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Abstract: The paper aims to emphasize the advantages of several advanced statistical and data mining
techniques when applied to the dense literature on corruption measurements and determinants. For
this purpose, we used all seven waves of the World Values Survey and we employed the Naive
Bayes technique in SQL Server Analysis Services 2016, the LASSO package together with logit and
melogit regressions with raw coefficients in Stata 16. We further conducted different types of tests and
cross-validations on the wave, country, gender, and age categories. For eliminating multicollinearity,
we used predictor correlation matrices. Moreover, we assessed the maximum computed variance
inflation factor (VIF) against a maximum acceptable threshold, depending on the model’s R squared
in Ordinary Least Square (OLS) regressions. Our main contribution consists of a methodology for
exploring and validating the most important predictors of the risk associated with bribery tolerance.
We found the significant role of three influences corresponding to questions about attitudes towards
the property, authority, and public services, and other people in terms of anti-cheating, anti-evasion,
and anti-violence. We used scobit, probit, and logit regressions with average marginal effects to
build and test the index based on these attitudes. We successfully tested the index using also risk
prediction nomograms and accuracy measurements (AUCROC > 0.9).

Keywords: bribery tolerance index; Naive Bayes; LASSO; maximum acceptable VIF; correlation
matrices; cross-validations; minimum accuracy loss; mixed-effects; average marginal effects; risk
prediction nomograms

1. Introduction

The current massive increase in data about people’s attitudes and behaviors raises
both opportunities and challenges for economics and social sciences, on different levels [1].
One major area of innovation is reflected in the advanced statistical methodologies used to
capture as accurately as possible the most relevant and actionable insights for private and
public use [2]. In this spirit, there is a growing tendency to define comprehensive measures
which are able to integrate various aspects of individual behaviors or socio-economic
phenomena (e.g., development [3], poverty [4], and sustainability [5]). Under this um-
brella, the use of composite indices appears as a common practice, with a high degree of
heterogeneity concerning the many different computational techniques employed to obtain
them. Namely, they vary from additive approaches (e.g., the tax morale index [6]) and
ad-hoc selection of variables to more complex procedures, like principal component analy-
sis and selection techniques using different correlation coefficients (e.g., the sustainable
development index for European economies [7]).

As reported by [8], even if there are many available methods for variable selection
(ridge or partial least-squares regressions [9]), the least absolute shrinkage and selection
operator (LASSO) regression is desirable because it ensures sparsity of coefficients and
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interpretability of the covariate effects by directly reducing the regression variance [10].
Moreover, when constructing an area-based index, the LASSO avoids the disadvantages
of the dimension reduction methods like not always being able to extract the common
unique dimension for a composite index and inaccurate weights corresponding to variable
importance [11]. Not last, LASSO is considered to be more resistant to “p-value mining”
and thus, it provides a higher level of scientific reliability [12].

There has also been an increase in the application of machine learning and advances
in statistics to solve similar problems and more [13–15].

Our paper aims to illustrate the strengths of this methodological framework for the
case of corruption. Corruption is one of the topics highly investigated through composite
index proxies [16,17], with the corruption perception index and control of corruption being
among the most popular measures [18]. The edge of such indexes comes when considering
various perspectives including organizational pathologies [19], and also how they combine
“multiple data sources in a single index, lowering the probability of misrepresenting a
country’s level of corruption” [20].

In the spirit of this logic, our approach provides an in-depth understanding of variables
within the same dataset (World Value Survey) and tests specific combinations of attitudes
on different controversial actions (interpersonal and political violence, fiscal cheating,
prostitution, etc.), as predictors for bribery tolerance. Through a set of rigorous statistical
procedures, we retain the combination that offers the most robust prediction for considering
bribery an acceptable practice, under the proposed name of the bribery tolerance index.
Thus, we contribute to (1) the corruption literature by emphasizing potential areas of
intervention in terms of public awareness and education on the importance of individual
attitudes in shaping tolerant/intolerant behaviors; and (2) we advanced the methodological
recommendations on how to build composite indexes, consolidating the positive evidence
for the use of penalized regression techniques in social sciences and pointing to the need
for comprehensive approaches that pay more attention to non-normal distributions, cross-
validation tests, multicollinearity, objectively argued weighting, and prediction accuracy.

2. Materials and Methods

We used data from World Values Survey (the WVS TimeSeries 1981 2020 Stata v1 6.zip
file available at https://www.worldvaluessurvey.org/WVSDocumentationWVL.jsp and
accessed on 1 February 2021) in the Stata format. We started from all seven waves, namely
1981–1984, 1989–1993, 1994–1998, 1999–2004, 2005–2009, 2010–2014, and 2017–2020, and
105 countries from all continents, more precisely from a dataset with 426,452 observations
and 1045 variables. We also exported this as.csv (comma-separated values format, 1.75 GB)
to serve for first-round mining.

For identifying the main influences of bribery tolerance, many methods, techniques,
and instruments have been used. A schematic representation is also included (Appendix A—
Figure A1). Among them:

• The Naive Bayes algorithm in the Microsoft Data Mining (DM) add-in available in
Microsoft Excel and working with SQL Server Analysis Services 2016 Enterprise
Edition x64 (SSAS) which acted as first-round mining (maximum ~10.7 GB of RAM
(Random Access Memory) consumed only by SSAS and maximum ~5.3 addition-
ally used by Excel on a Windows Server 2016 Datacenter virtual machine with
six Intel Xeon Gold 6240 Cascadelake CPU cores and 24.4 GB of RAM (maximum
~18.5 GB consumed including the operating system) running on one of the private
clouds (https://cloud.raas.uaic.ro/; https://tinyurl.com/4wn9huwj—last accessed
on 9 June 2021) of Alexandru Ioan Cuza University, currently managed using Open-
Stack on Ubuntu and dedicated to research;

