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Abstract: The behavior of all the solutions of the logistic equation with delay and diffusion in a
sufficiently small positive neighborhood of the equilibrium state is studied. It is assumed that the
Andronov–Hopf bifurcation conditions are met for the coefficients of the problem. Small pertur-
bations of all coefficients are considered, including the delay coefficient and the coefficients of the
boundary conditions. The conditions are studied when these perturbations depend on the spatial
variable and when they are time-periodic functions. Equations on the central manifold are con-
structed as the main results. Their nonlocal dynamics determines the behavior of all the solutions
of the original boundary value problem in a sufficiently small neighborhood of the equilibrium
state. The ability to control the dynamics of the original problem using the phase change in the
perturbing force is set. The numerical and analytical results regarding the dynamics of the system
with parametric perturbation are obtained. The asymptotic formulas for the solutions of the original
boundary value problem are given.

Keywords: logistic equation; diffusion; dynamics; stability; bifurcations; asymptotics; edge conditions;
periodic solutions

1. Introduction

The logistic equation with delay

u̇ = r[1− au(t− T)]u (1)

is the natural generalization of the classical logistic equation. For example, it describes
well the dynamics of biological population level changes [1–4]. All parameters in (1) are
positive, and only non-negative solutions are considered, i.e., u(t) ≥ 0. The parameter r is
called the Malthusian coefficient, T is the delay time (for example, the age of individuals
puberty). The parameter a characterizes the resistance of the external environment. The
literature on the study of the Equation (1) is extensive (see, for example, Refs. [5–9]).

We note that the zero solution in (1) is unstable, and the positive equilibrium state
u0 = a−1 is asymptotically stable under the condition 0 < rT ≤ π

2 . It was shown in [5] that
the equilibrium state is globally stable for 0 < rT < 3

2 , i.e., each solution with a positive
initial function tends to u0 as t→ ∞. In the same paper [5], it was hypothesized that the
global stability takes place in the wider range of parameters 0 < rT ≤ 37

24 . This hypothesis
is proved in [7,8]. The equilibrium state is unstable for rT > π

2 , and (1) contains the stable
cycle u0(t). The asymptotic behavior of the cycle has the form

u0(t) = a−1
0

(
1 +
√

ε

[
ξ(τ) exp(i

π

2T0
t) + ξ̄(τ) exp(−i

π

2T0
t)
])

+ O(ε) (2)

for 0 < rT − π
2 � 1. The cycle u0(t) is relaxation for rT � 1. Its asymptotic behavior

is given in [9]. We also note that the number of unstable cycles in (1) grows indefinitely
as rT → ∞.

We consider the logistic equation with delay and diffusion

∂u
∂t

= d
∂2u
∂x2 + r[1− au(t− T, x)]u, x ∈ [0, 1] (3)
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with the boundary conditions

∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=1

= 0. (4)

We fix the space C[−T,0] ×W2
2[0,1] as the space of initial conditions that are the non-

negative functions φ(t, x) for t ∈ [−T, 0], x ∈ [0, 1] satisfying the condition (4). The
boundary value problem (3) and (4) naturally generalizes the Equation (1) for the problems
of spatial interaction within one population. The boundary value problems of this type
have been studied by many authors (see, for example, Refs. [10–12]). A fairly complete
overview is given in [10].

First, we assume that all the coefficients are independent of t and x. The boundary
value problem (3) and (4) linearized on u0 has the form

∂v
∂t

= d
∂2v
∂x2 − rv(t− T, x),

∂v
∂x

∣∣∣∣
x=0

=
∂v
∂x

∣∣∣∣
x=1

= 0. (5)

The location of the roots of the characteristic quasi-polinomial for (5)

λ = −d(2πk)2 − r exp(−λT) (k = 0,±1,±2, . . .) (6)

is of great importance for the stability of the equilibrium state u0 of the boundary value
problem (3) and (4). All roots of (6) have negative real parts under the condition 0 < rT < π

2 ,
and (6) has the root with a positive real part as rT > π

2 . Thus, in the first case, the solution
u0 is asymptotically stable, and is unstable in the second case. We consider the critical case
when the equality

r0T0 =
π

2
(7)

holds for d > 0, r = r0 and T = T0. In this case, the Equation (6) has a pair of pure
imaginary roots ±iω0 for k = 0 where ω0 = 2π/T0, and all its other roots have negative
real parts.

We present the observation of the boundary value problem (3) and (4) dynamics in
the neighborhood of the equilibrium state u0 for the coefficients d and a, which are close
to some values d0 and a0, and the parameters r and T close to r0 and T0 for which the
equality (7) holds. Let

d0 = d0 + εd1, a = a0 + εa1, r = r0 + εr1, T = T0 + εT1 (8)

where ε is the small positive parameter

0 < ε� 1. (9)

We note that the positive equilibrium state u0 = u0(ε) has the form u0 =

a−0 1
(

1− εa1a−1
0 + . . .

)
.

