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Abstract: Let F = {Fθ : θ ∈ Θ ⊂ R} be a family of probability distributions indexed by a parameter
θ and let X1, . . ., Xn be i.i.d. r.v.’s with L(X1) = Fθ ∈ F . Then, F is said to be reproducible if for
all θ ∈ Θ and n ∈ N, there exists a sequence (αn)n≥1 and a mapping gn : Θ → Θ, θ 7−→ gn(θ)

such that L(αn ∑n
i=1 Xi) = Fgn(θ) ∈ F . In this paper, we prove that a natural exponential family F is

reproducible iff it possesses a variance function which is a power function of its mean. Such a result
generalizes that of Bar-Lev and Enis (1986, The Annals of Statistics) who proved a similar but partial
statement under the assumption thatF is steep as and under rather restricted constraints on the forms
of αn and gn(θ). We show that such restrictions are not required. In addition, we examine various
aspects of reproducibility, both theoretically and practically, and discuss the relationship between
reproducibility, convolution and infinite divisibility. We suggest new avenues for characterizing other
classes of families of distributions with respect to their reproducibility and convolution properties .

Keywords: natural exponential families; reproducibility; infinite divisibility; variance function;
functional equation

1. Introduction

The notion of a distribution function, F, which is reproductive with respect to a
parameter θ ∈ Θ, a nonempty set of R, was first introduced by Wilks [1] as follows: Let X1
and X2 be independent r.v.s with distributions F(.; θ1) and F(.; θ2), respectively. If for any
θ1, θ2 ∈ Θ, the distribution of Y = X1+ X2 is F(.; θ1 + θ2), then the distribution of F(.; θ)
is said to be reproductive with respect to θ. In this respect, Wilks mentioned the Poisson,
chi-square and normal distributions.

After Wilks introduced this definition, there were early attempts to characterize such
families, c.f.,Bolger and Harkness [2], Baringhaus, Davies, and Plachky [3] and Bar-Lev
and Enis [4], but all ended in characterizing the Poisson distribution. A broader definition
of Wilk’s concept was given by Bar-Lev and Enis [5], and then applied to one-parameter
natural exponential families (NEFs) in-depth analysis. (Well known preliminaries on NEFs
will be presented in Section 3). The definition of reproducibility given by Bar-Lev and
Enis [5] is the following.

Definition 1. Let F = {Fθ : θ ∈ Θ ⊂ R} be a family of distributions indexed by a parameter
θ ∈ Θ, where Θ has a nonempty interior. Let X1, . . ., Xn be i.i.d. r.v.s with L(X1) = Fθ ∈ F
(where L(X) stands for the law of X1). Then, F is said to be reproducible if for all θ ∈ Θ and
n ∈ N, there exists a sequence (αn)n≥1 (called the stabilizing constants), which is either identically
equal to 1 or it is a one-to-one mapping αn : N→ R and there exists a mapping gn : Θ → Θ,
θ 7−→ gn(θ) such that

L(αn ∑n
i=1 Xi) = Fgn(θ) ∈ F . (1)

Or equivalently, in terms of the characteristic functions, the reproducibility property is
equivalent to requiring that

f (t, gn(θ)) = f n(αnt, θ), ∀n ∈ N, t ∈ R and θ ∈ Θ,
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where f is the characteristic function of X1.

Note that for αn ≡ 1, the reproducibility property means that the convolution belongs
to the same family, while for αn = 1/n, it means that the distribution of the sample mean
belongs to the same family as each of the Xi’s.

Bar-Lev and Enis [5] implemented their Definition 1 to the class of natural exponential
families (NEFs) by imposing the following restrictions:

(i) gn is an onto mapping,

(ii) αn has the form αn = nβ, β ∈ R,

(iii) The NEF F is steep,

(2)

where steepness of F means that the mean parameter space of F coincides with the interior
of its common convex support. This definition of steepness will be further elaborated
in the sequel. Their implementation of the notion of reproducibility of NEFs led to the
characterization of the class of steep NEFs having power variance functions (VFs) .