• Two forms of LASSO, originally documented in geophysics as an L1-regularization
approach for a problem called sparse spike deconvolution [21–23], namely RLASSO
(rigorous and penalizing LASSO to control overfitting), and CVLASSO (the LASSO
which performs time-consuming cross-validation—here with the LSE option = largest

https://www.worldvaluessurvey.org/WVSDocumentationWVL.jsp
https://cloud.raas.uaic.ro/
https://tinyurl.com/4wn9huwj
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lambda for which the Means Squared Prediction Error-MSPE is within one standard
error of the minimal MSPE) in Stata 16 MP-64 bit (second round mining);

• Elimination from correlated pairs (values near or less than 0.5 indicating low corre-
lation according to [24]) using additional considerations—e.g., amount of missing
values, AUCROC [25] for logit [26] regressions (Equation (1)), and VIF for OLS ones;

• Cross-validations using the mixed-effects technique (melogit—variables to select from
as fixed effects) and checks of significance loss using the value of p—it was additionally
considered the significance level of 1‰ starting from the fact that in large samples,
p-values tend to decrease quickly to zero [27] when considering six binary forms
(derived also in Stata) of the dependent variable (F117—Tables 1 and 2) and four
criteria (random effects): wave, country, sex, and age;

• Smaller values of AIC-Akaike Information Criterion, and BIC-Bayesian Information
Criterion [28] for a better fit of the chosen model [29], where the goodness of fit
describes how well a statistical model fits a set of observations; larger ones for both p
(contradiction of the Ho hypothesis) in the case of GOF (Goodness of Fit) test and chi2

for the same GOF as additional indications of a better fit of the model; and
• Larger R-squared [30] for a better explaining power of the models.

Logit(p) = ln(p/(1 − p)) = β0 + ∑(βi × Xi) + ε (1)

where:

• p is the probability (risk) of bribery tolerance;
• (1 − p) is the probability of not considering bribes acceptable;
• p/(1 − p) represents the odds of bribery tolerance;
• i = 2, . . . , n and n is the total number of independent variables;
• β0 is the bias (intercept) term;
• βi measures the effect of a change in variable Xi on the risk of bribery tolerance;
• Xi is one explanatory variable from the array (∑) of features selected after using

LASSO; and
• ε represents the error term.

Table 1. WVS variables (and the corresponding original codes) used in our study.

Variable Question Coding

E290 Justifiable: Political violence (DK/NA as blanks) 1–10 scale
F114A Justifiable: Claiming government benefits to which you are not entitled(DK/NA as blanks) 1–10 scale
F114B Justifiable: Stealing property (DK/NA as blanks) 1–10 scale
F114D Justifiable: Violence against other people (DK/NA as blanks) 1–10 scale
F114E Justifiable: Terrorism as a political, ideological, or religious mean(DK/NA as blanks) 1–10 scale
F115 Justifiable: Avoiding a fare on public transport (DK/NA as blanks) 1–10 scale
F116 Justifiable: Cheating on taxes (DK/NA as blanks) 1–10 scale
F119 Justifiable: Prostitution (DK/NA as blanks) 1–10 scale
F199 Justifiable: For a man to beat his wife (DK/NA as blanks) 1–10 scale
Y010 SACSECVAL—Welzel Overall Secular Values (DK/NA as blanks) 0–1 scale

F117 (original
outcome) Justifiable: Someone accepting a bribe (DK/NA as blanks) 1–10 scale

justif_bribe_5_10 1 if F117 != Blank AND F117 >= 5; 0 if F117 != Blank AND F117 < 5 0 or 1
justif_bribe_6_10 1 if F117 != Blank AND F117 >= 6; 0 if F117 != Blank AND F117 < 6 AND F117 > 0 0 or 1
justif_bribe_7_10 1 if F117 != Blank AND F117 >= 7; 0 if F117 != Blank AND F117 < 7 AND F117 > 0 0 or 1
justif_bribe_8_10 1 if F117 != Blank AND F117 >= 8; 0 if F117 != Blank AND F117 < 8 AND F117 > 0 0 or 1
justif_bribe_9_10 1 if F117 != Blank AND F117 >= 9; 0 if F117 != Blank AND F117 < 9 AND F117 > 0 0 or 1

justif_bribe_10 1 if F117 == 10; 0 if F117 != Blank AND F117 < 10 AND F117 > 0 0 or 1

Source: WVS’s data available at https://www.worldvaluessurvey.org/WVSDocumentationWVL.jsp (accessed on 1 February 2021).

https://www.worldvaluessurvey.org/WVSDocumentationWVL.jsp
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Table 2. Descriptive statistics for the WVS variables that were used in this study.

Variable n Mean Std.Dev. Min 0.25 Median 0.75 Max

E290 67,841 1.96 1.91 1 1 1 2 10
F114A 396,038 2.65 2.52 1 1 1 4 10
F114B 158,481 1.8 1.8 1 1 1 2 10
F114D 158,284 1.95 1.88 1 1 1 2 10
F114E 66,858 1.79 1.81 1 1 1 2 10
F115 388,305 2.6 2.45 1 1 1 4 10
F116 394,728 2.26 2.22 1 1 1 3 10
F119 360,755 2.63 2.48 1 1 1 4 10
F199 230,248 1.94 1.99 1 1 1 2 10
Y010 411,064 0.35 0.18 0 0.22 0.35 0.47 1

F117 (original
outcome) 410,100 1.84 1.84 1 1 1 2 10

justif_bribe_5_10 410,100 0.09 0.29 0 0 0 0 1
justif_bribe_6_10 410,100 0.06 0.24 0 0 0 0 1
justif_bribe_7_10 410,100 0.04 0.2 0 0 0 0 1
justif_bribe_8_10 410,100 0.03 0.17 0 0 0 0 1
justif_bribe_9_10 410,100 0.02 0.14 0 0 0 0 1

justif_bribe_10 410,100 0.02 0.12 0 0 0 0 1

Source: Own calculation in Stata 16MP 64-bit using WVS’s data.

