak d`,k,α χr,m,s,α U∗`+s−2r(x)

−b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

i+j−p+1

∑
r=0

ai aj Lp,i,j,α,m χr,i+j−p,s,α+ 1
2

U∗i+j+s−p−2r(x)

−b2

N

∑
k=0

k+1

∑
r=0

ak χr,k,s,α U∗k+s−2r(x)− b1 T∗s (x), s ≥ 0.

(72)

If we make use of the connection formula: ([44]):

T∗s (x) =
1
2
(
U∗s (x)−U∗s−2(x)

)
, s ≥ 0,

then Equation (72) can be written alternatively as

R(x) T̃s(x) =
N

∑
k=1

k−1

∑
`=0

`+1

∑
r=0

ak d`,k,α χr,m,s,α U∗`+s−2r(x)

−b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

i+j−p+1

∑
r=0

ai aj Lp,i,j,α,m χr,i+j−p,s,α+ 1
2

U∗i+j+s−p−2r(x)

−b2

N

∑
k=0

k+1

∑
r=0

ak χr,k,s,α U∗k+s−2r(x)− b1

2
(U∗s (x)−U∗s−2(x)).

Based on the application of the spectral tau method, we can assume that∫ 1

0
R(x) T∗s (x)w(x) dx = 0, s = 0, 1, · · · , N − 1; w(x) =

√
x− x2,

and accordingly, the orthogonality relation of U∗n(x) yields the following non-linear system
of equations:

N

∑
k=1

k−1

∑
`=0

`+1

∑
r=0

ak d`,k,α χr,m,s,α δ`+s−2r,0 − b3

N

∑
i=0

N

∑
j=0

i+j

∑
p=0

p

∑
m=0

i+j−p+1

∑
r=0

ai aj Lp,i,j,α,m χr,i+j−p,s,α+ 1
2

δi+j+s−p−2r,0

−b2

N

∑
k=0

k+1

∑
r=0

ak χr,k,s,α δk+s−2r,0 −
b1

2
(δs,0 − δs−2,0) = 0, s = 0, 1, · · · , N − 1,

(73)

where δk,j denotes the well-known Kronecker delta function.
Furthermore, the initial condition (65) yields

N

∑
k=0

(−1)k ak = ξ0. (74)

Equation (73), together with Equation (74), yields a non-linear system of equations of
dimension N. This system can be solved numerically through a suitable technique such as
Newton’s iterative technique, and hence the numerical solution ξN(x) can be obtained.
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6.2. Numerical Tests

Now, we give two numerical examples accompanied by some comparisons to show
the effectiveness and applicability of the proposed ultraspherical tau method (UTM).

Example 1. Consider the non-linear Riccati differential Equation ([9,48–51]):

ξ ′(x) = 1 + 2 ξ(x)− ξ(x)2, x ∈ [0, 1], ξ(0) = 0, (75)

with the following exact solution:

ξ(x) =
√

2 tanh
(√

2 x− tanh−1 ( 1√
2

))
+ 1.

In Table 1, the maximum absolute error E is listed for various values of N and for α = 1
2 .

Furthermore, Table 2 illustrates a comparison between the errors resulting from the application of
our algorithm for the case corresponding to N = 16 and α = 1

2 with the best errors obtained by the
application of the following four methods:

• Optimal homotopy asymptotic method (OHAM) [48],
• Modified homotopy perturbation method (MHPM) [49],
• Variational iteration method (VIM) [50],
• Iterative reproducing kernel Hilbert space method (IRKHSM) [51],
• The method in [9].

The errors are calculated at xi = 0.1 i, 0 ≤ i ≤ 10. The findings of Table 2 demonstrate that
our method is extremely accurate when compared to the above-mentioned methods. The generated
numerical solutions are in good agreement with the precise one when just a few of the retained modes
are used. In addition, different errors of Example 1 for different values of α are displayed in Figure 1.

Table 1. Maximum absolute error E for Example 1 (α = 1
2 ).

