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Abstract: We investigate the proximity in terms of zeta-structured metrics of generalized negative
binomial random sums to generalized gamma distribution with the corresponding parameters,
extending thus the zeta-structured estimates of the rate of convergence in the Rényi theorem. In
particular, we derive upper bounds for the Kantorovich and the Kolmogorov metrics in the law of
large numbers for negative binomial random sums of i.i.d. random variables with nonzero first
moments and finite second moments. Our method is based on the representation of the generalized
negative binomial distribution with the shape and exponent power parameters no greater than one
as a mixed geometric law and the infinite divisibility of the negative binomial distribution.

Keywords: Rényi theorem; law of large numbers; Kantorovich distance; Kolmogorov metric; zeta-
structured metrics; geometric random sum; generalized negative binomial random sum; exponential
distribution; generalized gamma distribution

1. Introduction

Negative binomial and generalized negative binomial random sums naturally arise
in various applications, such as meteorology, insurance, and financial mathematics. For
example, in [1], it was demonstrated that the generalized negative binomial distribution
has an excellent concordance with the empirical distribution of the duration of wet periods
measured in days in Potsdam and Elista. Hence, the total precipitation volume per wet pe-
riod forms a generalized negative binomial random sum. Various applications of geometric
random sums, which are particular cases of the generalized negative binomial random
sums can be found in [2]. A reasonable approach is to approximate the distributions of
such random sums with specific distributions by applying limit theorems. Thus, it is of
great practical importance to measure the accuracy of these approximations.

Recall that an r.v. Nr,p has the negative binomial distribution with parameters r > 0
and p ∈ (0, 1), which is denoted by Nr,p ∼ NB(r, p), if

P(Nr,p = k) =
Γ(k + r)
k! Γ(r)

pr(1− p)k, k = 0, 1, 2, . . . , (1)

where Γ(r) =
∫ ∞

0 xr−1e−x dx is the Euler gamma function.
In case of r = 1, it is reduced to the geometric distribution (starting from zero)—

N1,p ∼ Geom0(p)—that is, N1,p has the sense of the number of fails before the first success
in the scheme of Bernoulli trials with the success probability p. In the case of natural r,
the negative binomial distribution can be represented as an r-fold convolution of the
geometric distribution:

Nr,p
d
= M1 + . . . + Mr, (2)
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where M1, . . . , Mr ∼ Geom0(p) are i.i.d. In this case, Nr,p has the sense of the total number
of fails before the r-th success in the Bernoulli scheme with the success probability p.

The negative binomial is known to be a mixed Poisson distribution with the mixing
gamma distribution:

P(Nr,p = k) =
∫ ∞

0

zk

k!
e−zg

(
z; r,

p
1− p

)
dz, k = 0, 1, 2, . . . , (3)

where

g(z; r, µ) =
µrzr−1

Γ(r)
e−µz

1(z > 0), (4)

is the density of the gamma distribution G(r, µ) with parameters r > 0 and µ > 0.
A natural idea was to generalize the negative binomial distribution by using general-

ized gamma GG(r, α, µ) mixing with the density

g∗(z; r, α, µ) =
|α|µr

Γ(r)
zαr−1e−µzα

, z > 0, (5)

instead of the ordinary one in Equation (3). The generalized gamma (GG) distribution has
an additional parameter α 6= 0, which plays a role of the exponent power of a gamma-r.v.:
if Gr,µ ∼ G(r, µ), then G1/α

r,µ ∼ GG(r, α, µ). It was introduced in [3] as a special family of
lifetime distributions containing both gamma and Weibull distributions. It also comprises
inverse-gamma, half-normal, and some other distributions. A comprehensive list can be
found in [4]. The properties of GG distributions are described in [3,5].

A generalization of Gleser’s theorem (see [6], Theorem 3) states that the generalized
gamma distribution GG(r, α, µ) with r ∈ (0, 1), α ∈ (0, 1] and µ > 0 is a mixture of
exponential distributions:

g∗(z; r, α, µ) =
∫ 1

0

y
1− y

e−
y

1−y z · h(y; r, α, µ) dy, z > 0, (6)

where (see [4], Remark 3)

h(y; r, α, µ) =
µr

Γ(r) Γ(1− r)
· 1
(1− y)2

+∞∫
µ

f
(

y(1− y)−1z−1/α; α, 1
)