Source: Own calculation in Stata 16MP 64-bit using WVS’s data.

To correct for any form of heteroskedasticity, robust standard errors have been used
for all types of regressions.

In terms of building the index of bribery tolerance, we additionally used average
marginal effects calculated after performing scobit regressions to determine the weights
of the resulting components. Scobit usually serves as an alternative [31] for the two most
common techniques for estimation of models with a binary dependent variable, namely
logit and probit, in case of disturbances to the normal or logistic distributions.

In addition, logit-based risk-prediction nomograms [32] served for confirming the
approximation of these weights. Moreover, they ensured visual comparability because of
supporting the overall view of the magnitude of effects and interpretations directly in risk
terms when predicting the bribery tolerance.

The proposed framework’s complexity (Appendix A—Figure A1) is also due to its
dual nature. The latter means that it includes both automatic/unsupervised (first two data
mining rounds—top of Figure A1) and supervised steps (derivations, further selections,
building and testing the index—central part and bottom of Figure A1), which is an accepted
practice in the field [33].

3. Results

After running the Naive Bayes algorithm, a dependency network has been obtained
(Figure 1). Using a slider operating from the strongest to all links, the latter suggests
the best predictors identified under the assumption of their independence, which will be
subjected to further tests in Stata, responsible for eliminating redundant variables.
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Figure 1. Top predictors as identified by using the Naive Bayes algorithm in Microsoft Data Mining add-in for spreadsheets.
Source: Own computation in Microsoft Excel 2013 (Data Mining add-in) and SQL Server Analysis Services 2016.

After running both RLASSO and CVLASSO many times (depending on the variable
category and overall, on a concatenation of the resulting selections) starting from all
possible predictors available in Figure 1 (more than 50), only 13 have been retained, namely
E290, F114A, F114B, F114D, F114E, F115, F116, F119, F199, Y010, Y013A, Y013B, and
Y013C (Tables 1 and 2). From this list above, the last three have been identified as directly
derived from F115, F116, F117 (Welzel relativism—https://www.worldvaluessurvey.org/
WVSContents.jsp?CMSID=welzelidx&CMSID=welzelidx—accessed on 1 February 2021)
and have been dropped (only 10 remaining—Tables 1 and 2).

The next step was to perform derivation operations (binary alternatives of the original
outcome—F117) in Stata (Figure 2).

https://www.worldvaluessurvey.org/WVSContents.jsp?CMSID=welzelidx&CMSID=welzelidx
https://www.worldvaluessurvey.org/WVSContents.jsp?CMSID=welzelidx&CMSID=welzelidx
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Figure 2. Stata processing script for performing derivations needed for cross-validations and starting
from the original form of the dependent variable. Source: Own calculation in Stata 16MP 64-bit.

From the very beginning (Tables 1 and 2), the study site indicates the lowest number
of responses for the questions corresponding to variables E290 and F114E.

After consecutively checking the correlation matrices when starting from this set of
10 remaining input variables (top of Figure 3—issues for correlation coefficients larger than
0.5 as absolute value), some intercorrelated ones have been eliminated when considering
additional criteria. For instance, the accuracy one (Area under the Curve of the Receiver
Operating Characteristics—AUCROC) for Logit models with just one predictor and an al-
ternate binary outcome for F117 (justif_bribe_6_10). For instance, when considering F114D
vs. E290 (AUCROC of 0.8099 for 157,239 observations vs. 0.7818 for 67,532). The same
(first) for F114D vs. F114E, the first was kept (AUCROC of 0.8099 for 157,239 observations
vs. 0.7863 for 66,517). At this point, only eight possible predictors remained, by eliminating
E290 and F114E.

In the case of F114D vs. F199 (AUCROC of 0.8099 for 157,239 observations vs. 0.7853
for 228,185), the first one was also preserved. The reason was that the first one is also a more
general variable (violence against other people) than the second (violence against wife) and
brings a better explaining power (Pseudo R2 of 0.2418 vs. 0.2126). When compared using
the same basis (156,793 observations) obtained with a filtering condition (NOT NULL) on
the opposite (IF var.!=.), the results confirmed again the choice of F114D (AUCROC of
0.8103) over F1119 (0.7919). At this point, only seven possible predictors remained.
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In the case of F116 vs. F114B (AUCROC of 0.8448 for 392,236 observations vs. 0.8495
for 157,569), additional arguments have been considered. They resulted when comparing
the values for AUCROC when dropping each variable in Logit models (justif_bribe_6_10 as
alternate binary outcome) with six predictors: AUCROC of 0.9271 for 122,545 observations
when keeping F116 vs. 0.9186 for 124,711 when keeping F114B). More, when compared
using the same basis (153,512 observations) obtained with a filtering condition (NOT NULL)
on the opposite (IF var.!=.), the results confirmed again the choice of F116 (AUCROC of
0.8841) over F114B (0.8497). At this point, only six variables remained to be considered,
namely F114A, F114D, F115, F116, F119, and Y010 (bottom of Figure 3—all correlation
coefficients less than 0.5 as absolute value).

