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Abstract: For this paper, we are interested in network formation of endothelial cells. Randomly
distributed endothelial cells converge together to create a vascular system. To develop a mathematical
model, we make assumptions on individual cell movement, leading to a velocity jump model with
chemotaxis. We use scaling arguments to derive an anisotropic chemotaxis model on the population
level. For this macroscopic model, we develop a new numerical solver and investigate network-type
pattern formation. Our model is able to reproduce experiments on network formation by Serini et al.
Moreover, to our surprise, we found new spatial criss-cross patterns due to competing cues, one
direction given by tissue anisotropy versus a different direction due to chemotaxis. A full analysis of
these new patterns is left for future work.
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1. Introduction

Network formation is an important process in many biological tissues. For example,
in angiogenesis, blood vessels sprout and grow to form functioning vascular networks [1],
or lung tissue, which forms a complex network of bronchioli. Another example is the
developing brain, where glial cells grow cellular protrusions, which eventually mature
into a synaptic neuronal network [2]. In addition, on the pathological side, we see network
formation, for example, in brain cancer growth [3,4]. Thus, a good understanding of
network formation can help to identify healthy and pathological processes and provide in-
formation for control through treatments. Mathematical modeling has played an important
role in physiological processes for many years, and the modeling of network formation is
no different. The mathematical approaches are manifold, involving agent-based models,
stochastic processes, and continuum models [3,5]. In most of these models, a leader cell (or
tip cell) invades new areas, leaving a trail behind, which follower cells can identify and
follow. Eventually, the trail forms connections and matures into a network.

A different mechanism for network formation acts in vasculogenesis [6–8]. The spatial
interaction of moving endothelial cells leads to a spontaneous network formation, in a
process that is not based on a trail following mechanism but rather arises as macroscopic
pattern formation in a chemotaxis system. Serini et al. [6,7] performed experiments
and developed a mathematical chemotaxis model to describe this process. Serini’s et al.
model is based on a macroscopic population-level description, which we discuss in a bit
more detail in Section 2. Here, in this paper, we generalize Serini’s et al. approach and
consider a chemotaxis-transport equation model, which is based on detailed microscopic
cell movement patterns often referred to as “run and tumble” [9–13].

There are several ways to include chemotaxis, the active orientation of individuals
along chemical gradients, into continuum models [14]. In the case of transport equations
of diffusion type, chemotaxis was included by Alt [10] and analyzed in detail by Hillen
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and Othmer [12,13]. Chalub et al. [15], and Bellomo and Winkler [16] used the kinetic
theory for active particles [17] to derive chemotaxis models. Chalub et al. [15] develop a
complete existence and solution theory for these models, and their methods can be applied
to our model below with minimal modifications. The details of the existence results have
been worked out in great detail in Thiessen [18]. Here, we follow the idea of Kumar and
Surulescu [19], where we derive a fully anisotropic chemotaxis model from an anisotropic
transport equation framework. The chemotaxis-transport approach has been recently
applied by Kumar et al. [19,20] to describe tumor-palisades. Tumor palisades arise as
microscopic patterns in certain brain cancers, where cancer cells arrange themselves in a
ring-like structure. In Kumar et al. [19], it is shown through mathematical modeling that
these structures are likely a result of increased acidity in the tumor center.

In the general chemotaxis-transport framework, we repeat a similar process to Kumar
et al. and once again retrieve anisotropic diffusion. Using parabolic scaling methods,
we find an anisotropic chemotaxis model, which shows network forming properties, but
not only that. The anisotropic chemotaxis model balances two causes of anisotropy, the
directionality of the underlying tissue and the orientation of the chemotactic gradient. These
two effects compete, leading to interesting criss-cross patterns, which have never been
observed before in a mathematical model. Accurate numerical simulation of the anisotropic
chemotaxis model is a challenge, and we develop an efficient finite volume finite difference
solver (FVFD). The numerical solver was inspired by the work of Chertock et al. [21],
where a second-order finite volume finite difference solver for a closely related Keller-Segel
system was developed.

Our results give new insights into the interplay of two-directional cues on moving
populations. The directional effects do not arise as a naive linear combination of each
individual effect; rather, the anisotropy and chemotaxis sensing can interact in complicated
ways. Further analysis of mutliple directional cues in a transport equation framework is
currently been investigated by Conte and Loy [22].

The paper is organized as follows. In Section 2, we revisit the model of Serini et al. [6]
and we give some background material on transport equations in biology. In Section 3, we
develop the transport-chemotaxis model, and we perform the parabolic scaling to derive
the anisotropic chemotaxis model (34). In Section 5, we develop an efficient numerical
solver, and we apply it to some relevant examples. Here, we show the occurrence of the
new criss-cross patterns. We close with a Discussion Section 6.