(z− µ)r z1+2/α
dz, y ∈ (0, 1), (7)

is the density of a probability law concentrated on (0, 1), and f (x; α, 1) is the density
of the one-sided strictly stable distribution concentrated on the nonnegative half-line
with the characteristic exponent α. The case of α = 1 (which corresponds to the gamma
distribution) is covered by the original Gleser’s theorem with the simplified version of the
mixing density:

h
(

y; r, 1,
p

1− p

)
=

pr

Γ(r) Γ(1− r)
· (1− y)r−1

y(y− p)r · 1{p < y < 1}. (8)

A r.v. Nr,α,µ is said to have the generalized negative binomial (GNB) distribution [4] with
parameters r > 0, α ∈ R\{0} and µ > 0, which is denoted by Nr,α,µ ∼ GNB(r, α, µ), if it
has a mixed Poisson distribution with the mixing GG distribution GG(r, α, µ):

P(Nr,α,µ = k) =
∫ ∞

0

zk

k!
e−zg∗(z; r, α, µ) dz, k = 0, 1, 2, . . . , (9)

If α = 1, then the GNB distribution reduces to the negative binomial one, namely,
GNB(r, 1, µ) = NB

(
r, µ

µ+1

)
, or GNB

(
r, 1, p

1−p

)
= NB(r, p) for p ∈ (0, 1).



Mathematics 2021, 9, 1571 3 of 8

Recently, it was discovered in [4], (Theorem 2) that the GNB distribution with r ∈ (0, 1),
α ∈ (0, 1] and µ > 0 is a mixed geometric distribution,

P(Nr,α,µ = k) =
∫ 1

0
y(1− y)k · h(y; r, α, µ) dy, k = 0, 1, 2, . . . , (10)

with the same mixing density h as in Equation (6).
In [4] (Theorem 5), the class of limit distributions for GNB random sums was de-

scribed; in particular, it was shown that the properly normalized GNB random sum of i.i.d.
nonnegative random variables with finite expectations converges to the GG distribution.
In the present paper, we will not only extend this result to alternating random summands
with nonzero means, but will also construct some estimates of the rate of this convergence.
Our reasoning will be essentially based on representation (10), which implies, as we will
show in the proof of our Theorem 1 below, that the distribution of the generalized negative
binomial random sum of i.i.d. r.v.s is also a mixed geometric random sum and hence allows
us to extend some existing estimates in the Rényi theorem to GNB random sums.

Let X1, X2, . . . be i.i.d. r.v.s with EX1 6= 0, Sn := ∑n
k=1 Xk, n ∈ N, S0 := 0, Np ∼

Geom0(p) be independent of {X1, X2, . . .}, Sp :=
SNp

ESNp

=
pSNp

(1− p)EX1
, E ∼ Exp(1) :=

GG(1,1,1). The celebrated Rényi theorem states that if Xn ≥ 0 a.s. for all n ∈ N, then
L (Sp)→ Exp(1) as p→ 0. There exists an extensive literature where the rate of conver-
gence in the Rényi theorem is studied. Let us mention the classic monograph [2], which is
devoted specifically to geometric summation, and papers [7–13]. Monograph [14] also con-
tains an estimate of the rate of convergence of the geometric distribution to the exponential
law. The most common are estimates in the Kolmogorov (uniform) metric,

ρ(X, Y) ≡ ρ(L(X), L(Y)) := sup
x∈R
|F(x)− G(x)| = sup

f∈FK

∣∣∣∣∫R f dF−
∫
R

f dG
∣∣∣∣, (11)

where F(x) = P(X < x), G(x) = P(Y < x), FK =
{
1(−∞,a)(x) | a ∈ R

}
, and in Zolotarev’s

ζ-metrics

ζs(X, Y) ≡ ζs(L(X), L(Y)) := sup
f∈F∞

s

∣∣∣∣∫R f dF−
∫
R

f dG
∣∣∣∣, s > 0, (12)

where

F∞
s :=

{
f : R→ R

∣∣∣ f is bounded, | f (m)(x)− f (m)(y)| ≤ |x− y|α ∀x, y ∈ R
}

,

s = m + α, m ∈ N ∪ {0}, α ∈ (0, 1], which are simple ζ-structured metrics, i.e., can be
represented as

ζF (X, Y) ≡ ζF (L(X), L(Y)) := sup
f∈F

∣∣E f (X)− E f (Y)
∣∣, (13)

with specific classes F of real-valued bounded Borel functions on R, namely, ρ = ζFK ,
ζs = ζF∞

s .
In particular, Brown [7] proved that

ρ(Sp, E ) ≤ p
EX2

1
(EX1)2 max

{
1,

1
2(1− p)

}
, if Xn ≥ 0 a.s. (14)