When evaluated against Max. Acceptable VIF (Equation (2), the maximum com-
puted one [34–36] for the overall OLS model (same alternate binary outcome, namely
justif_bribe_6_10) including only these six influences still indicates multicollinearity issues
(1.743 vs. 1.5479 as Max. Computed VIF vs. Max. Acceptable VIF). The maximum absolute
value of the correlation coefficient (a correlation command only for these six remaining
input variables—bottom of Figure 3) is 0.4995 (~0.5 corresponding to F115 and F116), which
also suggests low to medium correlation among the predictors. If additionally using a cor-
relation command only for these two predictors (F115 vs. F116), the correlation coefficient
(0.5068) better suggests the redundancy. If checking the corresponding average marginal
effects of these two in a Logit model, the one of F116 is more than three times larger
than that of F115. Besides, when comparing the accuracy of two Logit models with five
predictors resulting when eliminating each but using a comparable basis (122,545 records
if using the not null condition for the one eliminated) the AUCROC values also favored
F116 against F115 (0.9248 vs. 0.9072). Moreover, avoiding a fare on public transportation
(F115) is a particular form of cheating on taxes (F116) because it represents cheating on
public transportation taxes.

Max. Acceptable VIF = 1/(1 − R2), (2)

where R2 is the model’s coefficient of determination.
Moreover, if performing further cross-validations using a mixed-effects [37] method

(melogit—those six above as fixed effects and the following as random ones, namely S002-
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the wave, S003-the country code, X001-the respondents’ sex, and X003R-the respondents’
age for six intervals) only three resisted without losing significance (Tables 3–6) regardless
of the binary format of the analyzed variable (justif_bribe_5_10, justif_bribe_6_10, jus-
tif_bribe_7_10, justif_bribe_8_10, justif_bribe_9_10, and justif_bribe_10). It is about F114A,
F114D, and F116. If considering only these three and performing again the cross-validations
above, the results obtained confirm no loss of significance. From the models in the first
set of cross-validations (Tables 3 and 5—fourth model) predicting the second alternative
binary form of the outcome (justif_bribe_6_10) has been discovered as the most accurate. In
addition, the latter form corresponds to the symmetric upper band from the entire original
scale (1–10). The choice above is also confirmed when using only the remaining three
predictors. Therefore, we used this form with only three components to construct the index,
taking into account only their marginal effects (not multiplied with the amplitudes) since
the scales of the three variables are identical (Table 7, model 1, Figure 4—lines 1 and 2, and
top of Figure 5).

In terms of data support for all the variables involved in the final selection (these
three predictors above and the variable to analyze), we found coverage as follows: 151,636
distinct non-null observations (Table 7); last two waves (2010–2014 and 2017–2020) as
the only two in which the question corresponding to F114D (Justifiable: Violence against
other people) was included (the other three, namely F114A, F116, and F117, appear in all
seven waves); 75 countries from all continents; a ratio of 1.1:1 between female and male
respondents; and all six age intervals considered by WVS, namely 15–24, 25–34, 35–44,
45–54, 55–64, and 65 years or more.

Scobit, Logit, and Probit regressions [31] (justif_bribe_6_10 as chosen binary format
based on maximum accuracy) have been used to confirm this form of the index (Table 7—
models 1 vs. 2, 3 vs. 4, and 5 vs. 6) obtained from the most powerful three variables unveiled
and underlined in the WVS’s dataset. As observed above (Table 7), when compared with
the base models having those three predictors, the alternate ones based only on this index
as single input does not lose at all in terms of explaining power (Pseudo Rˆ2) and accuracy
of classification (AUCROC).

In terms of further validations using Zlotnik and Abraira’s prediction nomograms [32]
based on Logit regressions (Table 7, models 3 and 4 with excellent accuracy of classification—
AUCROC = 0.9169), two such visual outputs have been generated. The first one (top of
Figure 5) corresponds to the original model with those three predictors (positive influences)
and clearly shows that as the respondents’ attitudes towards cheating taxes (F116), violence
against other people (F114D), and accepting government benefits not entitled (F114A) are
more permissive, the risk of accepting bribes increases. The second (bottom of Figure 5)
is based on the model having the index as the only predictor (also positive influence).
Moreover, in terms of maximum theoretical probability (Zlotnik and Abraira’s nomolog [32]
for Logit regressions—Table 7, models 3 vs. 4) that corresponds to the most favorable
value or combination of values of the predictors, it seems that there is no loss. Actually, in
both cases, the score (value of 10) or the sum of scores (about 22.2) indicates a maximum
probability with a value slightly above the 95% threshold.
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Table 3. Cross-validations on country and wave using the first three alternate binary forms of the dependent variable.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
7_10

justif_bribe_
7_10

justif_bribe_
7_10

Model Type Logit—No
Random Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random

Effects on
Country (S003)

Logit—No
Random Effects

MeLogit—
Random

Effects on
Wave (S002)

MeLogit—
Random Effects

on Country
(S003)

Logit—No
Random
Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random Effects

on Country
(S003)

F114A 0.1472 *** 0.1481 *** 0.1309 *** 0.1549 *** 0.1560 *** 0.1407 *** 0.1606 *** 0.1612 *** 0.1488 ***

(0.0048) (0.0101) (0.0130) (0.0058) (0.0176) (0.0147) (0.0067) (0.0194) (0.0203)

F114D 0.2969 *** 0.2960 *** 0.2468 *** 0.2690 *** 0.2673 *** 0.2218 *** 0.2329 *** 0.2314 *** 0.1935 ***

(0.0055) (0.0134) (0.0209) (0.0060) (0.0132) (0.0211) (0.0067) (0.0032) (0.0215)

F115 0.0995 *** 0.0999 *** 0.0851 *** 0.1095 *** 0.1101 *** 0.1008 *** 0.1052 *** 0.1057 *** 0.0988 ***

(0.0053) (0.0042) (0.0140) (0.0063) (0.0068) (0.0116) (0.0074) (0.0121) (0.0129)