The analysis of the notion of reproducibility from a different angle than that formulated
in Definition 1 and Equation (1) was given in Bar-Lev and Cassalis [6,7]. They defined
an NEF F to be reproducible in the broad sense, as follows. Let F be an NEF which
is associated with a Laplace transform L. If there exists a triple (α, β, λ) ∈ (R,R,R+)
such that fα,β(F ) = Fλ, where fα,β(F ) is the image of F under the affine transformation
fα,β : x 7−→ αx + β and Fλ is the NEF associated with the Laplace transform Lλ, then F is
said to be reproducible in the broad sense. They obtained a complete classification of the
class of reproducible NEF’s in the broad sense and showed that this class is composed of
NEFs having power VFs, exponential VF, as well as NEF’s constituting discrete versions
of the latter NEF’s. In a completely different aspect and not at all related to the notion of
reproducibility, the class of NEFs having power VF was introduced by Tweedie [8] and
won publicity only after being described in Jorgensen [9].

In this paper, we adhere to the original definition of reproducibility presented in
Definition 1. In Section 2, we will present a number of issues related to reproducibility
for general classes of parametric families of distributions and discuss some practical
aspects. Section 3 is devoted to reproducibility in NEFs. Indeed, we will prove that
the three requirements in (2) assumed by Bar-Lev and Enis [5] are not needed as one
can obtain their characterization results and more without assuming that (2) holds. Our
method of proof enable to delineate all NEFs having power VFs including those missed by
Bar-Lev and Enis [5] due to their steepness restriction. Naturally, the latter assumption did
not allow them to characterize the subclass of non-steep NEFs having VFs with negative
power. Such a subclass of non-steep NEFs is huge as it contains all NEFs generated by
stable distributions with a stable index in (1, 2). In the same context, one should note that
Tweedie [8] was wrong when claimed that such a subclass does not exist (see Jorgensen [9]
and Bar-Lev [10] for more details). In fact, we will prove in Section 3 that the three
assumptions in (2) follow trivially from the proof presented in this paper.

2. Some General Noteworthy Comments on the Notion of Reproducibility

A number of noteworthy comments on the notion of reproducibility will now follow:

1. Restriction on the support of F
It would appear pretentious to think that one can characterize the property of re-

producibility for all parametric families. It, therefore, seems necessary to limit ourselves
in a number of aspects. One of them, for example, is to require that all members of F
possess a common support. The second is inherently obvious as to require that the family
F = {Fθ : θ ∈ Θ ⊂ R} is identifiable, i.e., if θ1, θ2 ∈ Θ with θ1 6= θ2 then Fθ1 6= Fθ2 on at
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least one Borel set. Accordingly, in order to aim efficiently at characterizing reproducible
parametric families, one should impose the following assumption.

Assumption 1.

(i) For all θ ∈ Θ, Fθ possesses a common support S. Let (c, d) denote the interior of the convex-
hull of S, where −∞ ≤ c < d ≤ ∞.

(ii) F is identifiable.

Some immediate conclusions which follow from Assumption 1 are presented in the
following lemma.

Lemma 1. Suppose that F = {Fθ : θ ∈ Θ ⊂ R} is reproducible in the sense of Definition 1 and
that it satisfies Assumption 1. Then,

(i) c and d do not depend on θ,
(ii) for any fixed n ∈ N, the mapping gn is one-to-one from Θ into itself,
(iii) if αn 6= 1/n, then either c = −∞ and d = 0 or ∞; or c = 0 and d = ∞.
(iv) αn > 0, for all n ∈ N.

Proof.

(i) Simple, as F depends on θ only and is assumed to have a common support S.
(ii) If θ1 6= θ2, then gn(θ1) 6= gn(θ2), otherwise a contradiction to the identifiably of F

will follow.
(iii) If αn 6= 1/n, then relation (1) implies that

nαn(c, d) = (nαnc, nαnd) = (c, d) (3)

and thus, the desired result is obtained.
(iv) This follows from (3).