Kalashnikov [2] provides the following bounds for the shifted geometric random
sums with EX1 = 1:
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ζs

(
pSNp+1, E

)
≤ ps−1 ζs(X1, E ), (15)

ζ1

(
pSNp+1, E

)
≤ p ζ1(X1, E ) + 2(1− p)ps−1 ζs(X1, E ), (16)

for all s ∈ (1, 2].
The present authors obtained [13] the following estimate for the Kantorovich ζ1

distance, extending the one in [11] to the alternating random summands:

ζ1(Sp, E ) ≤ p
1− p

·
EX2

1
(EX1)2 . (17)

The aim of the present paper is to extend the ζ-structured estimates of the rate of
convergence of geometric random sums to generalized negative binomial random sums
for r ∈ (0, 1), in particular, to extend bounds (14) and (17) to negative binomial random
sums for arbitrary r > 0.

2. Main Results

Theorem 1. Let X1, X2, . . . be a sequence of arbitrary r.v.s, Sn := ∑n
i=1 Xi for n ∈ N, S0 := 0.

Let r ∈ (0, 1), α ∈ (0, 1], µ > 0, Nr,α,µ ∼ GNB(r, α, µ) be independent of {Xn}, G∗r,α,µ ∼
GG(r, α, µ) and ζF be a ζ-structured metric w.r.t. some class F or real bounded Borel functions.
Then

ζF
(

SNr,α,µ , G∗r,α,µ

)
≤
∫ 1

0
ζF

(
SNy ,

1− y
y

E

)
· h(y; r, α, µ) dy, (18)

where Ny ∼ Geom0(y) is independent of {Xn}, E ∼ Exp(1) and h(y) is given in Equation (7).
In particular, if {Xn} are i.i.d. square integrable r.v.’s with EXn = 1; then, for all r ∈ (0, 1), µ > 0,
and α ∈ (0, 1], we have

ζ1

(
SNr,α,µ , G∗r,α,µ

)
≤ EX2

1 , (19)

and if, in addition, all Xn ≥ 0 a.s., then also

ρ
(

SNr,α,µ , G∗r,α,µ

)
≤
∫ 1

0
min

{
1∧

y EX2
1

1− y

}
h(y; r, α, µ) dy, (20)

ρ
(

SNr,p , Gr,p/(1−p)

)
≤

pr(2EX2
1 + r−1 + 1)

Γ(r) Γ(2− r)
, p ∈ (0, 1). (21)

Proof. To begin with, we prove that the distribution of the random sum SNr,α,µ is a mixture
of geometric random sums. Indeed, according to the rule of total probability, representa-
tion (10) and Tonelli’s theorem, for any Borel set B ⊂ R, we have

P
(
SNr,α,µ ∈ B

)
=

∞

∑
n=0

P
(

Nr,α,µ = n
)
P(Sn ∈ B)

=
∞

∑
n=0

[∫ 1

0
y(1− y)n · h(y; r, α, µ) dy

]
P(Sn ∈ B)

=
∫ 1

0

[
∞

∑
n=0

y(1− y)n P(Sn ∈ B)

]
h(y; r, α, µ) dy

=
∫ 1

0
P(SNy ∈ B) · h(y; r, α, µ) dy.

Hence, for any f ∈ F ,

E f
(
SNr,α,µ

)
=
∫ 1

0
E f
(
SNy

)
· h(y; r, α, µ) dy.
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Similarly, using Equation (6), we obtain

E f
(
G∗r,α,µ

)
=
∫ ∞

0
f (z) g∗(z; r, α, µ) dz =

∫ 1

0
E f
(

1− y
y

E

)
· h(y; r, α, µ) dy.

Therefore, due to the triangle inequality,

ζF
(

SNr,α,µ , G∗r,α,µ

)
= sup

f∈F

∣∣∣E f (SNr,α,µ)− E f (G∗r,α,µ)
∣∣∣ ≤ ∫ 1

0
ζF

(
SNy ,

1− y
y

E

)
· h(y; r, α, µ) dy,

which coincides with (18).
If {Xn} are i.i.d. square integrable r.v.s with EXn = 1, then from (17) and the homo-

geneity of Kantorovich metric, we have

ζ1

(
SNy ,

1− y
y

E

)
=

1− y
y

ζ1(Sy, E ) ≤ EX2
1 =: α2.

Substituting this into (18) and observing that h(y; r, α, µ) integrates to one as a proba-
bility density with respect to y, we arrive at (19).