2. Background
2.1. The Network Model of Serini et al.

In 2003, Serini et al. [6] performed experiments on vascular endothelial cells and
developed a continuum model to explain vascularization. Endothelial cells were cultured
on a matrigel surface, and over time network forming patterns were observed. These
patterns are controlled by the total cell density and by the strength of their chemotactic
response. Small cell densities lead to local cell alignment, intermediate cell densities lead
to cell network formation, while large cell densities lead to broadly aligned “highway”
networks.

From the experiments in Serini et al. [6], we can identify time and space scales, which
will inform the parabolic scaling, which we do later. From the videos and images provided,
we find a microscopic time scale of 1 min, where cells change direction about once every
4 min. During an observation of 1 min, they travel a distance of maximal 0.05 mm. The
macroscopic scale of observation is about 5–9 h on a domain of about 1 mm2. If we
introduce a small parameter ε = 0.05, then we find the ratios

microscopic space

macroscopic space
∼ 0.05 mm

1 mm
= ε,

microscopic time

macroscopic time
∼ 1 min

400 min
= ε2. (1)

The mathematical model of Serini et al. [6] is a system of three partial differential
equations for the balance of cell density, macroscopic cell population momentum and
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the chemoattractant. The cell population is described by a continuous density ρ(x, t)
and population movement is described by a macroscopic velocity v(x, t). Gradients of
a chemoattractant S(x, t) act as accelerating force on the population velocity, while the
chemoattractant S is released by cells, diffuses through the environment and degrades over
time. The resulting equations are

ρt +∇(ρv) = 0,
vt +v · ∇v = −∇p + β∇S,
St = D∆S + αρ− ϑS,

(2)

where β is a constant denoting the strength of chemoattractant sensing, D is the diffusion
constant of the signal, α is the rate of chemoattractant production, and ϑ is the decay rate of
the chemoattractant. Finally, the term p denotes a pressure term, which is used to regularize
the solutions and avoid unrealistic density blow-up. The model reproduces the observed
network patterns very well, confirming that network patterns only formed with a cell
density of at least 100 cells/mm2.

Here, we extend the Serini et al. [6] model (2) in two ways. Firstly, instead of using
a macroscopic population-level description for mass and momentum balance, we go
back to the behavior of individual cells. We develop a transport equation model that
includes movement characteristics, such as cell velocity, turning frequency, and choice of
preferred directions. Secondly, our formulation allows for a very natural inclusion of tissue
anisotropies that arise from aligned tissue structures, such as collagen fibers, nerve fiber
bundles, etc. Coupled with chemotaxis, we obtain an exciting interaction between cell
movement, tissue anisotropy, and chemotaxis. The main focus of our paper is to better
understand this interaction.

2.2. Transport Equations

Transport equations have become a powerful tool for spatial modeling in biology.
They are particularly useful in cases where individual particles, such as cells or animals,
can be followed and characteristics about their path, such as speed, direction, and turning
rate, can be measured. In the context of this paper, we are concerned about two forms of cell
alignment. On the one hand, cells align with linear features of the underlying tissue, such as
blood vessels or nerve fibers or collagen fibers. In addition, cells react to a chemoattractant
and orient themselves in the direction of increased concentration. A transport equation
framework is an ideal environment to develop models for oriented movement.

Transport equations describe the time evolution of a particle density P(t, x, v) at time
t ≥ 0, location x ∈ Ω ⊂ Rn and velocity v ∈ V ⊂ Rn. We consider a periodic bounded
domain Ω, or the whole space Ω = Rn. We introduce a set V to denote the possible
velocities of the particles and we usually take V = [s1, s2]× Sn−1, with 0 ≤ s1 ≤ s2 < ∞.
The time evolution of P(t, x, v) is described by the transport equation

Pt(t, x, v) + v · ∇P(t, x, v) = LP(t, x, v) , (3)

where the index t denotes the partial time derivative, and L is the turning operator,
which describes the specific directional changes of the particles [9,10,12,23]. L describes
how particles chose a new direction, how strongly they are influenced by the underlying
directional information, and how persistent their movement is. Typically, L is defined via
an integral operator representation:

Lϕ(v) = −µ(x)ϕ(v) + µ(x)
∫

V
T(x, v, v′)ϕ(v′)dv′ , (4)

where the first term on the right-hand side gives the rate at which particles switch away
from velocity v, and the second term denotes the switching into velocity v from all other
velocities v′. The spatially dependent parameter µ(x) is the turning rate, while 1/µ(x)
is the mean run time at location x. The traditional literature has focused on the case of
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constant turning rate [12,23], while direction-dependent turning rates have recently been
studied in Reference [24]. The kernel T(x, v, v′) denotes the probability density of switching
velocity from v′ to v, given that a turn occurs at location x. The properties of the turning
kernel T are the key to the following analysis, and many different choices are possible.
Roughly, we can classify the most important cases into three categories, where we will
focus on the last one in this manuscript.