N 6 8 10 12 14 16

E 2.358 .10−6 3.264 .10−7 6.382 .10−10 5.943 .10−13 2.975 .10−15 6.241 .10−16

Table 2. Comparison between different methods for Example 1.

x OHAM
[48]

MHPM
[49] VIM [50] IRKHSM

[51]
The Method

in [9]
UTM

(N = 16, α = 1
2 )

0 0 0 0 0 0 0
0.1 3.20 ×10−5 1.00 ×10−6 1.98 ×10−8 3.58 ×10−5 1.52 ×10−15 1.27 ×10−17

0.2 2.90 ×10−4 1.20 ×10−5 1.03 ×10−6 7.58 ×10−5 1.27 ×10−15 2.23 ×10−17

0.3 1.10 ×10−3 1.00 ×10−6 8.85 ×10−6 1.20 ×10−4 2.57 ×10−15 1.34 ×10−16

0.4 2.50 ×10−3 3.03 ×10−4 3.33 ×10−5 1.66 ×10−4 3.27 ×10−15 2.31 ×10−16

0.5 4.40 ×10−3 1.55 ×10−3 7.26 ×10−5 2.12 ×10−4 3.57 ×10−15 3.68 ×10−16

0.6 5.50 ×10−3 4.69 ×10−3 9.98 ×10−5 2.52 ×10−4 4.15 ×10−15 4.32 ×10−16

0.7 5.50 ×10−3 1.05 ×10−2 8.84 ×10−5 2.87 ×10−4 4.21 ×10−15 4.95 ×10−16

0.8 3.80 ×10−3 1.88 ×10−2 1.54 ×10−5 3.40 ×10−4 4.31 ×10−15 5.62 ×10−16

0.9 3.20 ×10−3 2.80 ×10−2 4.99 ×10−4 4.90 ×10−4 4.35 ×10−15 5.94 ×10−16

1.0 3.40 ×10−3 3.43 ×10−2 3.47 ×10−3 9.22 ×10−4 4.42 ×10−15 6.24 ×10−16
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Figure 1. Different errors of Example 1 for different values of α.

Example 2. Consider the non-linear Riccati differential Equation [52]:

ξ ′(x) =
1
4
+

x2

64
− 1

4
(ξ(x))2, x ∈ [0, 1], ξ(0) = 1. (76)

The exact solution of (76) is ξ(x) = x
4 +

4 e−
x2
16

4 +
∫ x

0 e−
t2
16 dt

.

Table 3 displays the maximum absolute errors resulting from the application of the UTM for
α = 0, 1

2 , 1 and for different values of N. Furthermore, different errors for the cases corresponding
to N = 16 and α = 0, 1

2 , 1 are shown in Figure 2.

Table 3. Maximum absolute error for Example 2.

N 8 10 12 14 16

α = 0 3.51 ×10−8 2.45 ×10−9 2.39 ×10−11 5.94 ×10−13 5.37 ×10−16

α = 1
2 1.38 ×10−8 3.27 ×10−10 8.36 ×10−12 4.62 ×10−12 3.74 ×10−16

α = 1 4.58 ×10−8 3.19 ×10−9 4.94 ×10−11 6.84 ×10−13 2.22 ×10−16

ξ - ξN |

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-17

4.×10-17

6.×10-17

8.×10-17

1.×10-16

1.2×10-16

α=0

α=
1

2

α=1

Figure 2. Different errors of Example 2 for different values of α.

Remark 6. We report here that, the best error obtained by Lakestani and Dehghan is O(10−9), from
the results depicted in Figure 2, we have a major superiority with few number of retained modes.

7. Conclusions

In this paper, we have considered two different approaches for solving the lineariza-
tion problems of Jacobi polynomials. The first approach is based on making use of the
moments formulas of the shifted Jacobi polynomials and the unified moments formula
for the four kinds of Chebyshev polynomials. This approach enables one to derive new
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general linearization formulas of some Jacobi polynomials in terms of certain terminating
hypergeometric functions of a unit argument. Symbolic algebra serves to simplify the
linearization formulas of Jacobi polynomials for certain choices of the involved parameters.
We also followed another approach to establish some linearization formulas. This approach
depends on employing the connection formula between two different Jacobi polynomials.
Again, the presented formulas were expressed in different terminating hypergeometric
functions of unit argument. In many cases, and using some well-known reduction formulas
or some symbolic computation, the appearing hypergeometric functions can be summed in
closed analytical forms. The main advantage of using the moments formulas in establishing
the linearization formulas is that this approach can be employed to derive the linearization
formulas of different polynomials and not restricted to the Jacobi polynomials. To the best
of our knowledge, most of the theoretical results of this paper are new and are very useful.
To ensure the importance of the presented formulas, a numerical application is analyzed in
detail to solve the non-linear Riccati differential equation with the aid of employing the
spectral tau method. The presented numerical results and comparisons showed the high
accuracy and applicability to the proposed numerical algorithm. We believe that other
types of differential equations can be treated based on utilizing the presented linearization
formulas.
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