Let us prove (20) and (21). In case of Xn ≥ 0 a.s., due to (14), we have

ρ

(
SNy ,

1− y
y

E

)
= ρ(Sy, E ) ≤ α2 y

1− y
max{1− y, 0.5}, y ∈ (0, 1),

on the one hand. On the other hand, the Kolmogorov metric is always bounded by one,
which allows us to write

ρ

(
SNy ,

1− y
y

E

)
≤ min

{
α2 y

1− y
max{1− y, 0.5}, 1

}
≤ α2 y

1− y
∧ 1 ≤


α2 y
1−y , y ≤ 0.5,

1, y > 0.5.

Substituting this into (18), we obtain

ρ
(

SNr,α,µ , G∗r,α,µ

)
≤
∫ 1

0

(
α2 y

1− y
∧ 1
)

h(y; r, α, µ) dy.

In particular with α = 1 and µ = p/(1− p), we have

ρ
(

SNr,p , Gr,µ

)
≤ pr

Γ(r) Γ(1− r)

∫ 1

p

(
α2 y

1− y
∧ 1
)
(1− y)r−1

y(y− p)r dy ≤ pr(α2 I1(p) + I2(p))
Γ(r) Γ(1− r)

,

where

I1(p) =
∫ 0.5

p∧0.5

(1− y)r−2

(y− p)r dy, I2(p) =
∫ 1

0.5∨p

(1− y)r−1

y(y− p)r dy, p ∈ (0, 1).

Changing the variable y = z/(1 + z) we obtain

I1(p) =
∫ 1

p/(1−p)∧1

dz
(z(1− p)− p)r =

(1− 2p)1−r
+

(1− r)(1− p)
≤ 2

1− r
,

I2(p) =
∫ ∞

1∨ p
1−p

dz
z(z(1− p)− p)r =

∫ ∞

(1−2p)+

dx
(x + p)xr

≤ 1
p + (1− 2p)+

∫ 1

(1−2p)+

dx
xr +

∫ ∞

1

dx
xr+1 =

1− (1− 2p)1−r
+

(p + (1− 2p)+)(1− r)
+

1
r
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for all p ∈ (0, 1). Observe that

A(p) :=
1− (1− 2p)1−r

+

p + (1− 2p)+
=


1− (1− 2p)1−r

1− p
≤ 2, p ≤ 0.5,

p−1 ≤ 2, p > 0.5,

so that A(p) ≤ 2 and I2(p) ≤ 2(1− r)−1 + r−1 uniformly with respect to p ∈ (0, 1). Hence,
we finally obtain

ρ
(

SNr,p , Gr,µ

)
≤ pr

Γ(r) Γ(1− r)

(
2α2

1− r
+

2
1− r

+
1
r

)
=

pr(2α2 + r−1 + 1)
Γ(r) Γ(2− r)

.

Recall that the metric ζF is called regular if

ζF (X + Z, Y + Z) ≤ ζF (X, Y)

for Z independent of X and Y. In particular, ζF is regular if F is closed w.r.t. shifts, i.e.,
f ∈ F yields f ( · + c) ∈ F for any c ∈ R.

Theorem 2. Let X1, X2, . . . be a sequence of i.i.d. r.v.s, Sn := ∑n
i=1 Xi for n ∈ N, S0 := 0.

Let r > 0, p ∈ (0, 1), Nr,p ∼ NB(r, p) be independent of {Xn}, Np := N1,p, µ = p
1−p ,

Gr,µ ∼ G(r, µ), E
d
= G1,1 ∼ Exp(1) and ζF be a regular ζ-structured metric. Then

ζF
(

SNr,p , Gr,µ

)
≤ brc ζF

(
SNp ,

1− p
p

E

)
+
∫ 1

0
ζF

(
SNy ,

1− y
y

E

)
· h(y; {r}, 1, µ) dy, (22)

where the second term in the r.-h.s. vanishes for r ∈ N, h
(

y; r, 1, p
1−p

)
is given in (8), brc is the

largest integer that does not exceed r, and {r} = r− brc is the fractional part of r. In particular, if
X1, X2, . . . are square integrable with EXn = 1, then

ζ1

( p SNr,p

r(1− p)
, Gr,r

)
≤ dre

r
·

p EX2
1

1− p
, (23)

where dre is the least integer no less than r, and if, in addition, Xn ≥ 0 a.s. for all n ∈ N, then also

ρ
(

SNr,p , Gr,µ

)
= ρ

( p SNr,p

r(1− p)
, Gr,r

)
≤ brc p max

{
1,

1
2(1− p)

}
EX2

1

+
p{r}(2 EX2

1 + {r}−1 + 1)
Γ({r}) Γ(2− {r}) , (24)

where the second term vanishes in case of r ∈ N.