Under the above conditions, the two-dimensional stable local invariant integral mani-
fold M(ε) exists in some sufficiently small and ε-independent neighborhood of the equilib-
rium state u0(ε) [13,14]. On it, the boundary value problem (3) and (4) can be represented
in the form

dξ

dτ
= λ1ξ + σξ|ξ|2 (10)

up to terms of the order O(ε2) where τ = εt, and the equalities



Mathematics 2021, 9, 1566 3 of 18

λ1 =

(
1 +

π2

4

)−1[(π

2
+ i
)

r1 + λ2
0T1

(
1− i

π

2

)]
σ = −λ0[3π − 2 + i(π + 6)]

(
10(1 +

4
π2 )

)−1

are met for the coeffiicients λ1 and σ.
The boundary value problem (3) and (4) solutions u(t, ε) are related with the (10)

solutions by the asymptotic equality

u(t, ε) = u0(ε) + ε1/2
(

ξ(τ) exp
(

i
π

2T0
t
)
+ ξ(τ) exp

(
−i

π

2T0
t
))

+ O(ε). (11)

We note that <σ < 0. Therefore, there is a stable cycle ξ0(τ) = ξ0 exp(iφ0τ) for all
<λ1 > 0 in (10). Hence, in (3) and (4), there is the same stable cycle as in (1)

u0(t, ε) = u0(ε) +
√

ε
[
ξ0(τ(1 + O(ε))) exp(i 2π

T0
t) + ξ̄0(τ(1 + O(ε))) exp(−i 2π

T0
t)
]

+ εu2(t, τ) + ε3/2u3(t, τ) + . . .
(12)

where ξ0(τ) = ξ0 exp(iφ0τ), ξ0 =
[
10
(

π
2 λ1 + λ2

0T1
)
(3π − 2)−1]1/2, φ0 = =α1 + ξ2

0=d.
The above results are well known [15–17]. They describe the Andronov–Hopf bifurca-

tion in regard to the boundary value problem (3) and (4).
In this paper, the Andronov–Hopf bifurcation is studied in more complex situations.

In Sections 2–4, we suppose that the coefficients in (3) and (4) are close to the constants and
depend on the spatial variable.

d = d0 + εd1(x), a = 1+ εa1(x), r = r0 + εr1(x), T = T0 + εT1(x), r0T0 =
π

2
(13)

where all the functions are sufficiently smooth.
The Andronov–Hopf bifurcation under the conditions (13) is considered in Section 2.

In Section 3, the perturbations also concern the boundary conditions. The Dirichlet bound-
ary conditions are considered in Section 4. Section 5 considers non-autonomous perturba-
tions. In particular, the problem of parametric resonance is considered.

2. Spatially Inhomogeneous Perturbations of Boundary Value
Problem (3) and (4) Coefficients

We consider the boundary value problem (3) and (4) under the conditions (13).

2.1. Andronov–Hopf Bifurcation under Neumann Type Boundary Conditions

First, we find the asymptotic behavior of the positive equilibrium state K(x, ε) as
ε→ 0. The equation

dK′′ + r[1− aK]K = 0, K′
∣∣
x=0 = K′

∣∣
x=1 = 0 (14)

holds for it.
Since the value K ≡ 1 is a simple root of the nonlinear function in (14) for ε = 0, it is

natural to look for K(x, ε) in the form

K(x, ε) = 1 + εK1(x) + ε2K2(x) + . . . (15)

We substitute (15) into (3) and (4) and collect the coefficients at the same powers of
ε. We successively find K1(x), K2(x), . . . from the resulting relations. So, collecting the
coefficients at the first power of ε, we obtain
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d0K′′1 − r0(K1 + a1) = 0, K′1
∣∣
0 = K′1

∣∣
1 = 0. (16)

From here,

K1(x) = κ−1

 1∫
0

sinh(κ(1− s)a1(s))ds− (sinh κ)−1 cosh κx ·
1∫

0

cosh(κ(1− s)a1(s))ds


where κ =

(
r0d−1

0

)1/2
.

The following result holds.

Theorem 1. The boundary value problem (3) and (4) has the positive equilibrium state K(x, ε) for
which the asymptotic equality (15) holds.

2.2. Linear Analysis

We linearize (3) and (4) at K(x, ε). As a result, we obtain the boundary value problem

∂v
∂t

= d
∂2v
∂x2 + r(1− aK)v− raKv(t− T, x), (17)

∂v
∂x

∣∣∣∣
x=0

=
∂v
∂x

∣∣∣∣
x=1

= 0. (18)

Setting v = exp(λt)w(x), we obtain the characteristic equation

dw′′ + µw = 0, w′
∣∣
x=0 = w′

∣∣
x=1 = 0 (19)

where

µ = µ(x, ε) = r(1− aK)− λ− raK exp(−λT).

For ε = 0, we have the equation with the constant coefficients

d0w′′ + µ0w = 0, w′
∣∣
x=0 = w′

∣∣
x=1 = 0 (20)

where

µ0 = −λ− r0 exp(−λT0). (21)

The equalities

µ0
n = d0(πn)2, wn(x) = cos πnx, n = 0, 1, 2, . . .

hold for the eigenvalues µ0
n and the eigenfunctions wn(x) of the boundary value problem (20).

Taking into consideration the relation (21), we obtain the following statement for the roots
of the equations

µ0
n = −λ− r0 exp(−λT0) (n = 0, 1, . . .). (22)

Lemma 1. For n = 0, Equation (22) has two roots on the imaginary axis λ±0 = ±iπ(2T0)
−1, and

all other roots of this equation and all the roots of all the equations (22) have negative real parts for
n 6= 0.

We note that the eigenfunction w0(x) ≡ 1 corresponds to the roots λ±0 .
We find the asymptotic behavior of those two complex conjugated roots λ±(ε) that

tend to ±iπ(2T0)
−1 as ε→ 0. Let
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λ = λ+(ε) = iπ(2T0)
−1 + ελ1 + ε2λ2 + . . . , (23)

w0(x, ε) = 1 + εw1(x) + ε2w2(x) + . . . (24)

in (19).
Collecting the coefficients at the first power of ε, we obtain the equation

d0w′′1 − r0w1 = f (x), w′1
∣∣
x=0 = w′1

∣∣
x=1 = 0 (25)

where

f (x) = λ1

(
1 + i

π

2

)
+ r0(1− i)(a1(x) + K1(x))− ir1(x) +

π

2T0
r0T1(x). (26)

The boundary value problem (25) is solvable if and only if the equality

1∫
0

f (x)dx = 0

holds. Taking into consideration (26), we come to the conclusion that

λ1 =
(

1 + i
π

2

)−1
1∫

0

[
ir1(x)− r0(1− i)(a1(x) + K1(x))− π

2T0
r0T1(x)

]
dx, (27)

w1(x) = d−1
0

x∫
0

s∫
0

f (τ)dτds.