1. Boltzmann equations: Transport equations, such as (3), have a long history in ther-
modynamics and physics [25]. In that case, the turning kernel L is a non-linear
collision kernel between gas particles (or other particles) and the set of velocities V
is unbounded. On the other hand, a linear kernel, such as (4), arises as linearization
on a so-called Maxwellian distribution [25]. We see later that an important difference
to biological applications is the fact that the Boltzmann equation conserves mass,
momentum, and energy, i.e., the kernel (null space) of the interaction operator L is
five-dimensional. In our applications, we have only one conserved quantity: mass,
and only in cases where there is no particle birth or death.

2. Diffusive transport equations: The diffusive transport equation is characterized by a
turning operator L, whose kernel consists of functions that are constant in velocity.
This means, in equilibrium, there are no preferred directions, and on a long time scale,
the dynamic becomes diffusion-like. In References [12,13], we developed a complete
theory of diffusive transport equations, and we have shown how chemotaxis models
can arise within this theory.

3. Anisotropic transport equations: In this case, particles have strong orientational
guidance. This guidance arises either through a preferred equilibrium distribution,
called the Maxwellian, or it arises from external directional cues. The models in this
class fall within the kinetic theory for active particles (KTAP) [16,17]. Mathematically,
this case is characterized via a non-trivial one-dimensional kernel of the turning
operator L. The case of an external directional guidance is of interest here, and a
whole theory for external directional cues was developed in References [26–28]. We
present this case in more detail.

In the anisotropic case, it is assumed that the turning operator does not depend on the
incoming velocity v′, i.e.,

T(x, v, v′) = q(x, v), (5)

where q satisfies q ≥ 0. This assumption seems restrictive since many species would show
some form of persistence in the movement direction, and it is entirely possible to include
such a dependence into an anisotropic movement, as well. However, it has been shown in
many applications that the simplifying assumption (5) is extremely useful in the modeling
process, and it can be justified in many cases (certainly for cancer invasions [29] and for sea
turtle navigation [30]).

The anisotropic framework was developed in Reference [26] and extended in Reference [27].
We consider a given environment, where at each location in space a distribution of preferred
directions q̃(x, θ) is given, where θ ∈ Sn−1 is a unit vector. We assume

q̃(x, θ) ≥ 0, and
∫

Sn−1
q̃(x, θ)dθ = 1.

We assume that particles that are changing direction do so by using the underlying
network structure, i.e., we assume that q(x, v) ∼ q̃(x, v̂), where v̂ = v/||v|| denotes the
corresponding unit vector. Since q̃ is a probability distribution on Sn−1, and q a probability
distribution on the set of velocities V, we need to normalize appropriately:

q(x, v) :=
q̃(x, v̂)

ω
,
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with

ω =
∫

V
q̃(x, v̂)dv =

{ 1
n (s

n
2 − sn

1 ) for s1 < s2
sn−1 for s1 = s2 = s.

This definition motivates us to abuse notation and call q the directional distribution of
the underlying environment. In doing so, we need to remember that q is a rescaled version
of q̃, which is really the directional distribution of the underlying environment.

For this choice of turning kernel (5), Equation (4) simplifies to

Lϕ(v) = µ(x)(q(x, v)ϕ̄− ϕ(v)), with ϕ̄ :=
∫

V
ϕ(v)dv.

To summarize, the anisotropic transport equation has the form

Pt + v · ∇P = µ(q(x, v)ρ− P), ρ = P̄. (6)

For the following analysis, it is useful to consider two statistical quantities of q, the
expectation and the variance-covariance matrix of q(x, v) on V:

Eq(x) =
∫

V
vq(x, v)dv, Vq(x) =

∫
V
(v− Eq(x))(v− Eq(x))Tq(x, v)dv. (7)

Let us discuss a few examples of directional distributions q. For these examples, we as-
sume that the particle speed is constant s, i.e., V = sSn−1. The extension to V = [s1, s2]× Sn−1

is straightforward, but it introduces some extra parameters that need to be carried through
the integrals.

1. Uniform distribution: The simplest case arises if there is no directional cue at all. In
this case,

q̃(x, θ) =
1

|Sn−1| , q(x, v) =
1

ω|Sn−1| .

This uniform case is also included in the class of diffusive transport equations men-
tioned above. In this case,

Eq(x) = 0 Vq(x) =
s2

ωn
I,

where I denotes the identity matrix.
2. Strictly-aligned tissue: If all fibers are pointing in the same direction γ(x) ∈ Sn−1,

then
q̃(x, θ) = δ(γ(x)− θ), q(x, v) =

1
ω

δ(γ(x)− v̂).