F116 0.3692 *** 0.3685 *** 0.3501 *** 0.3606 *** 0.3594 *** 0.3384 *** 0.3622 *** 0.3613 *** 0.3380 ***

(0.0052) (0.0446) (0.0265) (0.0058) (0.0495) (0.0243) (0.0068) (0.0554) (0.0266)

F119 0.1367 *** 0.1375 *** 0.1672 *** 0.1448 *** 0.1460 *** 0.1661 *** 0.1369 *** 0.1378 *** 0.1548 ***

(0.0049) (0.0130) (0.0157) (0.0058) (0.0070) (0.0150) (0.0067) (0.0135) (0.0179)

Y010 1.8602 *** 1.8565 *** 2.9867 *** 0.9335 *** 0.9239 *** 1.8382 *** 0.1470 0.1372 * 1.0877 ***

(0.0794) (0.2581) (0.2827) (0.0934) (0.1112) (0.2746) (0.1061) (0.0697) (0.2936)

_cons −6.3675 *** −6.3686 *** −6.8198 *** −6.7649 *** −6.7639 *** −7.1348 *** −6.8293 *** −6.8259 *** −7.2325 ***

(0.0440) (0.1273) (0.1517) (0.0537) (0.1819) (0.1774) (0.0602) (0.1926) (0.1882)

var(_cons[S002]) N/A 0.0024 *** N/A N/A 0.0053 *** N/A N/A 0.0033 *** N/A

N/A (0.0001) N/A N/A (0.0006) N/A N/A (0.0008) N/A

var(_cons[S003]) N/A N/A 0.3525 *** N/A N/A 0.3266 *** N/A N/A 0.3086 ***

N/A N/A (0.0730) N/A N/A (0.0641) N/A N/A (0.0701)

N 122,545 122,545 122,545 122,545 122,545 122,545 122,545 122,545 122,545

Chiˆ2 18,816.6205 N/A 2364.8383 15,184.0298 N/A 1535.5780 12,985.2662 N/A 1418.4369

p 0.0000 N/A 0.0000 0.0000 N/A 0.0000 0.0000 N/A 0.0000

Pseudo Rˆ2 0.4489 N/A N/A 0.4585 N/A N/A 0.4504 N/A N/A
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Table 3. Cont.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
7_10

justif_bribe_
7_10

justif_bribe_
7_10

Model Type Logit—No
Random Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random

Effects on
Country (S003)

Logit—No
Random Effects

MeLogit—
Random

Effects on
Wave (S002)

MeLogit—
Random Effects

on Country
(S003)

Logit—No
Random
Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random Effects

on Country
(S003)

maxAbsCorCoefPredMtrx 0.4995 N/A N/A 0.4995 N/A N/A 0.4995 N/A N/A

AUCROC 0.9220 N/A N/A 0.9271 N/A N/A 0.9251 N/A N/A

pGOF 0.0363 N/A N/A 0.2091 N/A N/A 0.0000 N/A N/A

Chiˆ2GOF 82,080.56 N/A N/A 81,681.32 N/A N/A 83,315.83 N/A N/A

AIC 48,401.9455 48,379.8688 46,746.5493 35,258.8082 35,228.5612 34,194.5529 28,095.9260 28,077.7890 27,351.2618

BIC 48,469.9591 48,399.3012 46,824.2792 35,326.8219 35,247.9937 34,272.2828 28,163.9396 28,097.2215 27,428.9916

maxPnomologBiggerThan 0.9500 N/A N/A 0.9000 N/A N/A 0.9000 N/A N/A

Source: Own calculation in Stata 16MP 64-bit. Notes: Robust standard errors are presented in parentheses. All raw coefficients above parentheses are significant at 5% (*), 1% (**), and 1‰
(***), respectively.

Table 4. Cross-validations on country and wave using the last three alternate binary forms of the dependent variable.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
10

justif_bribe_
10

justif_bribe_
10

Model Type Logit—No
Random Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random

Effects on
Country (S003)

Logit—No
Random Effects

MeLogit—
Random

Effects on
Wave (S002)

MeLogit—
Random Effects

on Country
(S003)

Logit—No
Random
Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random

Effects on
Country (S003)

F114A 0.1617 *** 0.1620 *** 0.1528 *** 0.1683 *** 0.1685 *** 0.1603 *** 0.1743 *** 0.1743 *** 0.1677 ***

(0.0078) (0.0153) (0.0282) (0.0096) (0.0256) (0.0379) (0.0116) (0.0386) (0.0446)

F114D 0.1953 *** 0.1941 *** 0.1628 *** 0.1728 *** 0.1712 *** 0.1456 *** 0.1491 *** 0.1489 ** 0.1376 ***

(0.0076) (0.0097) (0.0211) (0.0090) (0.0273) (0.0223) (0.0105) (0.0469) (0.0206)

F115 0.0987 *** 0.0990 *** 0.0985 *** 0.0899 *** 0.0902 *** 0.1003 *** 0.0756 *** 0.0756 0.1003 ***

(0.0087) (0.0173) (0.0154) (0.0106) (0.0242) (0.0175) (0.0125) (0.0402) (0.0198)
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Table 4. Cont.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
10

justif_bribe_
10

justif_bribe_
10

Model Type Logit—No
Random Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random

Effects on
Country (S003)

Logit—No
Random Effects

MeLogit—
Random

Effects on
Wave (S002)

MeLogit—
Random Effects

on Country
(S003)

Logit—No
Random
Effects

MeLogit—
Random Effects
on Wave (S002)

MeLogit—
Random

Effects on
Country (S003)