Collecting the coefficients at ε2 (in (19) with the equalities (23) and (24)), we obtain

λ2, . . . The formula (27) can be simplified. From (16), it follows that
1∫

0
(a1(x)+K1(x))dx = 0;

therefore, λ1 =
(
1 + i π

2
)−1

1∫
0

[
ir1(x)− π

2T0
r0T1(x)

]
dx.

2.3. Boundary Value Problem (3) and (4) Dynamics in Neighborhood of Equilibrium K(x, ε) under
Conditions (13)

The characteristic Equation (19) has two roots close to the imaginary axis under these
conditions, and all of its remaining roots lie to the left of the imaginary axis and are
separated from this axis as ε → 0. Then, in the small neighborhood of K(x, ε), the local
stable two-dimensional integral manifold exists (see, for example, Refs. [13,14]) where the
boundary value problem (3) and (4) can be written as one complex first-order equation

dξ

dτ
= βξ + γξ|ξ|2 (28)

to within O(ε2). Here, τ = εt is a “slow” time, and the “amplitude” ξ(τ) is related to the
solutions of (3) and (4) by the asymptotic equality

u(t, x, ε) = K(x, ε)

+ ε1/2
(
(1 + εw1(x))ξ(τ) exp

(
i π

2T0
t
)
+ (1 + εw1(x))ξ(τ) exp

(
−i π

2T0
t
))

+ ε
(

u20|ξ|2 + u21ξ2 exp
(

i π
T0

t
)
+ u21ξ

2
exp

(
−i π

T0
t
))

+ ε−3/2u3(t, τ, x) + . . .

(29)
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where u3 is periodic with respect to t.
We substitute (29) in (3). Then, collecting the coefficients at the same powers of ε, we

obtain the correct equality for ε1/2. At the second step, equating the coefficients of ε1 on
the left and right sides of the formal equality, we obtain the expressions for u20 and u21:

u20 = 0, u21 = Aξ2 exp(2iσt) + Āξ̄2 exp(−2iσt), A =
2− i

5
. (30)

At the next step, we arrive at the equation in u3(t, τ, x). From the condition of its solv-
ability in the class of π/2T0-periodic with respect to t functions, we obtain the equality (28)
for ξ(τ), where β = λ1, and γ = σ as in the Equation (10).

Let us summarize what has been said.

Theorem 2. Let <λ1 < 0. Then, for all sufficiently small ε, all the solutions from some ε-
independent neighborhood of the equilibrium K(x, ε) tend to it as t→ ∞. If <λ1 > 0, then there is
the stable cycle u0(t, x, ε) in the neighborhood of K(x, ε) for which

u0(t, x, ε) = K(x, ε)

+ ε1/2
(

ξ0(τ)(1 + εw1(x)) exp
(

iπ(2T0)
−1 t̃
)
+ ξ̄0(τ)(1 + εw1(x)) exp

(
−iπ(2T0)

−1 t̃
))

+ ε
(

u20|ξ0|2 + u21ξ2
0(τ) exp

(
iπ(T0)

−1 t̃
)
+ u21ξ̄0(τ) exp

(
−iπ(T0)

−1 t̃
))

+ O(ε3/2)

where t̃ = (1 + o(ε2))t.

We note that the coefficients d1(x) and a1(x) do not affect the values of the coefficients
in the Equation (28). The coefficients r1(x) and T1(x) determine the value of β = λ1 only
through their mean values on the segment x ∈ [0, 1].

3. Bifurcations under Disturbances in Boundary Conditions

Instead of the Neumann boundary conditions (4), we consider the “perturbed” bound-
ary conditions

∂u
∂x

∣∣∣∣
x=0

= εα1(u|x=0 − γ1),
∂u
∂x

∣∣∣∣
x=1

= εα2(u|x=1 − γ2) (31)

for the Equation (3). Here, α1, α2, γ1, γ2 are some fixed constants. For simplicity, all the
coefficients in (3) are assumed constant for simplicity: d = d0, a = 1, r = r0, T = T0 and
r0T0 = π

2 .
First, we find the asymptotic behavior of the positive equilibrium K(x, ε) of the

boundary value problem (3) and (31). For this, we put K(x, ε) = 1 + εK1(x) + . . .. We
substitute this expression in (3) and (31). Then, we obtain the boundary value problem

d0K′′1 − r0K1 = 0, K′1
∣∣
x=0 = α̃1, K′1

∣∣
x=1 = α̃2, α̃j = αj(1− γj)

for K1(x). We find from here that

K1(x) = (α̃2 − α̃1 cosh κ)(κ sinh κ)−1 cosh(κx) + α̃1κ−1 sinh κx (32)

where κ =
(

r0d−1
0

)1/2
.

The characteristic equation of the boundary value problem linearized on K(x, ε) has
a pair of pure imaginary roots ±iπ(2T0)

−1 as ε = 0. All its other roots have negative
real parts.