The situation where αn = 1/n, which is excluded in Lemma 1, is satisfied by several
reproducible families that are not NEFs. The most famous example is the Cauchy distri-
bution (with an unknown scale parameter θ and a fixed location parameter δ) having a
density

fθ(x) =
1

πθ
[
1 + ( x−δ

θ )2
] ,−∞ < x < ∞, θ ∈ R.

For this example, L(X̄n) = L(X1), c = −∞, d = ∞ and gn(θ) ≡ θ for all n ∈ N.

2. The restriction that c and d do not depend on θ and that αn is a one-to-one mapping

We restricted the analysis to a situation where both c and d do not depend on θ, as
otherwise, not placing such a restriction, would have made the task of the reproducibility
characterization almost impossible to execute. Below are two examples (out of many) of
reproducible families of distributions for which either c or d depend on θ.

Example 1. Let F = {Bin(θ, 1/2); θ ∈ N}, αn ≡ 1 and gn(θ) = nθ, then αnYn ∼ Bin(gn(θ),
1/2) ∈ F . Note that here d depends on θ and αn is not one-to-one.

Example 2. Let U1, . . .Un be n i.i.d. U(0, θ) r.v.s. For k− 1 < θ ≤ k, denote by fθ the density of
∑k

i=1 Uk. Then, this density has the reproducibility property. Note that S depends on θ and αn is
not one-to-one.

3. Reproducibility and infinite divisibility

At first intuitive glance, it was conjectured that reproducibility of F will entail its
infinite divisibility. Recall that a probability distribution is called infinitely divisible if
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it can be expressed as the probability distribution of the sum of an arbitrary number
of independent and identically distributed random variables. Accordingly, an infinite
divisibility of a probability distribution entails that the convex-hull of its support cannot be
bounded (c.f., Chapter 17 of Feller [11]).

The two examples above show that such a conjecture is false as the corresponding
families have bounded supports and thus are not infinitely divisible. However, then the
question arose as to whether reproducible families with unbounded support are infinitely
divisible. The following example (provided to the author via a personal communication by
Gérard Letac - Institut de Mathématiques de Toulouse, Université Paul Sabatier, France)
shows that the related conjecture is also false.

Example 3. This is an example in which S is unbounded and does not depend on θ. Let a > 0, n
be a positive integer, Z ∼ N(0, 1), Bn ∼ B(n, 1/2), where Z and Bn are independent. Define

Y =
√

naZ + Bn,

then, the distribution Pa,n of Y depends on two parameters n and a. However, if one defines the
parameter

θ =
1

1 + a
+ n, θ > 1,

then, Pθ = Pa,n is parameterized by θ and has the reproducibility property, although it is not
infinitely divisible.

4. Reproducibility and convolutions

Let F be reproducible in the sense of (1), i.e.,

L(αn ∑n
i=1 Xi) = Fgn(θ) ∈ F ,

from which it follows that the convolution of the Xis, i = 1, . . ., n, is

P
(
∑n

i=1 Xi ≤ x
)
= Fgn(θ)(

x
αn

), (4)

where Fgn(θ) is the distribution of X1 with parameter gn(θ) ∈ Θ, i.e., the distribution of a
sum of i.i.d. r.v.s has the same distribution type as any of its components.