In this case,
Eq(x) = sγ(x), Vq(x) = 0.

3. von-Mises distribution: The von-Mises distribution is the analog of the normal distri-
bution on the unit sphere Sn−1. Strictly speaking, it is called von-Mises distribution
only on S1. In higher dimensions, it is called the Fisher distribution. However, the
functional form is the same as in 2-D [31]. In 2-D, the von-Mises distribution is

q̃(x, θ) =
1

2π I0(k(x))
ek(x)θ·γ(x), (8)

where k(x) ≥ 0 is the parameter of concentration, γ(x) ∈ S1 are given preferred
directions, and I0(k(x)) is the modified Bessel function of first kind of order 0. As
k → 0, the von-Mises distribution becomes uniform (case 1), and, for k → ∞, the
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von-Mises distribution becomes singular (case 2). The expectation and variance of the
two-dimensional von-Mises distribution are [31]

Eq(x) = s
I1(k(x))
I0(k(x))

γ(x), (9)

Vq(x) = s2

[
1
2

(
1− I2(k(x))

I0(k(x))

)
I+

(
I2(k(x))
I0(k(x))

−
(

I1(k(x))
I0(k(x))

)2
)

γ(x)γ(x)T

]
, (10)

where I0, I1, I2 denote the modified Bessel functions of the first kind of order 1, 2, and
3, respectively.

4. Bimodal distributions: In many cases, q is symmetric, and guidance up a fiber or
down a fiber has the same probability, q(x,−v) = q(x, v). For example, the bimodal
von Mises distribution is

q̃(x, θ) =
1

4π I0(k)

(
ekθ·γ + e−kθ·γ

)
, (11)

with expectation and variance [31]

Eq(x) = 0 ,

Vq(x) = s2
[

1
2

(
1− I2(k(x))

I0(k(x))

)
I+ I2(k(x))

I0(k(x))
γ(x)γ(x)T

]
. (12)

Note that, instead of using a dyadic product γγT , some authors prefer to use a tensor
product γ⊗ γ. We have no preference, but we chose to use only one of these notations.

3. Chemotaxis-Transport Equations

As discussed in the Introduction, chemotaxis effects have been included into the
kinetic framework by several authors [10,12,13,15–19]. We now extend the model (6) to
include the effect of chemotaxis. For simplicity, we are considering the spatial domain to
be the torus, which we will denote as Ω = Tn. The turning operator only involves cells
changing velocity and, therefore, should not affect the number of cells. Assuming that the
number of cells remains the same, we gain the constraint on the turning operators∫

V
LP(t, x, v)dv = 0. (13)

The corresponding conservation law can be obtained by integrating (3) over the
velocity domain ∫

V
Ptdv +∇x ·

∫
V

vPdv = ρt +∇x ·Ep = 0, (14)

where we use the density of cells and the first moment as

ρ(x, t) :=
∫

V
P(t, x, v)dv, Ep(x, t) :=

∫
V

vP(t, x, v)dv.

Remark 1 ([23]). For positive solutions of the kinetic equation, we have ‖ρ0‖L1(Tn) = ‖ρ‖L1(Tn),
thanks to conservation of mass.

To include chemotaxis into the transport equation framework, we assume that the
turning kernel T depends on the cell density and the gradient of the chemotactic signal S.
T := T[ρ, S](x, v). The movement of the chemical signal S(x, t) is traditionally defined as a
diffusion equation. However, depending on the time scale at which the chemoattractant
diffuses, one can consider that chemoattractant is at equilibrium, then the resulting concen-
tration is given by a Poisson type equation. Under this fast diffusion assumption, powerful
results on existence and uniqueness have been obtained [32]. We take the traditional route
and describe the motion as a diffusion equation, where the chemoattractant production
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is proportional to the cell density, and the chemoattractant degrades over time. These
assumptions give us the diffusion equation

St = Ds∆S + αρ− ϑS. (15)

Here, S := S(x, t) is the concentration of the chemoattractant, Ds is the diffusion
constant associated with how the chemoattractant moves through the environment, α is
the rate of production of the chemoattractant by the cells, and ϑ is the rate of degradation
of the chemoattractant.