We find the asymptotic behavior of those two complex conjugate roots λ±(ε) of this
characteristic equation0 which tend to λ±0 as ε→ 0. Let 0

λ+(ε) = λ+
0 + ελ10 + ε2λ20 + . . . (33)
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We look for the eigenfunction corresponding to the root λ+(ε) in the form

w(x, ε) = 1 + εw1(x) + ε2w2(x) + . . . (34)

We substitute (33) and (34) into Equation (19) with the boundary conditions

∂w
∂x

∣∣∣∣
x=0

= εα1 w|x=0,
∂w
∂x

∣∣∣∣
x=1

= εα2 w|x=1. (35)

Collecting the coefficients at the first power of ε in the resulting formal identity, we
obtain the boundary value problem (19) for w1(x) in which

µ = −λ10

(
1 + i

π

2

)
− r0(1− i)K1.

From this, we find that

λ10 =
(
1 + i π

2
)−1r0(i− 1)

1∫
0

K1(x)dx + d0(α2 − α1)

=
(
1 + i π

2
)−1d0(i− 1)(α̃2 − α̃1) + d0(α2 − α1).

(36)

At the final stage, we use the line of reasoning from the previous section. We substitute
the formal series (29) in (3) and (31) and collect the coefficients at the same powers of ε. For
ε1/2, we obtain the correct equality. At the next step, we find the expressions for u20 and u21
which are also defined by the equalities (30). Then, we obtain the equation for u3(t, τ, x).
From its solvability condition in the class of 4T0-periodic with respect to t functions, we
obtain the Equation (28) where

β = λ10, γ = σ. (37)

It remains to repeat Theorem 2 with λ1 replaced by λ10 as a final statement.
We note that the parameters of the boundary conditions determine the value of λ10,

and all bifurcation effects depend only on the relation α̃2 − α̃1, i.e., on α2 − α1 + γ1 − γ2.

4. Andronov–Hopf Bifurcation in Case of Dirichlet Boundary Conditions

We consider the bifurcations in the equilibrium neighborhood of the boundary
value problem

∂u
∂t

= d
∂2u
∂x2 − ru(t− T, x)[1 + u], (38)

u|x=0 = 0, u|x=1 = 0. (39)

Here, we assume that all the coefficients are close to the constant values

d = d0 + εd1(x), r = r0 + εr1(x), T = T0 + εT1(x).

The values of d0, r0 and T0 are determined below from the condition for the existance
of the critical case in the zero equilibrium (38) and (39) stability problem. The characteristic
equation of the linearized at zero boundary value problem has the form

dw′′ + µw = 0, w(0) = w(1) = 0 (40)

where µ = −λ− r exp(−λT). The smallest value µ0 of the boundary value problem (40) is
equal to π2d0 as ε = 0, and the corresponding eigenfunction is sin πx.

The bifurcation values d0, r0 and T0 are found from the condition λ = iω0, i.e., from
the equation

π2d0 = −iω0 − r0 exp(−iω0T0).

From this, we obtain

r0 cos ω0T0 = −π2d, r0 sin ω0T0 = ω0.
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The value ω0 is determined from the following equation,

tan ω0T0 = −ω0(π
2d0)

−1, (41)

and the value r0 is determined from the equality

r2
0 = ω2

0 + (π2d0)
2. (42)

Below, we fix the positive constants d0 and T0 arbitrarily and denote by r0, the
expression (42).

For small values of ε, the eigenvalue λ(ε), which is close to iω0 as ε → 0, and the
corresponding eigenfunction w(x, ε) are sought in the form

λ(ε) = iω0 + ελ1 + . . . w(x, ε) = sin πx + εw1(x) + . . . (43)

We substitute (43) in (38) and (39) and collect the terms at the first power of ε to find
λ1 and w1(x). Then,

d0w′′1 + µ0w1 = f (x) sin πx (44)

where

f (x) =
[
− λ1(1 + T0r0 exp(−iω0T0)) + [r1(x)− iω0r0T1(x)] exp(−iω0T0)− d1π2

]
sin(πx). (45)

The boundary value problem (44) is solvable if and only if the equality

1∫
0

f (x) sin(πx)dx = 0.

holds. Given (45) in it, we find the value of λ1:

λ1 =
(
2
(
1 + π2d0 + iω0T0

))−1
[

exp(−iω0T0)

×
(

iω0T0

1∫
0

T1 sin2(πx)dx−
1∫

0
r1(x) sin2(πx)ds

)
− π2

2

∫
d1dx

]
.

(46)

After that, we define w1(x):

w1(x) = π−1
x∫

0

sin π(x− s) f (s) sin πsds. (47)

We use the above formal description when investigating the solutions of (38) and (39)
from a sufficiently small neighborhood of the zero equilibrium. The series

u(t, x, ε) = ε1/2(ξ(τ)(sin πx + εw1(x) + . . .) exp(iω0t)

+ ξ̄(sin πx + εw1(x) + . . .) exp(−iω0t)
)

+ ε
(
u20(x)|ξ(τ)|2 + u21(x)ξ2(τ) exp(2iω0t) + ū21ξ̄2(τ) exp(−2iω0t)

)
+ ε3/2

(
u31(x)ξ3(τ) exp(3iω0t) + cc + u32(x)ξ(τ)|ξ(τ)|2 exp(iω0t) + cc

+u30(x)ξ(τ) exp(iω0t) + cc
)
+ . . .

(48)

is an analogue of the asymptotic series (29). The expression complex conjugate to the
previous term is denoted by cc here. We substitute (48) into (38) and (39). Performing
standard actions, we obtain the equalities for u20(x) and u21(x) at the second step:
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u20(x) = r0(exp(iω0T0) + exp(−iω0T0))κ
−1

×

 x∫
0

sinh κ(x− s) sin2 sds− (sinh κ)−1 sinh κx ·
1∫

0

sinh κ(1− s) sin2 sds

,

u21(x) = κ−1
1 r0 exp(−iω0T0)

×

 x∫
0

sinh(κ1(x− s)) sin2 sds− (sinh κ1)
−1 sinh κ1x ·

1∫
0

sinh(κ1(1− s) sin2 sds)

,

κ =
(

r0d−1
)1/2

, κ1 =
(
−(2iω0 + r0 exp(−2iω0T0))d−1

0

)1/2
.