F116 0.3742 *** 0.3736 *** 0.3450 *** 0.3917 *** 0.3911 *** 0.3460 *** 0.4122 *** 0.4122 *** 0.3521 ***

(0.0084) (0.0613) (0.0331) (0.0108) (0.0769) (0.0419) (0.0136) (0.0896) (0.0497)

F119 0.1170 *** 0.1177 *** 0.1376 *** 0.0937 *** 0.0948 0.1229 *** 0.0656 *** 0.0658 0.1058 **

(0.0079) (0.0304) (0.0255) (0.0095) (0.0529) (0.0350) (0.0111) (0.0660) (0.0405)

Y010 −0.5917 *** −0.6018 *** 0.4050 −1.0694 *** −1.0876 *** −0.1236 −1.2979 *** −1.3014 *** −0.9532 *

(0.1200) (0.0938) (0.3318) (0.1412) (0.1836) (0.3513) (0.1602) (0.3919) (0.4145)

_cons −6.8296 *** −6.8253 *** −7.3027 *** −7.0661 *** −7.0586 *** −7.6234 *** −7.2663 *** −7.2647 *** −7.6797 ***

(0.0674) (0.1518) (0.2112) (0.0824) (0.1287) (0.2835) (0.0999) (0.1797) (0.3525)

var(_cons[S002]) N/A 0.0022 * N/A N/A 0.0037 *** N/A N/A 0.0003 N/A

N/A (0.0009) N/A N/A (0.0010) N/A N/A (0.0005) N/A

var(_cons[S003]) N/A N/A 0.3415 *** N/A N/A 0.5071 *** N/A N/A 0.5515 ***

N/A N/A (0.0730) N/A N/A (0.1222) N/A N/A (0.1209)

N 122,545 122,545 122,545 122,545 122,545 122,545 122,545 122,545 122,545

Chiˆ2 10,868.6143 N/A 1163.2037 8177.9460 N/A 829.7018 6141.2345 N/A 445.1360

p 0.0000 N/A 0.0000 0.0000 N/A 0.0000 0.0000 N/A 0.0000

Pseudo Rˆ2 0.4373 N/A N/A 0.4336 N/A N/A 0.4188 N/A N/A

maxAbsCorCoefPredMtrx 0.4995 N/A N/A 0.4995 N/A N/A 0.4995 N/A N/A

AUCROC 0.9176 N/A N/A 0.9145 N/A N/A 0.9071 N/A N/A

pGOF 0.0000 N/A N/A 0.0000 N/A N/A 0.0000 N/A N/A

Chiˆ2GOF 89,944.11 N/A N/A 99,321.47 N/A N/A 1.1 × 105 N/A N/A

AIC 22,303.0334 22,289.6962 21,626.3242 16,841.7315 16,827.2517 16,085.5189 13,327.1104 13,315.0487 12,459.7028

BIC 22,371.0470 22,309.1287 21,704.0541 16,909.7451 16,846.6842 16,163.2487 13,395.1240 13,324.7649 12,537.4326

maxPnomologBiggerThan 0.8000 N/A N/A 0.7000 N/A N/A 0.7000 N/A N/A

Source: Own calculation in Stata 16MP 64-bit. Notes: Robust standard errors are presented in parentheses. All raw coefficients above parentheses are significant at 5% (*), 1% (**), and 1‰
(***), respectively.
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Table 5. Cross-validations on sex and age using the first three alternate binary forms of the dependent variable.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
7_10

justif_bribe_
7_10

justif_bribe_
7_10

Model Type
Logit—

No Random
Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random
Effects

on Sex (X001)

MeLogit—
Random Effects
on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

F114A 0.1472 *** 0.1472 *** 0.1463 *** 0.1549 *** 0.1549 *** 0.1541 *** 0.1606 *** 0.1606 *** 0.1598 ***

(0.0048) (0.0079) (0.0105) (0.0058) (0.0093) (0.0102) (0.0067) (0.0042) (0.0073)

F114D 0.2969 *** 0.2973 *** 0.2946 *** 0.2690 *** 0.2691 *** 0.2676 *** 0.2329 *** 0.2330 *** 0.2322 ***

(0.0055) (0.0063) (0.0072) (0.0060) (0.0028) (0.0084) (0.0067) (0.0017) (0.0083)

F115 0.0995 *** 0.0993 *** 0.0980 *** 0.1095 *** 0.1095 *** 0.1083 *** 0.1052 *** 0.1052 *** 0.1046 ***

(0.0053) (0.0012) (0.0065) (0.0063) (0.0029) (0.0064) (0.0074) (0.0009) (0.0083)

F116 0.3692 *** 0.3692 *** 0.3689 *** 0.3606 *** 0.3605 *** 0.3605 *** 0.3622 *** 0.3621 *** 0.3620 ***

(0.0052) (0.0077) (0.0080) (0.0058) (0.0075) (0.0073) (0.0068) (0.0049) (0.0069)

F119 0.1367 *** 0.1370 *** 0.1370 *** 0.1448 *** 0.1448 *** 0.1448 *** 0.1369 *** 0.1368 *** 0.1372 ***

(0.0049) (0.0091) (0.0045) (0.0058) (0.0038) (0.0043) (0.0067) (0.0036) (0.0060)

Y010 1.8602 *** 1.8689 *** 1.8400 *** 0.9335 *** 0.9331 *** 0.9220 *** 0.1470 0.1447 0.1397

(0.0794) (0.2259) (0.0702) (0.0934) (0.2408) (0.1019) (0.1061) (0.2630) (0.0989)

_cons −6.3675 *** −6.3719 *** −6.3628 *** −6.7649 *** −6.7638 *** −6.7622 *** −6.8293 *** −6.8276 *** −6.8279 ***