For our purposes, we specify the turning operator further. Inspired by Reference [13],
we split the two guiding effects into the environmental contribution q and chemotactic
effects as

T[S, ρ](t, x, v) = q[ρ](x, v) + b[S](x, v)(1− ρ(x, t))v · ∇S(x, t). (16)

Here, we allow the environmental cues to depend on the cell density q[ρ](x, v). The
rate b[S](x, v) describes the chemotactic strength, based on the concentration of the signal
S. In most examples, b is a constant. The factor (1− ρ) is a volume filling term, and
it allows chemotactic movement only into areas where there is space available. The
variable v denotes the outgoing velocity, and ∇S is the gradient of S. To ensure that T
is a probability distribution, we need

∫
V vb[S](x, v)dv = 0, which we generalize into the

following assumptions:∫
V

q[ρ](v, x)dv = 1, and the odd moments of b[S](v, x) are zero. (17)

The examples we will be looking at is the von-Mises distributions (8) or (11) for q and

b(x, v) = β(x) + vT A(x)v, (18)

where β is the general sensing strength, and A(x) is a matrix that describes the directional
dependence on sensing the chemoattractant. Note that the above form of b(v) is a general
second order expansion of a function of v with vanishing odd moments.

We can take advantage of the structure we have provided, and the turning operator (3)
becomes

LP = µ(q[ρ]ρ− P) + µb[S](1− ρ)v · ∇S. (19)

Inputting this turning operator into (3), we obtain the main chemotaxis-transport
system of this paper:

Pt + v · ∇xP = µ
(

q[ρ]ρ + b[S]ρ(1− ρ)v · ∇S− P
)

, (20)

St = Ds∆S + αρ− ϑS. (21)

We now have a mesoscopic set of equations; in the coming chapters, we will take the
parabolic scaling of these equations to get a macroscopic system and explore numerics to
get insight into pattern formation.

4. Parabolic Scaling

We have seen above that the transport Equation (20) acts on microscopic scales. For
example, in the case of Serini’s experiments [6], we have a microscopic time scale of minutes
and a microscopic length scale of about 0.05 mm, while the macroscopic scales are several
hours and millimeter. This situation allows us to use parabolic scaling to derive a model
that lives on the macroscopic scale. The parabolic scaling of transport equations is a well-
documented method, and explorations can be found in References [10,12,15,16,19,23], for
example. Similar to the scaling (1), we assume there is a small parameter ε > 0 such that
space and time are scaled as

τ = ε2t and ξ = εx.
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Then, the above transport Equation (20) becomes

ε2Pτ + εv · ∇ξ P = µ
(
q[ρ] + εb[S](1− ρ)v · ∇ξS

)
ρ− µP. (22)

To analyze the scaled Equation (22), we take the scaled coordinates (ξ, τ) and make a
regular expansion in ε, called a Hilbert expansion [33]:

P(τ, ξ, v) = P0(τ, ξ, v) + εP1(τ, ξ, v) + ε2P2(τ, ξ, v) + . . . (23)

A further assumption is that all of the mass is contained in the first order

ρ = ρ0 =
∫

V
P0 dv,

∫
V

Pi dv = 0, ∀i ≥ 1. (24)

Substituting the Hilbert expansions into the rescaled transport Equation (22) and
comparing terms of equal order yields a countable number of equations at different orders
ε that all must vanish independently. The zeroth-order equation is given by

P0(τ, ξ, v) = q[ρ](ξ, v)ρ(ξ, τ). (25)

The next order of ε gives

v · ∇P0 − µ(v · ∇)b[S](1− ρ)ρ = −µP1. (26)

Solving this equation in terms of P1 leads to

P1 = − 1
µ
(v · ∇P0 − µ(v · ∇)b[S](1− ρ)ρ). (27)

To get a closed system for the first term in the Hilbert expansion P0, we look at the
ε2 terms

(P0)τ + v · ∇P1 = −µP2. (28)

Integrating over V, the right-hand side vanishes, and substituting P1 from (27) and P0
from (25) yields an equation in terms of ρ

ρτ −
1
µ

∫
V
((v · ∇)((v · ∇)(ρq[ρ])− (v · ∇S)b[S](1− ρ)ρ))dv = 0. (29)

To simplify this equation, we temporarily use index notation, where, according to
Einsteins summation convention, we sum over repeated indices.

ρτ −
1
µ

∂i∂j

(
ρ
∫

V
vivjq[ρ]dv

)
+

1
µ

∂i

(
∂j(S)ρ(1− ρ)

∫
V

vivjb[S]dv
)
= 0. (30)

Using the previously defined expectation and variance (7), we can write the above
equation in a more compact form with the identity

Vq =
∫

V
(v−Eq)(v−Eq)

Tqdv, (31)

=
∫

V
vvTqdv− 2

∫
V

vET
q qdv +

∫
V
EqET

q qdv, (32)

=
∫

V
vvTqdv−EqET

q (33)

We use the same definition of expectation and variance for other functions; for example,
for b[S](v) we have

Eb = 0, Vb =
∫

V
vvTb[S](v)dv.
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Combined with the above chemotaxis Equation (21), we obtain the macroscopic
anisotropic chemotaxis system

ρτ −
1
µ
∇
(
∇
(
Vq[ρ]ρ +Eq[ρ]Eq[ρ]

Tρ
)
− ρ(1− ρ)Vb[S]∇S

)
= 0,

Sτ − Ds∆S = α̃ρ− ϑ̃S.
(34)

where α̃ = ε−2α, and ϑ̃ = ε−2ϑ. In other words, on the microscopic scale, the rates α and
ϑ are small, and, on the macroscopic scale, they are of order one. Since we are solving
the chemotaxis model only on the macroscopic scale, we remove the overline-tilde’s and
simply keep α and ϑ.