Finally, we obtain the equations for u30(x) and u31(x) at the next step. From their
solvability condition, we obtain the Equation (10) in which the formula (46) holds for λ1,
and the formula

σ = −
1∫

0

[
2(1 + π2d0 + iω0T0)

]−1
r0[u20(s)(1 + exp(−iω0T0))

+ u21(s)(exp(iω0T0) + exp(−2iω0T0))] sin sds.

holds for σ.
The main statement repeats the formulation of Theorem 2 in this case too.

Remark 1. Unlike the results of the previous sections, the role of the coefficient d1(x) increases for
the boundary conditions (39). Its mean value is included in the formula (46) for the coefficient λ1.

Remark 2. The next statement follows from the results presented above related to the linearized
problem for (38) and (39). For any T0 > 0 and r0 > π

2T0
, we can choose such d0 that the Andronov–

Hopf bifurcation condition holds: the characteristic equation has a pair of roots on the imaginary
axis for ε = 0, and all its other roots have negative real parts. In particular, this means that the
increase in the diffusion coefficient leads to zero equilibrium stability in (38) and (39).

5. Bifurcations under Time-Periodic Perturbations

In order to illustrate more clearly the new features that arise in the case of time-periodic
perturbations in the logistic equation with delay and diffusion, we investigate the simplest
cases. We present the main general results in Section 5.1. The obtained results are applied
to solve the problem of parametric resonance in Section 5.2. A more complicated problem
of parametric resonance with a two-frequency perturbation is studied in Section 5.3.

5.1. Main Results

We consider the equation

∂u
∂t

= d0
∂2u
∂x2 − r0u(t− 1, x)[1 + u] (49)

with the periodic boundary conditions

∂u
∂x

∣∣∣∣
x=0

= εα1(t)u|x=0,
∂u
∂x

∣∣∣∣
x=1

= εα2(t)u|x=1. (50)

Here, r0 = π
2 , d0 > 0 and the functions αj(t) (j = 1, 2) are periodic with the period h.

In addition, αj(t) = αj0 + αj1(t) and
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M(αj(t)) =
1
h

h∫
0

αj(t)dt = 0. (51)

For ε = 0, the critical case occurs in the problem of zero equilibrium stability in (49)
and (50): the corresponding characteristic equation

λ = −d0k2 − r0 exp(−λ) (k = 0,±1,±2, . . .)

has two roots λ±0 = ±i π
2 on the imaginary axis, and all its other roots have a negative

real part. According to the above technique for studying the solutions from zero neighbor-
hood of the boundary value problem (49) and (50), we introduce into consideration the
formal series

u = ε1/2
(

ξ(τ) exp
(

i
π

2
t
)
+ cc

)
+ εu2(t, τ) + ε3/2u3(t, τ, x) + . . . (52)

Here, τ = εt is a “slow” time, and the dependence on the argument t is 4-periodic.
We substitute (52) in (49) and (50) and collect the coefficients at the same powers of ε in the
resulting formal identity. We obtain the correct equality for ε1/2. For the first power of ε,
we obtain the equation for u2(t, τ), and the formula for this function coincides with (30).
Collecting the coefficients of ε3/2 at the third step, we obtain the equation for u3:

∂u3

∂t
= d0

∂2u3

∂x2 − r0u3(t− 1, τ, x) + f (t, τ), (53)

∂u3

∂x

∣∣∣∣
x=0

= α1(t)
(

ξ(τ) exp
(

i
π

2
t
)
+ ξ̄(τ) exp

(
−i

π

2
t
))

, (54)

∂u3

∂x

∣∣∣∣
x=1

= α2(t)
(

ξ(τ) exp
(

i
π

2
t
)
+ ξ̄(τ) exp

(
−i

π

2
t
))

(55)

where

f (t, τ) = (i− 1)u21 exp
(

i
π

2
t
)

ξ|ξ|2 + cc

− (1 + i)u21 exp
(

i
3π

2
t
)

ξ3 + cc−
(

1 + i
π

2

) ∂ξ

∂τ
· exp

(
i
π

2
t
)
+ cc.

We use the criterion for the boundary value problem (53)–(55) solvability in the class of
4-periodic with respect to t functions. For this, it is necessary and sufficient that the equality

(
1 + i

π

2

) ∂ξ

∂τ
= d0M(α2(t)− α1(t))ξ + d0M((α2(t)− α1(t)) exp(−iπt))ξ̄ + σξ|ξ|2 (56)

holds. Here, the value σ is the same as above.
We note that the Equation (56) takes the simplest form

dξ

dτ
= Aξ + σξ|ξ|2, (57)

when the functions α1,2(t) do not contain harmonics with the doubled frequency of the
natural oscillations exp

(
±2i π

2 t
)
. Here, A =

(
1 + i π

2
)−1d0(α20 − α10). The solutions of (57)

can be obtained in an explicit form.
Under the condition

<A = d0

(
1 +

π2

4

)−1

(α20 − α10) < 0
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all the solutions of (57) tend to zero as t → ∞. Hence, we conclude that for sufficiently
small ε, all the solutions of (49) and (50) from a sufficiently small and independent of ε
neighborhood of the zero equilibrium also tend to zero as t→ ∞.

If <A > 0, then (57) contains the stable cycle

ξ0(τ) = ξ0 exp iφ0τ, ξ0 =
[
(−<A)(<σ)−1

]1/2
, φ0 = =A + (=σ)(ξ0)

2.