(0.0440) (0.1941) (0.1284) (0.0537) (0.1950) (0.1370) (0.0602) (0.1811) (0.1155)

var(_cons[X001]) N/A 0.0008 ** N/A N/A 0.0000 ** N/A N/A 0.0000 N/A

N/A (0.0002) N/A N/A (0.0000) N/A N/A (0.0000) N/A

var(_cons[X003R]) N/A N/A 0.0096 N/A N/A 0.0075 N/A N/A 0.0060

N/A N/A (0.0054) N/A N/A (0.0045) N/A N/A (0.0046)

N 122,545 122,474 122,166 122,545 122,474 122,166 122,545 122,474 122,166

Chiˆ2 18,816.6205 N/A N/A 15,184.0298 N/A N/A 12,985.2662 N/A N/A

p 0.0000 N/A N/A 0.0000 N/A N/A 0.0000 N/A N/A

Pseudo Rˆ2 0.4489 N/A N/A 0.4585 N/A N/A 0.4504 N/A N/A

maxAbsCorCoefPredMtrx 0.4995 N/A N/A 0.4995 N/A N/A 0.4995 N/A N/A

AUCROC 0.9220 N/A N/A 0.9271 N/A N/A 0.9251 N/A N/A
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Table 5. Cont.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
5_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
6_10

justif_bribe_
7_10

justif_bribe_
7_10

justif_bribe_
7_10

Model Type
Logit—

No Random
Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random
Effects

on Sex (X001)

MeLogit—
Random Effects
on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

pGOF 0.0363 N/A N/A 0.2091 N/A N/A 0.0000 N/A N/A

Chiˆ2GOF 82,080.56 N/A N/A 81,681.32 N/A N/A 83,315.83 N/A N/A

AIC 48,401.9455 48,374.7190 48,169.0829 35,258.8082 35,236.9275 35,097.2370 28,095.9260 28,074.4344 27,968.0995

BIC 48,469.9591 48,394.1503 48,217.6486 35,326.8219 35,246.6431 35,145.8027 28,163.9396 28,084.1501 28,016.6651

maxPnomologBiggerThan 0.9500 N/A N/A 0.9000 N/A N/A 0.9000 N/A N/A

Source: Own calculation in Stata 16MP 64-bit. Notes: Robust standard errors are presented in parentheses. All raw coefficients above parentheses are significant at 5% (*), 1% (**), and 1‰
(***), respectively.

Table 6. Cross-validations on sex and age using the last three alternate binary forms of the dependent variable.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
10

justif_bribe_
10

justif_bribe_
10

Model Type
Logit—

No Random
Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random
Effects

on Sex (X001)

MeLogit—
Random Effects
on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

F114A 0.1617 *** 0.1617 *** 0.1613 *** 0.1683 *** 0.1683 *** 0.1685 *** 0.1743 *** 0.1743 *** 0.1745 ***

(0.0078) (0.0001) (0.0110) (0.0096) (0.0057) (0.0113) (0.0116) (0.0095) (0.0118)

F114D 0.1953 *** 0.1952 *** 0.1952 *** 0.1728 *** 0.1727 *** 0.1731 *** 0.1491 *** 0.1490 *** 0.1498 ***

(0.0076) (0.0027) (0.0083) (0.0090) (0.0182) (0.0106) (0.0105) (0.0193) (0.0141)

F115 0.0987 *** 0.0987 *** 0.0981 *** 0.0899 *** 0.0899 *** 0.0890 *** 0.0756 *** 0.0756 *** 0.0748 ***

(0.0087) (0.0001) (0.0100) (0.0106) (0.0093) (0.0139) (0.0125) (0.0033) (0.0162)

F116 0.3742 *** 0.3742 *** 0.3738 *** 0.3917 *** 0.3917 *** 0.3905 *** 0.4122 *** 0.4123 *** 0.4111 ***

(0.0084) (0.0029) (0.0069) (0.0108) (0.0038) (0.0092) (0.0136) (0.0048) (0.0127)

F119 0.1170 *** 0.1170 *** 0.1174 *** 0.0937 *** 0.0937 ** 0.0942 *** 0.0656 *** 0.0656 0.0663 ***
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Table 6. Cont.

Input Variable/Model (1) (2) (3) (4) (5) (6) (7) (8) (9)

Dependent Variable justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
8_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
9_10

justif_bribe_
10

justif_bribe_
10

justif_bribe_
10

Model Type
Logit—

No Random
Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random
Effects

on Sex (X001)

MeLogit—
Random Effects
on Age (X003R)

Logit—
No Random

Effects

MeLogit—
Random Effects

on Sex (X001)

MeLogit—
Random
Effects

on Age (X003R)

(0.0079) (0.0164) (0.0102) (0.0095) (0.0294) (0.0108) (0.0111) (0.0362) (0.0133)

Y010 22,120.5917 *** 22,120.5913 * 22,120.5779 *** 22,121.0694 *** 22,121.0696 *** 22,121.0437 *** 22,121.2979 *** 22,121.2985 *** 22,121.2715 ***

(0.1200) (0.3007) (0.1168) (0.1412) (0.1595) (0.1381) (0.1602) (0.1402) (0.1848)

_cons 22,126.8296 *** 22,126.8290 *** 22,126.8319 *** 22,127.0661 *** 22,127.0653 *** 22,127.0730 *** 22,127.2663 *** 22,127.2656 *** 22,127.2673 ***

(0.0674) (0.0927) (0.0854) (0.0824) (0.0659) (0.0750) (0.0999) (0.0957) (0.1012)

var(_cons[X001]) N/A 0.0000 N/A N/A 0.0000 N/A N/A 0.0000 N/A

N/A (0.0000) N/A N/A (0.0000) N/A N/A (0.0000) N/A

var(_cons[X003R]) N/A N/A 0.0046 N/A N/A 0.0064 N/A N/A 0.0078

N/A N/A (0.0038) N/A N/A (0.0043) N/A N/A (0.0043)