Convolutions of n i.i.d. random variables play an important role both in statistical
inference, probability, stochastic processes, risk theory and insurance. Some immediate
examples are (i) For NEFs in statistical modeling, Yn = ∑n

i=1 Xi is the minimal sufficient
statistic for θ (see below), the distribution of which is needed for all statistical inference
aspects on θ; (ii) for an M/G/1 queuing system with “first come, first served” queue
discipline and service time distribution F, the n-fold convolution of F with itself is needed
for computing the distribution of the length of the busy period; (iii) in insurance risk, the
aggregated claim is a random sum of i.i.d. r.v.s with common distribution F and thus the
n-fold convolution of F is needed for various computations (e.g., Shushi and Yaob [12],
Bahnemann [13]). In general, however, the derivation of a convolution is usually rather
complex and cumbersome. Thus, if F belongs to a reproducible family, then the convolution
has the same distribution type as any of its components (as in (4)) and thus no further
complex computations are needed at all. Indeed, the reproducibility property has been
employed in Bar-Lev and Ridder [14] for computing the insurance risk of aggregated claim
data and then implemented to some real car insurance claim data.
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5. An extension of the reproducibility notion to the multi-parameter case

Naturally, the reproducibility property can be easily extended in the sense of Defini-
tion 1 to the multi-parameter case. Three examples of reproducible two-parameter (θ1, θ2)
NEFs appear in Bar-Lev and Reiser [15]. These are the two-parameter gamma, inverse
Gaussian and normal NEFs. For these three NEFs, the distribution of the sample mean X̄n
is of the same type as that of X1 but with parameters (nθ1, nθ2) (see Bar-Lev and Reiser [15]
for the definition of the parameters (θ1, θ2) for each of these NEFs).

Obviously, from both theoretical and practical (convolutions) aspects it would be interest-
ing to characterize families of multi-parameter distributions by the reproducibility property.

3. NEFs—Preliminaries and Characterization by the Reproducibility Property

In this section, we first present some required preliminaries on NEFs and their as-
sociated VFs. These preliminaries are taken from the fundamental paper of Letac and
Mora [16]. We will then introduce the main result and characterize reproducible NEFs in
the sense of Definition 1. In particular, we will show that the sequence αn has the form nβ

for some β ∈ R, and that an NEF is reproducible iff it possesses a power VF. Afterwards,
we present a table including the class reproducible NEFs with power VFs along with their
associated αn, gn(θ), S, and Θ.

3.1. Some Preliminaries on NEFs

Let ν be a positive Radon measure on R with convex support Cν. Consider the set

Dν
.
=

{
θ ∈ R : Lν(θ)

.
=
∫
R

exp(θx)ν(dx) < ∞
}

, (5)

and assume that Θν
.
= int Dν is nonempty. Then, the NEF F (ν) generated by ν is defined

by the set of probability distributions

F (ν) .
=
{

F
(
θ, ν(dx)

)
= exp

(
θx− kν(θ)

)
ν(dx) : θ ∈ Θν

}
, (6)

where kν(θ)
.
= log Lν(θ) is the cumulant transform of ν and kν is strictly convex and real

analytic on Θν. Moreover, k′ν(θ) and k′′ν (θ), θ ∈ Θν, are the respective mean and variance
corresponding to F(θ, ν), and the open interval Mν

.
= k′ν(Θν) is called the mean domain

of F (ν).
An important observation is that measure ν is not unique for F (ν). LetM be the set

of Radon measures ν on R for which Lν(θ) < ∞ on domain Θν. Consider two measures
ν, ν∗ ∈ M, and suppose that ν∗ is an exponential shift of ν; i.e., ν∗(dx) = ea+bxν(dx) for
some real a, b. Then, a simple calculation shows that F (ν) = F (ν∗). This also holds in
reverse, if F (ν) = F (ν∗) for two measures ν, ν∗ ∈ M, then one is an exponential shift of
the other and, obviously, they are equivalent in the sense that each is absolutely continuous
with respect to the other. A VF (V, M) of NEF F determines the NEF uniquely within the
class of NEFs in the following sense: If F1 and F2 are NEFs with respective VFs (V1, M1)
and (V2, M2) such that V1 = V2 on J = V1 ∩V2 6= φ, then F1 = F2, c.f., Mora [17,18]. This
would imply the following interesting observation: if (V, M) is a VF of an NEF F , then

The mean parameter space M is the largest open interval
on which V is positive real analytic.