Proof. First, consider the case of r ∈ N. Due to Equation (2), the distribution of SNr,p

coincides with the r-fold convolution of the distribution of geometric random sums; i.e.,

SNr,p
d
=

r
∑

k=1
S

N(k)
p

, where
{

S
N(k)

p

}
are independent copies of the geometric random sum SNp ,

Np ∼ Geom0(p), Np being independent of {Xn}. Due to the reproducibility of the gamma

distribution w.r.t. the shape parameter r, Gr,µ
d
= ∑r

k=1 E
(k)
µ , where

{
E
(k)
µ

}
are independent

(and independent of everything else) copies of Eµ
d
= E /µ ∼ Exp(µ). Next, by applying the

triangle inequality and the property of regularity of ζF for r times, we obtain
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ζF
(
SNr,p , Gr,µ

)
= ζF

( r

∑
k=1

S
N(k)

p
,

r

∑
k=1

E
(k)
µ

)

≤ ζF

( r

∑
k=1

S
N(k)

p
,

r−1

∑
k=1

S
N(k)

p
+ E

(r)
µ

)
+ ζF

( r−1

∑
k=1

S
N(k)

p
+ E

(r)
µ ,

r

∑
k=1

E
(k)
µ

)

≤ ζF

(
S

N(r)
p

, E (r)
µ

)
+ ζF

( r−1

∑
k=1

S
N(k)

p
,

r−1

∑
k=1

E
(k)
µ

)
≤ . . . ≤ r ζF

(
SNp , Eµ

)
.

If r 6∈ N, then, due to the reproducibility of the negative binomial distribution w.r.t.

the shape parameter r, we have Nr,p
d
= Nbrc,p + N{r},p with independent r.v.s. on the r.-h.s.

Using the same reasoning as in the above chain of inequalities, we get

ζF
(

SNr,p , Gr,µ

)
= ζF

(
SNbrc,p + SN{r},p , Gbrc,µ + G{r},µ

)
≤ ζF

(
SNbrc,p , Gbrc,µ

)
+ ζF

(
SN{r},p , G{r},µ

)
≤ brcζF

(
SNp , Eµ

)
+ ζF

(
SN{r},p , G{r},µ

)
.

Applying (18) to bound ζF
(

SN{r},p , G{r},µ
)

from above, we obtain (22).
Furthermore, if X1, X2, . . . are square-integrable with EXn = 1, then by using upper

bounds (17) for ζ1
(
SNp , Eµ

)
and (19) for ζ1

(
SN{r},p , G{r},µ

)
, together with the homogeneity

of the Kantorovich metric, we obtain

ζ1
(
SNr,p , Gr,µ

)
≤ brcζ1

(
SNp , Eµ

)
+ ζ1

(
SN{r},p , G{r},µ

)
1(r 6∈ N)

≤ brcEX2
1 + EX2

1 · 1(r 6∈ N) = dre · EX2
1 ,

and hence, using the homogeneity again, we have

ζ1

( p SNr,p

r(1− p)
, Gr,r

)
=

p
r(1− p)

ζ1

(
SNr,p , Gr,µ

)
≤ dre

r
·

p EX2
1

1− p
.

Similarly, for the Kolmogorov metric using (14) and (21) we obtain

ρ

( p SNr,p

r(1− p)
, Gr,r

)
= ρ

(
SNr,p , Gr,µ

)
≤ brcρ

(
SNp , Eµ

)
+ ρ
(

SN{r},p , G{r},µ
)
1(r 6∈ N)

≤ brc p max
{

1,
1

2(1− p)

}
EX2

1 +
p{r}(2 EX2

1 + {r}−1 + 1)
Γ({r}) Γ(2− {r}) 1(r 6∈ N).

3. Conclusions

In the present paper, we derived the proximity in terms of zeta-structured metrics of
generalized negative binomial random sums to generalized gamma distribution by using
that of the geometric random sums to the exponential distribution. As a special case, we
gave the corresponding upper bounds for the Kantorovich and the Kolmogorov metrics in
the law of large numbers for negative binomial random sums of i.i.d. random variables
with nonzero first moments and finite second moments.
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Abbreviations
The following abbreviations are used in this manuscript:

r.v. random variable
i.i.d. independent identically distributed
d.f. distribution function
a.s. almost sure
a.c. absolute continuity, absolutely continuous
w.r.t. with respect to
r.-h.s. right-hand side
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