N 122,545 122,474 122,166 122,545 122,474 122,166 122,545 122,474 122,166

Chiˆ2 10,868.6143 N/A N/A 8177.9460 N/A N/A 6141.2345 N/A N/A

p 0.0000 N/A N/A 0.0000 N/A N/A 0.0000 N/A N/A

Pseudo Rˆ2 0.4373 N/A N/A 0.4336 N/A N/A 0.4188 N/A N/A

maxAbsCorCoefPredMtrx 0.4995 N/A N/A 0.4995 N/A N/A 0.4995 N/A N/A

AUCROC 0.9176 N/A N/A 0.9145 N/A N/A 0.9071 N/A N/A

pGOF 0.0000 N/A N/A 0.0000 N/A N/A 0.0000 N/A N/A

Chiˆ2GOF 89,944.11 N/A N/A 99,321.47 N/A N/A 1.1 × 105 N/A N/A

AIC 22,303.0334 22,288.2163 22,222.0906 16,841.7315 16,827.9683 16,795.8192 13,327.1104 13,315.8519 13,287.8886

BIC 22,371.0470 22,297.9320 22,270.6563 16,909.7451 16,837.6839 16,844.3849 13,395.1240 13,335.2832 13,336.4543

maxPnomologBiggerThan 0.8000 N/A N/A 0.7000 N/A N/A 0.7000 N/A N/A

Source: Own calculation in Stata 16MP 64-bit. Notes: Robust standard errors are presented in parentheses. All raw coefficients above parentheses are significant at 5% (*), 1% (**), and 1‰
(***), respectively.
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Table 7. Determining and testing the bribe index using justif_bribe_6_10 as a binary form of the outcome.

Input
Variable/Model (1) (2) (3) (4) (5) (6)

Model Type Scobit Scobit Logit Logit Probit Probit

F114A 0.0075 *** 0.0075 *** 0.0073 ***

(0.0002) (0.0002) (0.0002)

F114D 0.0129 *** 0.0129 *** 0.0131 ***

(0.0002) (0.0002) (0.0002)

F116 0.0166 *** 0.0164 *** 0.0171 ***

(0.0002) (0.0002) (0.0002)

brb_idx_scobit3x 0.0370 *** 0.0367 *** 0.0377 ***

(0.0003) (0.0003) (0.0003)

N 151,636 151,636 151,636 151,636 151,636 151,636

Chiˆ2 N/A N/A 18,188.9132 18,198.9719 20,218.0620 20,074.9742

p N/A N/A 0.0000 0.0000 0.0000 0.0000

Pseudo Rˆ2 N/A N/A 0.4291 0.4291 0.4294 0.4294

maxAbsCorCoefPredMtrx 0.4804 N/A 0.4804 N/A 0.4804 N/A

AUC N/A N/A 0.9169 0.9169 0.9169 0.9169

pGOF N/A N/A 0.0000 0.0000 0.0000 0.0000

Chiˆ2GOF N/A N/A 2790.76 2790.11 2556.99 2560.84

AIC 43,478.2267 43,474.2266 43,625.4103 43,621.7071 43,597.3988 43,596.4702

BIC 43,527.8729 43,504.0143 43,665.1273 43,641.5656 43,637.1158 43,616.3287

maxPnomologBiggerThan N/A N/A 0.9000 0.9000 N/A N/A

Source: Own calculation in Stata 16MP 64-bit. Notes: Robust standard errors are presented in parentheses. All coefficients above parentheses
are computed as average marginal effects and are significant at 1‰ (***).
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4. Discussion and Conclusions

This paper puts forward a robust methodology for identifying the major determinants
of considering bribes an acceptable practice and subsequently computing a corresponding
index, namely the one of bribery tolerance.

Our empirical model is highly parsimonious and indicates three major influences
(from an initial list of 13 variables from the WVS dataset) that can predict bribery tolerance
with a 91.69% accuracy of classification: the attitude towards cheating on taxes, the attitude
towards claiming government benefits to which a person is not entitled, and the attitude
towards violence against other people. The first two individual attitudes reflect upon
people’s relationship with the state and are considered “the usual suspects” for actual
participation in corrupt practices in numerous studies conducted in transition [38,39] and
developing economies [40]. Thus, our findings align with the literature for the narrower
case of bribery tolerance and they further expand their predictive validity by covering
a much larger spectrum of 105 worldwide countries. The fact that these practices are
positioned in some countries, in terms of people’s perception, at the lower and middle
spectrum of crimes [41–43], but they pave the way for the serious case of corruption, makes
them even more relevant in terms of government priorities on changing public views
on critical topics. The third factor related to interpersonal violence was not previously
examined in association with corruption, thus further research is needed to unveil the
psychological mechanisms supporting this link.

The entire methodological approach proposed and described in this paper is based
on the scientific principles of triangulation, cross-validation, and reproducibility [44].
Triangulation means that we used various methods, techniques, and applications (Naive
Bayes, LASSO variable selection techniques, different types of regression analysis, mixed-
effects modeling, average marginal effects, post-estimations of accuracy and goodness of fit,
dynamic thresholds for variance inflation factors, risk prediction nomograms, etc.) and we
have got results that agree across them. Cross-validation [45] means that we tested using
many subsamples randomly (CVLASSO) and not randomly (clusters using four criteria)
extracted from the entire dataset. Reproducibility [46] means that our findings are 100%
replicable starting from the public dataset we have used and from all metadata and steps
described as detailed as possible in this paper. To that extent, the procedure can be useful
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to better understand other complex socio-economic phenomena, beyond our case example
of bribery tolerance.
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