(7)

Consequently, we may denote the NEF by F = F (ν) and the mean domain M = Mν

to stress the fact that these do not depend on ν.
Since the function k′ν : Θν → M is one-to-one, its inverse function

(
k′ν
)−1 : M → Θν

is well defined. Since k′ν is continuous and increasing, then M, the image of k′ν(Θ) is an
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interval, say (a, b), on the real line. Now, when we compute the variance Vν(θ)
.
= k′′ν (θ) of

the distribution F(θ, ν) as a function of the mean m ∈ M, i.e.,

Vν(m) = k′′ν
(
(k′ν)

−1(m)
)
, (8)

then, it also does not depend on ν, and we can suppress the dependence on ν and write
V(m) instead of Vν(m). Furthermore, when no confusion is made, we shall suppress
the dependence on ν of all other notations introduced above and write C, D, Θ,. . . , for
Cν, Dν, Θν. . .

Finally, F is called steep iff M = int C (or equivalently, if kν is essentially a smooth
convex function on Θ—for a definition, see Barndorff-Nielsen [19]).

Now, F is said to have a power, VF, iff it has the form

V(m) = δmγ, δ > 0, γ ∈ R. (9)

We are now ready to present the reproducibility characterization of NEFs in the follow-
ing proposition. This proposition states that F is reproducible (in the sense of Definition 1)
iff it possesses a power VF. Accordingly, for brevity, the details of a classification of all
NEFs having a power VFs is given in Section 3.2 and not in the proof of the proposition.

In addition, in a manner similar to Part (iii) of Lemma 1, it follows that

nαn M = (nαna, nαnb) = (a, b)

and thus M is either (0, ∞) or (−∞, ∞) (for more details, see Bar-Lev and Enis [5]).

Proposition 1. Let F be an NEF generated by a basis ν and associated by a VF (V, M). Then, F
is reproducible in the sense of Definition 1 iff V is a power VF of the form (9). The values of γ for
which (9) is a VF of an NEF along with the corresponding αn, gn(θ), kp(θ), Θ and M are presented
in Table 1 below.

Proof. If F is an NEF with power VF of the form (9), then trivially F is reproducible (see
also Table 1 below). The reverse implication is made as follows. Assume now that F is a
reproducible NEF. We shall henceforth exclude the case where αn ≡ 1 (i.e., convolution)
as this case was treated by Bar-Lev and Enis [4]—without assuming (2)—and led to
the characterization of the Poisson NEF. We shall also exclude the case αn = 1/n as
by Lemma 2.1 in Bar-Lev and Enis [5], no one-parameter reproducible NEF exists for this
case. Accordingly, we shall assume throughout the sequel that

αn 6= 1 and αn 6= 1/n. (10)

Let ν0 ∈ M be a specific chosen basis of F . Then, by (1), the probabilities of
αn ∑n

i=1 Xi are
P(ν0(dx); θ) = exp(gn(θ)x− k(gn(θ))ν0(dx), θ ∈ Θ. (11)

Let ν∗n0 be the n-th fold convolution of the chosen basis ν0 of F . Then, the probabilities
of ∑n

i=1 Xi are given by
exp(θx− nk(θ))ν∗n0 (dx), θ ∈ Θ, (12)

and thus from (12), it follows that the probabilities of αn ∑n
i=1 Xi are given by

exp(θ
x

αn
− nk(θ))

1
αn

ν∗n0 (dx), θ ∈ Θ. (13)
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Consequently, by comparing (11) and (13) we obtain that

ν0 = 1
αn

ν∗n0 , almost everywhere ν0,

gn(θ) =
θ

αn
, θ ∈ Θ, n ∈ N, and

k(gn(θ)) = nk(θ)), θ ∈ Θ, n ∈ N.

(14)

Hence, by comparing (11) and (13), we obtain

gn(θ) =
θ

αn
(15)

and
nk(θ) = k(gn(θ)). (16)

Substitute (15) into (16), we have

nk(θ) = k
(

θ

αn

)
. (17)

Denote αn
.
= α(n), n ∈ N, and let y = y(n) .