This means that the zero equilibrium of the boundary value problem (49) and (50) is
unstable and the stable cycle

u0(t, ε, x) = ε1/2
[
ξ0(τ(1 + O(ε))) exp

(
i
π

2
t
(

1 + O
(

ε3/2
)))

+ξ̄0(τ(1 + O(ε))) exp
(
−i

π

2
t
(

1 + O
(

ε3/2
)))]

+ O(ε)

exists.
Then, we consider the case when the functions α1,2(t) have harmonics with the fre-

quencies ±iπt, i.e.,

αj1(t) = bj exp(iπt) + b̄j exp(−iπt) + bj(t)

where bj(t) do not contain harmonics with zero and ±iπ frequencies. The Equation (56)
takes the form

dξ

dτ
= Aξ + Bξ̄ + σξ|ξ|2 (58)

where B =
(
1 + i π

2
)−1d0(b2 − b1).

5.2. Problem of Parametric Resonance

In this section, the results obtained in Section 5.1 are used to study the problem of
parametric resonance. Let the formulas

αj(t) = αj0 + bj cos ωt (59)

hold for the periodic functions α1,2(t).
We assume here that

α20 − α10 < 0, (60)

i.e., the zero solution in (49) and (50) is asymptotically stable in the absence of non-
autonomous components in (51), and for all sufficiently small ε, all the solutions of (49)
and (50) from a sufficiently small and ε independent neighborhood of zero equilibrium
tend to zero as t→ ∞. The same conclusion is valid under the conditions when bj 6= 0 and
the inequality

ω 6= π (61)

holds for the arbitrary parameter ω.
We consider the case of ω = π. The condition of zero solution stability in (49) and (50)

is defined by the zero solution stability in (58). The corresponding criterion is formulated
in terms of the matrix

C =

(
<A +<B, −=A +=B
=A +=B, <A−<B

)
eigenvalues. By virtue of (60), we have the equality tr C = 2<A = 2d0

(
1 + π2

4

)−1
(α20 −

α10) < 0. Therefore, both eigenvalues of the matrix C have negative real parts under
the condition
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∆ = det C = |A|2 − |B|2 = d0

(
1 +

π2

4

)−2(
(α20 − α10)

2 − (b2 − b1)
2
)
> 0.

Thus, the zero equilibrium in (58) and in (49) and (50) is asymptotically stable.
If ∆ < 0, then the zero equilibrium in (58) and in (49) and (50) is unstable (for small ε).

We assume below that
∆ < 0. (62)

We investigate the problem of parametric resonance, i.e., the problem of the parameter
ω entire set selection for which the zero solution of (49) and (50) is unstable. For this, we
arbitrarily fix the parameter z and put

ω = π(1 + εz) (63)

in (49) and (50).
To ensure that the oscillation frequency does not depend on ε under the boundary

conditions (50), we change the time

(1 + εz)t = t1. (64)

As a result, we obtain the boundary value problem

∂u
∂t1

= (1 + εz)−1
[

∂2u
∂x2 − r0u(t1 − (1 + εz))(1 + u)

]
(65)

∂u
∂x

∣∣∣∣
x=0

= ε(α10 + b1 cos πt1)u|x=0,
∂u
∂x

∣∣∣∣
x=1

= ε(α20 + b2 cos πt)u|x=1. (66)

To study the solutions of this boundary value problem, we use the above algorithm. Let

u = ε1/2
(

ξ(τ) exp
(

i
π

2
t
)
+ cc

)
+ εu2(t, τ, x) + ε3/2u3(t, τ, x) + . . . (67)

in (65) and (66) where τ = εt and uj(t, τ, x) are 4-periodic with respect to t. Again, we
obtain the formula (30) for u2(t, τ), and from the equation solvability condition with respect
to u3, we get the final equation for determining ξ

∂ξ

∂τ
=
(
−i

π

2
z + A

)
ξ + Bξ̄ + σξ|ξ|2 (68)

where the values A, B and σ are the same as in (58). The stability of the zero solution is
determined by the eigenvalues of the matrix

C1 = C +
π

2
z
(

0 1
−1 0

)
.

We note that tr C1 = tr C < 0 and det C1 = π2

4 z2 + mz + ∆ where m = d0(α20 −

α10)
(

2
(

1 + π2

4

))−1
. Let us formulate a simple statement about the roots of the equation

det C1 = 0.

Lemma 2. The inequality

det C1 < 0 (69)

holds under the conditions

z+ < z < z− (70)

where z± = 2
π2

(
−m±

√
m2 − π2∆

)
.
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The inequalities (70) define the set of those values of the frequency ω of (63) for
which the zero solution in (65) and (66) (for small ε) and in (68) is unstable. It is at these
frequencies that parametric resonance is observed. The dynamics of the (68) solutions have
been studied by many authors (see, for example, Refs. [18,19]).

5.3. Example. Dynamics at Same Frequencies and Different Phases of External Influences

As an example, we consider a slightly different from (59) situation when

α1(t) = α10 + b1 cos ωt, α2(t) = α20 + b2 cos(ωt + φ) (71)

where φ ∈ [0, 2π] and the equality

ω = π(1 + εw) (72)

holds.
Performing the above sequence of actions in order to determine the local dynamics of

the boundary value problem (49) and (50), we obtain the normal form, i.e., the equation for
the unknown “amplitude” ξ(τ) (τ = εt):

dξ

dτ
= αξ + β(φ) exp(iπwτ)ξ̄ + σξ|ξ|2

in which the coefficients α and σ are the same as in (68), and

β(φ) =
(

1 + i
π

2

)−1
d0(b20 exp(iφ)− b10).