The system (34) is a generalization of the typical Keller-Segel equations [34] in the
sense that we include anisotropic diffusion Vq +EqET

q , and anisotropic chemotaxis Vb. The
effect of the Vq and Vb terms are nonuniform diffusion and mixing of the ∇S into other
directions (chemotactic mixing). Of course, the above scenarios are dependent on the given
distributions q[ρ](x, v) and b[S](x, v). For instance, if q and b are uniform distributions in
v, then the above model is the fully isotropic Keller-Segel system [14].

Examples

To explore the effects of anisotropy, we consider the examples that we mentioned
above. We use a bimodal von-Mises distribution for q as in (11) and a second-order
expansion for b from (18). The moments of the bimodal von Mises distribution are
given in (12). For example, when the fiber direction is in the top-right diagonal direc-
tion γ = ( 1√

2
, 1√

2
), then

Vq =
1
2
I+ 1

2
I2(k)
I0(k)

(
0 1
1 0

)
. (35)

The first term is isotropic diffusion while the second term causes diffusion to be
increased along the directions ( 1√

2
, 1√

2
) and (− 1√

2
,− 1√

2
). The strength of the anisotropy

is based on the concentration parameter k, where limiting cases are I2(k)
I0(k)

→ 0 as k → 0,

making the diffusion tensor isotropic, and the case I2(k)
I0(k)

→ 1 as k → ∞, making the
diffusion tensor to be maximally anisotropic.

To compute the second moment for b from (18), we use index notation and summation
convention, and we ignore the explicit x dependence:

(Vb)i1 i2 =
∫

V

(
β + Ai3 i4 vi3 vi4

)
vi1 vi2 dv.

We move the constants out of the integrals and define a general mean velocity tensor
to be

v̄i1,...,ik :=
∫

V
vi1 · · · vik dv. (36)

Then, we can rewrite

(Vb)i1 i2 = β(x)v̄i1 i2 + Ai3 i4 v̄i1 i2 i3 i4 ,

and, using the Lemma 2.2 from Hillen [35], we explicitly compute the v̄’s from (36) as

(Vb)i1 i2 =
|Sn−1|

n

2β(x)Ii1 i2 +
s3−n

n + 2
Ai1 i2 ∑

P(i1 i2 i3 i4)
δ

ij1
ij2

δ
ij3
ij4

, (37)

where the set of pairs of indices out of (i1, . . . , i4) is defined as

P(i1 i2 i3 i4) := {((ij1 , iJ2)(ij3 , ij4)) : j1, j2, j3, j4 = 1, 2, 3, 4}. (38)
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We compute the sum explicitly since there is only 12 combinations, and, due to the
symmetry of the Kronecker delta, there are only 3 unique terms:

(Vb)i1 i2 =
|Sn−1|

n

(
2β(x)Ii1 i2 +

4s3−n

n + 2
Ai1 i2(δ

i1
i2

δi3
i4
+ δi1

i3
δi2

i4
+ δi2

i3
δi1

i4
)

)
. (39)

Using the properties of the Kronecker delta, we can convert back to matrix notation

Vb =
|Sn−1|

n

(
2β(x)I+ 4s3−n

n + 2
(Tr(A)I+ A + AT)

)
. (40)

As a result, we have anisotropic components caused by the off-diagonal pieces
of A. If A has nonzero off-diagonal components, then Vb has a mixing effect on the
chemotactic velocity

u(x, t) := Vb∇S.

To illustrate the chemotactic mixing in two dimensions, we consider

ui(x, t) :=
(
Vi,1

b ∂xS +Vi,2
b ∂yS

)
, i = {1, 2},

the velocity in the x direction is dependent on the chemotactic gradient in the y direction,
and vice versa. In summary, the new terms create non-uniform diffusion and mixing of
influence of the chemotactic gradient. The effect of the chemotactic mixing will be shown
through numerics in the next section.