= 1/α(n). Since by assumption α(n) is a
one-to-one mapping from N into R (see part (ii) of Lemma 1), its inverse

n = α−1(
1
y
)

.
= h(y) (18)

is well defined and thus by using (18) in (17), we obtain

k(θy) = k(θ)h(y), θ ∈ Θ, (19)

By Aczél ([20], Theorem 4, pp. 144–145), the general solution of the functional equation

f (xy) = g(x)h(y) (20)

with positive x and y and f continuous at a point is

f (t) = abtc, g(t) = atc, h(t) = btc (21)

(supplemented with a trivial solution, which is irrelevant in our situation). In order to
apply the solution (21) of (20) to (19), we need to show that the premises of Theorem 4 in
Aczél [20] are met. Indeed, k is real analytic on Θ and thus is continuous there. In addition,
by Lemma 1, y = 1/α(n) is positive. Now, if Θ contains an open interval (a1, b1) ⊂ R+,
then we will confine any further analysis of the problem to this interval. However, if
otherwise Θ ⊂ R−, we define x = −θ and r(x) = k(−x) and apply the solution (21) of (
20) to r. Therefore, for simplicity and without any loss of generality, we may assume that
Θ contains an open interval (a1, b1) ⊂ R+ and thus we will continue with k instead of r.
Hence, Theorem 4 of Aczél [20] can be applied for k = f = g. In which case, we obtain

b = 1,

k(t) = atc, t ∈ (a1, b1) ⊂ R+ (22)

and
n = h(y) = yc = (α(n))−c, n ∈ N,

which implies that

α(n) = n−
1
c and gn(θ) = θn

1
c , where by (10) c 6= 1. (23)
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We now exclude the case c = 2 as it will be treated separately in the sequel and
thus we assume that c 6= 2. Let m = k′(t) = actc−1 and V(t) = k

′′
(t) = ac(c− 1)tc−2 be

the mean and variance of F defined on (a1, b1) and let M1 = k′((a1, b1)) be the image
of (a1, b1) under k′.Since V(t) > 0 on t ∈ (a1, b1), k′ is strictly increasing on (a1, b1) and
thus its inverse

(
k′ν
)−1 : M1 → (a1, b1) is well defined and is given by

(
k′ν(m)

)−1
=( m

ac
)1/(c−1),ac > 0, m ∈ M1. Hence, V expressed in terms of m ∈ M1 has the form

V(m) = ac(c− 1)(ac)−
c−1
c−2 m

c−1
c−2 , ac > 0, c− 1 > 0, m ∈ M1.

Let
δ = ac(c− 1)(ac)−

c−1
c−2 and γ =

c− 1
c− 2

, c 6= 1, 2

then, V has the form

V(m) = δmγ, δ > 0, γ < 0 or γ > 0, γ 6= 1, m ∈ M1 = (a1, b1) ⊂ R+. (24)

As by (7), the mean parameter space M of V is the largest open interval on which V
is positive real analytic; it follows that the mean parameter space corresponding to V in
(24) is M = R+. Accordingly, if F is reproducible in the sense of Definition 1, then its VF is
necessarily of the form

(V, M) = (δmγ,R+), δ > 0, γ < 0 or γ > 0, γ 6= 0, 1. (25)

In order to conclude the proof we need to consider the two remaining cases: γ = 0
(c = 2) and γ = 1 (c = 1). Note that for γ = 0, the VF is, identically, a positive constant
δ > 0 and thus the corresponding mean parameter space is M = R. Indeed, this case with
γ = 0 was treated in Theorem 2.1 of Bar-Lev and Enis [5]. It was shown there that F is
reproducible with stabilizing constants αn = n1/2 iff F is the family of normal distributions
with constant variance δ (i.e., F is an NEF having a power VF with power parameter
γ = 0). The case γ = 1 was analyzed in Bar-Lev and Enis [4]. It was shown that F is
reproducible with stabilizing constants αn ≡ 1 iff F is the family of Poisson distributions
(i.e., F is an NEF with power VF and power parameter γ = 1).