Replacing ξ = v exp
(
i π

2 wτ
)
, we obtain the equation

dv
dτ

= α0v + β(φ)v̄ + σv|v|2 (73)

and α0 = α− 1
2 iπw. The stability of the zero solution in (73) is determined by the sign of

the expression ρ(φ) where

ρ(φ) = d2
0

[
(α10 − α20)

2 − (b10 − b20)
2 − 4b10b20 sin2 φ

2

]
.

The zero solution in (73) is asymptotically stable under the condition ρ(φ) > 0, and it
is unstable when ρ(φ) < 0. It remains to note that the function ρ(φ) is alternating in some
range of parameters variation in (73) as φ ∈ [0, 2π]. Thus, the phase shift in (71) can signifi-
cantly change the dynamic behavior of the original boundary value problem (49) and (50).

5.4. Parametric Resonance for Two-Frequency Perturbation

In contrast to the periodic perturbations in (59), here we assume that the frequencies
of each of the function α1(t) and α2(t) are different:

α1(t) = α10 + b1 cos w1t, α2(t) = α20 + b2 cos w2t. (74)

In addition, we assume that the inequality (60) holds and each of the values ω1 and
ω2 is close to the doubled natural oscillations frequency, i.e.,

ωj = π(1 + εwj) (j = 1, 2). (75)

We note that the paper [20] investigated the problem of the parametric resonance for a
two-frequency perturbation in the linear equation with delay. In the paper [21], this issue
was studied in a nonlinear statement of the problem for the logistic equation with delay
where the coefficients r and T were perturbed by two-frequency actions.

The algorithmic approach here repeats the constructions of the previous section. We
consider the formal asymptotic series (67) and substitute it in (49) and (50) taking into
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account the equalities (74) and (75). We collect the coefficients at the same powers of ε
in the resulting formal identity. At the second step, we obtain the formulas (30) here too.
From the condition of solvability of the equation with respect to u3, we obtain the equation
for ξ(τ) determining:

dξ

dτ
= αξ + B(τ)ξ̄ + σξ|ξ|2. (76)

Here, α =
(
1 + i π

2
)−1d0(α20 − α10), B(τ) =

(
1 + i π

2
)−1d0(b20 exp(iπw2τ) − b10 exp

(iπw1τ)). The parameter σ is the same as in (58).
Let, for definiteness, w2 > w1. We perform the following changes in (76): ξ =

v exp
(
i π

2 w1τ
)
, α0 = α− iw1, αj =

(
1 + i π

2
)−1d0bj (j = 1, 2), π(w2 − w1) = µ and τ1 = µτ.

As a result, we obtain the equation with 2π-periodic coefficients

µ
dv
dτ1

= α0v + (α2 exp(iτ1)− α1)v̄ + σv| v|2. (77)

We recall that <α0 < 0, <σ < 0.
We investigate the dynamics of the Equation (77) for various values of the parameters

µ, w1, α1, α2. It should be noted that the “crude” periodic solution of (77) corresponds to
the two-dimensional torus of the same stability.

The Equation (77) is well studied in the case of the parametric resonance with a
single-frequency perturbation, i.e., for α2 = 0 (see, for example, Refs. [18,19]).

The stability of the linear part of the Equation (77) was studied in [20]. Below, are the
relevant results. First, we represent the linear part of (77) in the real form

µ
dω

dτ1
= B(τ1)ω, ω =

(
<v
=v

)
, (78)

B(τ1) =

(
<α0 + B1(τ1) −=α0 + B2(τ1)
=α0 + B2(τ1) <α0 − B1(τ1)

)
where B1(τ1) = <α1 +<α2 cos τ1 −=α2 sin τ1, B2(τ1) = =α1 +<α2 sin τ1 +=α2 cos τ1.

For sufficiently large µ, we apply the well-known averaging principle [22]. The
stability properties are then determined by the averaged equation

µ
dω

dτ1
= B0ω, B0 =

(
<α0 +<α1 −=α0 +=α1
=α0 +=α1 <α0 −<α1

)
.

Thus, the case of large values of µ is reduced to the case of the parametric resonance
with a single-frequency perturbation.

We suppose now that

0 < µ� 1.

Then, according to the papers [23,24] results, the stability of the zero solution of the
system (78) is closely related to the behavior of the function

ρ(τ1) = det(B(τ1)−<α0 · E). (79)

Three options are distinguished in the system (78) study depending on whether the
function ρ(τ1) is positive, negative, or alternating. Taking into account the form of the
matrix B(τ1) in (78), we have

ρ(τ1) = (=α0)
2 − (B2

1(τ1) + B2
2(τ1)). (80)

Thus, any of these conditions can be fulfilled by appropriate change of=α0. Following [21],
we describe the dynamics of the system (78). As it turned out, there are three following
options for the behavior of this system solutions:
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1. Let ρ(τ) > 0 for all τ > 0. Then, there exists µ0 > 0 such that for 0 < µ ≤ µ0, the zero
solution of the system (78) is asymptotically stable.

2. Let ρ(τ) < 0 for all τ > 0. Then, there exists µ0 > 0 such that for 0 < µ ≤ µ0, the zero
solution of (78) is asymptotically stable (unstable) if

1
2π

2π∫
0

√
−ρ(τ)dτ +<α0 < 0 (> 0). (81)

3. Finally, in the case of the alternating function ρ(τ), the problem (78) is a system with
turning points. Moreover, if the condition

1
2π

2π∫
0

√
|ρ(τ)| − ρ(τ)

2
dτ > <α0 (82)

holds then the stability and instability of the system (78) solutions alternate infinitely for
µ → 0. (We note that if the inequality is replaced by the opposite in (82), then the zero
solution is asymptotically stable for sufficiently small µ).