5. Numerics

In this section, we numerically explore the effect of anisotropy on chemotaxis. For this
exploration, we return to the example of the endothelial cells randomly distributed to form
a vascular network. We describe this motion using the parabolic limit (34). For the domain,
we consider the two-dimensional square [0, L]× [0, L] with a periodic boundary condition.
We discretize this square into smaller squares with side lengths of h and index these
squares by the indices j, k, representing the x-coordinate and y-coordinate, respectively.
Both indices run from [1, N], where N = L

h .

5.1. Hybrid FVFD Scheme

For the numerical scheme, we will closely follow the method proposed by Chertock
et al. [21]. Chertock et al. derived a second-order hybrid finite volume finite difference
(FVFD) scheme for the classical Keller Segel model

ρt = ∇(∇ρ− ρ∇S), (41)

St = ∆S + ρ− S. (42)

They were able to show positivity preservation for this scheme based on reasonable
CFL conditions, making it ideal for our problem. The numerical scheme is based on the
Godunov scheme for conservation laws [36] to ensure the conservation of particle mass.
Since our system has added complexities through the anisotropic diffusion terms, we need
to take special care identifying the appropriate upwind terms in the numerical flux. For
this reason, we will go through the scheme in detail to exhibit these differences. To begin,
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we have to write (34) in the form of fluxes along the axes; for this purpose, we write (34) in
two dimensions:

dρ

dt
−
(

1
µ

(
V1,1

q ρ
)

x
+

1
µ

(
V1,2

q ρ
)

y
− ρ(1− ρ)

(
V1,1

b Sx +V1,2
b Sy

))
x

−
(

1
µ

(
V2,1

q ρ
)

x
+

1
µ

(
V2,2

q ρ
)

y
− ρ(1− ρ)

(
V2,1

b Sx +V2,2
b Sy

))
y
= 0,

St = ∆S + αρ− ϑS.

On the above mesh, the goal is to write the system as a semi-discrete hybrid FVFD
scheme, which takes the form of

dρ̄j,k

dt
= −
Fj+ 1

2 ,k −Fj− 1
2 ,k +Fj,k+ 1

2
−Fj,k− 1

2

h
, (43)

dSj,k

dt
= ∆j,kS + αρ̄j,k − ϑSj,k, (44)

where the averaged cell density is ρ̄j,k ≈ 1
h2

∫
Ij,k

ρ(x, y, t)dxdy, and Sj,k is the point value of
the chemoattractant. Fj,k are the numerical fluxes in the x and y directions, and ∆j,k is the
discrete Laplacian.

We discretize the ρ equations with a finite volume method since finite volume methods
are conservative. The conservative property of this scheme can be seen by looking at the
conservation law

ut +∇ · F(u) = 0,

where u is the state of the solution, and F(u) is the corresponding flux vector. Now, we
divide the domain of this problem into finite volumes Vi, and integrating over one such
cell yields ∫

Vi

utdv +
∫

Vi

∇ · F(u)dv = 0.

On integrating the first term to get the volume average (like the approximation
ρ̄j,k ≈ 1

h2

∫
Ij,k

ρ(x, y, t)dxdy) and applying the divergence theorem to the second yields

|Vi|ūt +
∫

Si

F(u) · ndS = 0,

where Si is the surface of the volume of Vi, and n is the outward normal. Now, since the
change of cell averages is determined by the edge fluxes, any gain of one cell is a loss for
another. Dividing by Vi yields

ūt +
1
|Vi|

∫
Si

F(u) · ndS = 0.

In the case of two dimensions, we just need to keep track of the fluxes at the four
edges surrounding a point. In our case, we subdivide our domain into squares with side
length h centered at each grid point, and then the change in state cell average is

ūt = −
Fj+ 1

2 ,k −Fj− 1
2 ,k +Fj,k+ 1

2
−Fj,k− 1

2

h
,

where j + 1
2 , k, j − 1

2 , k, j, k + 1
2 , and j, k − 1

2 represent point values on the dual grid of
spacing 1

2 h (see Figure 1).
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Figure 1. Stencil for the numerical flux for Fj+ 1
2 ,k, and Fj,k+ 1

2
. The green lines represent the deriva-

tives in the upwind directions, and the blue lines represent the derivatives in the perpendicular
directions. Note that the upwind direction can be any of N, S, E, W, and, here, we only show the N
and E cases.