Thus, we have proven that an NEF F is reproducible in the sense of Definition 1 iff it
possesses a power VF. The appropriate forms of the stabilizing constants αn and of gn(θ)
are presented in Table 1 below and this concludes the proof. Furthermore, for less common
used distributions, the corresponding probability densities will be specified.

3.2. A Classification of NEFs with Power VFs and Their Associated αn, gn(θ), kγ(θ), Θ and M

The permissible values of γ for which (9) is a VF of an NEF along with the corre-
sponding αn, gn(θ), kp(θ), Θ and M are taken from Jorgensen [9], Bar-Lev and Enis [5] and
Bar-Lev and Cassalis [7]. Only if γ ∈ (0, 1), then no NEF exists. For all other values of γ,
we have the following:

1. For γ ∈ (−∞, 0), the NEF F is generated by an extreme stable distribution with stable
index 1 < τ < 2, where τ = (γ− 2)/(γ− 1), in which case C = R and M = R+,

i.e., F is not steep. Here, αn = n
1−γ
γ−2 and gn(θ) = θn

γ−1
γ−2 . (As already mentioned

above, Bar-Lev and Enis [5] showed that non-steep NEFs exist if γ < 0, whereas
Tweedie [8] claimed that such NEFs do not exist by utilizing an incorrect claim). Here,
the associated absolutely continuous probability density is quite cumbersome as it
depends on several parameters. Consequently, we do not present it here and the
interested reader is referred to Chapters 6 and 7 of Lukacs [21].

2. For γ = 0, the corresponding NEF F is the normal one with variance equaling the
constant δ. F is steep with C = M = R+, αn = n−1/2 and gn(θ) = n−1/2θ.

3. For γ ∈ (0, 1), no NEF exists with VF in the form (9).



Mathematics 2021, 9, 1568 9 of 11

4. For γ = 1, the corresponding NEF F is Poisson. F is steep with C = M = R+, αn ≡ 1
and gn(θ) = n−1/2θ.

5. For γ ∈ (1, 2), the corresponding NEF F is a compound Poisson NEF generated by

gamma distributions. F is steep with C = M = R+, αn = n
1−γ
γ−2 and gn(θ) = θn

γ−1
γ−2 .

Here, the corresponding cumulative distribution function is given by

P(X ≤ x) = e−pE(x) + e−p
∫ x

0

[
eθt

∞

∑
n=1

bnt−nρ−1

n!Γ(−nρ)

]
dt,

where E(x) is a cumulative distribution function degenerated at 0 and

ρ =
2− γ

1− γ
, p =

ρ− 1
δρ

(
δθ

ρ− 1

)ρ

, b = −ρ−1
[

1− ρ

δ

]1−ρ

, ρ < 0, θ < 0 and δ > 0.

6. For γ = 2, the corresponding NEF is gamma one with shape parameter δ−1. However,
as was shown in Bar-Lev and Enis (1986) it is not reproducible when considered as a
one-parameter NEF. It is reproducible when considered as a two-parameter NEF (see
part 5 of the previous section).

7. For γ ∈ (2, ∞), the corresponding NEF is generated by a positive stable distribution
with stable index 0 < α < 1, where α = (γ− 2)/(γ− 1). F is steep with C = M =

R+, αn = n
1−γ
γ−2 and gn(θ) = θn

γ−1
γ−2 . Here, the associated absolutely continuous stable

probability density is νρ(dx) = hρ(x)dx (c.f., Bar-Lev and Enis [5]) where

hρ(x) = − 1
π

∞

∑
k=0

(−1)k

k!
sin(πρx)

(1− ρ)k(1−ρ)Γ(ρk + 1)
ρkδk(1−ρ)xρk+1

, x > 0, θ < 0, α > 0, 0 < ρ < 1.