The properties listed above of the system (78) solutions allow us to draw the conclu-
sions about the local stability or instability of the zero solution of the nonlinear Equation (77)
for sufficiently large or small enough µ. The phase rearrangements of the Equation (77) are
not asymptotically analizable at conditionally “average” values of the parameter µ. In this
regard, it is appropriate to apply numerical methods. The acceptability of their application
for finding the stable modes of the Equation (77) is due, in particular, to its dissipativity
(<σ < 0). The latter property makes it possible to choose the initial conditions only from
some neighborhood of the zero point of the phase plane. The detailed numerical study of
the Equation (77) is given in [21]. The following conclusions were formulated on its basis.

• In the case of the parametric resonance with a two-frequency perturbation, the dy-
namics is fundamentally more complicated than in the case of a single-frequency
perturbation. Cycles and regions (in the parameter space) of the irregular behavior of
the solutions appear much more complex in their form.

• If ρ(τ1) < 0 i.e., the asymptotic stability of the zero solution exists, no non-stationary
steady-state solutions were found.

• The dynamic behavior is relatively simple for the sufficiently large µ. We have the
complicated relaxation stable cycles for the sufficiently small µ. They are either
symmetric or two stable symmetric cycles coexisting with respect to each other.

• Irregular oscillations are specific for the “average” values of the parameter µ.
• Irregular oscillations in (77) are realized in the relatively narrow ranges of µ variation.

In this case, the phase rearrangements are related with the symmetry-loss bifurca-
tions, with the cascades of period-doubling bifurcations and with the bifurcations of
separatrix splitting.

6. Delayed Perturbation Influence on Boundary Value Problem (49) and (50)
Dynamic Behavior

We suppose that the small perturbation containing the delay is added to the right-hand
side of the Equation (49)

∂u
∂t

= d
∂2u
∂x2 − ru(t− 1, x)[1 + u] + ε( f1u + f2u(t− h, x)), (83)

∂u
∂x

∣∣∣∣
x=0

=
∂u
∂x

∣∣∣∣
x=1

= 0. (84)

Here, d > 0 and r = π
2 . Thus, the Andronov–Hopf bifurcation occurs. For fixed h,

f1 and f2, the problem of local dynamics of (83) and (84) in the neighborhood of the zero
equilibrium is solved in the same was as in Sections 2 and 3. We obtain the normal form
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dξ

dτ
=
(

1 + i
π

2

)−1[
f1 + f2 exp

(
−i

π

2
h
)]

ξ + σξ|ξ|2 (85)

with the same coefficient σ as in (10).
Under the condition that the delay value h (83) is large enough, the problem becomes

much more complicated. Let us show this below.
Let the equality

h = h1ε−1 (86)

be met for some fixed value h1 > 0.
We consider the characteristic equation for the linearized at zero boundary value

problem (83) and (84):

λ = −π

2
exp(−λ) + ε f1 + ε f2 exp

(
−λh1ε−1

)
. (87)

Under the condition (86), infinitely many of its roots tend to the imaginary axis
as ε→ 0.

In the case (86), the algorithm for the local dynamics study is the same as above [25,26].
We consider the formal series (11) for T0 = 1. Then, as a result of standard actions, we
obtain the normal form similar to (10), which is the equation with delay

dξ

dτ
=
(

1 + i
π

2

)−1
[ f1ξ + f2 exp(iφ)ξ(τ − h1)] = σξ|ξ|2. (88)

The main result is that according to the asymptotic formula (11), the nonlocal dynamics
of the Equation (88) determines the local behavior of the boundary value problem (83)
and (84) solution. An important distinction from (10) is not only in the appearance of the
containing delay term. The expression (88) includes the parameter exp(iφ), which infinitely
runs over all values on the unit circle on the complex plane as ε → 0. Therefore, we can
only assert that the determined for some φ = φ0, some steady state in (88) corresponds to
the solution of the boundary value problem (83) and (84) with asymptotic behavior (11) for
the sufficiently small values of ε = εn where

εn = πh1[2(φ0 + 2πn)]−1.

The dynamic behavior of (88) may differ for different values of φ. This means that
an infinite process of forward and reverse bifurcations can occur in (83) and (84) as ε→ 0.
We note that interesting results were obtained on the Equation (88) dynamics under the
condition h1 � 1 in [25,27].

7. Conclusions

The questions regarding the behavior of all the solutions of the logistic equation with
delay and diffusion in a small neighborhood of a positive equilibrium are considered. It is
assumed that the most common and significant conditions are fulfilled when the critical
Andronov–Hopf case is realized in the problem of the equilibrium stability. All coefficients
differ from the constant values by some rather small function of the spatial or time variable.
In particular, we note that the perturbations of both the delay coefficient and the boundary
conditions coefficients are considered.

The normal forms are constructed. They are the special complex ordinary differential
first-order equations on the central manifold, the nonlocal dynamics that determines the
behavior of all the solutions of the original boudary value problem in a small neighborhood
of the equilibrium. The asymptotic formulas that couple the solutions of the parabolic
boundary value problem with the normal form solutions are presented.

In the case when the small time-periodic perturbation with the frequency close to
the double that of natural oscillations affects the equation coefficients, the equation be-
comes more complicated on the central manifold. The problem of parametric resonance is
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considered as an application. In particular, it is shown that under certain conditions, the
dynamics of the original boundary value problem can be controlled by means of a phase
shift in a small periodic perturbation. The most complicated results concern the problem
of parametric resonance with a two-frequency perturbation. The conditions under which
the local dynamics of the problem under consideration can be complex and irregular are
revealed with the help of numerical and analytical methods.
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