The above NEFs are displayed in the following table along with their corresponding
αn, gn(θ), kγ(θ), Θ and M.

Table 1. NEFs having Power VFs.

γ NEF Type Θ M C kγ(θ) α(n) gn(θ)

(−∞, 0) Extreme stable R+ R+ R 1
a(2−γ) (a(1− γ)θ)

(γ−2)
γ−1 n

1−γ
γ−2 θn

γ−1
γ−2

0 Normal R R R 1
2 aθ2 ±n−1/2 ±n−1/2θ

1 Poisson R R+ R+
0

1
a eaθ 1 θ + 1

a ln n

(1, 2) Compound Poisson R− R+ R+
0

1
a(2−γ) (a(1− γ)θ)

(γ−2)
γ−1 n

1−γ
γ−2 θn

γ−1
γ−2

2 gamma R− R+ R+ 1
a ln(− 1

aθ ) − −

(2, ∞) positive stable R− R+ R+ 1
a(2−γ) (a(1− γ)θ)

(γ−2)
γ−1 n

1−γ
γ−2 θn

γ−1
γ−2

4. Conclusions and Topics for Further Research

Convolutions of n i.i.d. random variables play an important role in statistical infer-
ence, probability and stochastic processes. However, they are typically very complex,
intricate and cumbersome to calculate. Reproducible families of distributions in the sense
of Definition 1 are, therefore, very useful in allowing a simple computation of such con-
volutions by employing (4). The convolution of i.i.d. r.v.s has the same distribution type
as any of its components up to a dilation. Various applications of reproducibility and
convolution are presented in part 5 of Section 2.

In this study, we have classified all one-parameter reproducible NEFs in the sense of
Definition 1 and showed that their corresponding VFs are a power of their mean, as in (9).
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However, there are still various research avenues concerning the notion of reproducibility
that need to be explored. Below are some examples:

1. Reproducibility for the multi-parameter case

When F is a multi-parameter family of distributions depending, say, on k parameters
(θ1, . . ., θk), then under which conditions is it reproducible in the sense of Definition 1? As
we have already seen from the one-parameter case, such conditions cannot be found for
general families. We will, therefore, need to limit the analysis to families of distributions
with certain characteristics such as multi-parameter NEFs. Indeed, in Part 5 of Section 2, we
already indicated that for a sub-class of two-parameter NEFs, which include the gamma,
normal and inverse Gaussian NEFs with parameters (θ1, θ2); the distribution of X̄n is also
gamma, normal and inverse Gaussian but with parameters (nθ1, nθ2). For these three cases,
the sequence of stabilizing constants is αn = n−1 with

(
g1

n(θ1), g2
n(θ1)

)
= (nθ1, nθ2).

2. Reproducibility for non-NEFs families

We have seen in Examples 1 and 2 that one of the terminal points of the support of the
reproducible families of distributions presented depends on the parameter θ. Accordingly,
one might consider the reproducibility property for huge classes of distributions for which
at least one of the terminal points of their respective support depends on a parameter
(as the uniform distribution on the interval (θ1, θ2) or the shifted exponential distribution
with scale and location parameters θ1 and θ2, respectively) . One class of this type was
introduced by Hogg and Craig [22]. Another class of truncated exponential families was
introduced by Bar-Lev [23] and further elaborated by numerous authors in various fields
of statistical inference, c.f., Vancak, Goldberg, Bar-Lev, and Boukai, B. [24] and the referees
cited therein.

3. Reproducibility and infinite divisibility

We have seen that all one-parameter reproducible NEFs are also infinitely divisible.
On the other hand, Examples 1–3 demonstrate that there are reproducible families that
are not infinitely divisible. Accordingly, one can pose the following challenging problem:
Under which necessary and/or sufficient conditions are reproducible families also infinitely
divisible and vice versa?
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