Based on Chertock et al.’s method [21], we write the numerical fluxes as follows:

Fj+ 1
2 ,k = ρj+ 1

2 ,k(1− ρj+ 1
2 ,k)uj+ 1

2 ,k −
1
µ

((
V1,1

q ρ
)

x

)
j+ 1

2 ,k
− 1

µ

((
V1,2

q ρ
)

y

)
j+ 1

2 ,k
, (45)

Fj,k+ 1
2
= ρj,k+ 1

2
(1− ρj,k+ 1

2
)vj,k+ 1

2
− 1

µ

((
V2,1

q ρ
)

x

)
j,k+ 1

2

− 1
µ

((
V2,2

q ρ
)

y

)
j,k+ 1

2

, (46)

where u and v are the chemotactic velocities,

uj+ 1
2 ,k = (V1,1

b )j+ 1
2 ,k(Sx)j+ 1

2 ,k + (V1,2
b )j+ 1

2 ,k(Sy)j+ 1
2 ,k, (47)

vj,k+ 1
2
= (V2,1

b )j,k+ 1
2
(Sx)j,k+ 1

2
+ (V2,2

b )j,k+ 1
2
(Sy)j,k+ 1

2
, (48)

and the point values ρj+ 1
2 ,k and ρj,k+ 1

2
are computed in a upwind manner as

ρj+ 1
2 ,k =

{
ρE

j,k, if uj+ 1
2 ,k > 0,

ρW
j+1,k, otherwise.

ρj,k+ 1
2
=

ρN
j,k, if vj,k+ 1

2
> 0,

ρS
j,k+1, otherwise.

The one-sided point values, at the interfaces ρE
j,k, ρW

j+1,k, ρN
j,k, and ρS

j,k+1, are computed
using the second order piecewise linear reconstruction

ρE
j,k = ρ̄j,k +

h
2
(ρx)j,k,

ρW
j+1,k = ρ̄j+1,k −

h
2
(ρx)j+1,k,

ρN
j,k = ρ̄j,k +

h
2
(ρy)j,k,

ρS
j,k+1 = ρ̄j,k+1 −

h
2
(ρy)j,k+1.

To ensure that the above point values are second-order and non-negative, slopes are
computed adaptively:

(ρx)j,k =


ρ̄j+1,k−ρ̄j−1,k

2h , if ρ̄j,k +
ρ̄j+1,k−ρ̄j−1,k

4 ≥ 0,

minmod
(

2
ρ̄j+1,k−ρ̄j,k

h ,
ρ̄j+1,k− ¯ρj−1,k

2h , 2
ρ̄j,k−ρ̄j−1,k

h

)
, otherwise,
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with the flux limiter minmod

minmod(x1, x2, . . . ) :=


min(x1, x2, . . . ), if xi > 0, ∀i,
max(x1, x2, . . . ), if xi < 0, ∀i,
0, otherwise.

The positivity of the reconstructed cell density point values is guaranteed by the
positivity preserving generalized minmod limiter [37–40], with the assumption that the
underlying cell averages are positive. Now, the scaled cell density derivatives are computed
via central differences((

V1,1
q ρ
)

x

)
j+ 1

2 ,k
=

(V1,1
q )j+1,k ρ̄j+1,k − (V1,1

q )j,k ρ̄j,k

h
,

((
V1,2

q ρ
)

y

)
j+ 1

2 ,k
=

(V1,2
q )j+ 1

2 ,k+1ρj+ 1
2 ,k+1 − (V1,2

q )j+ 1
2 ,k−1ρj+ 1

2 ,k−1

2h
,

((
V2,1

q ρ
)

x

)
j,k+ 1

2

=
(V2,1

q )j+1,k+ 1
2
ρj+1,k+ 1

2
− (V2,1

q )j−1,k+ 1
2
ρj−1,k+ 1

2

2h
,

((
V2,2

q ρ
)

x

)
j,k+ 1

2

=
(V2,2

q )j,k+1ρ̄j,k+1 − (V2,2
q )j,k ρ̄j,k

h
.

Note that, in addition to Chertock’s scheme [21], here, we have anisotropic flux terms((
V1,2

q ρ
)

y

)
j+ 1

2 ,k
and

((
V2,1

q ρ
)

x

)
j,k+ 1

2

,

which need special attention. We compute those as a finite difference over a double-spaced
interval 2h since this allows us to use point values on grid points that are already computed
(see Figure 1). Note that, in this formulation, we do not need values on diagonal points of
the form (j + 1

2 , k + 1
2 ), making the scheme a bit easier.

The chemotactic derivatives (Sx)j+ 1
2 ,k, (Sy)j+ 1

2 ,k,(Sx)j,k+ 1
2
, and (Sy)j,k+ 1

2
are computed

similarly.
For the discrete Laplacian, we use the standard five-point stencil [41] to obtain a

second-order approximation

∆j,kS =
Sj+1,k + Sj−1,k − 4Sj,k + Sj,k−1 + Sj,k+1

h2 .

Thus, we have derived a second-order semi-discrete method for (34):

dρ̄j,k

dt
= −
Fj+ 1

2 ,k −Fj− 1
2 ,k +Fj,k+ 1

2
−Fj,k− 1

2

h
, (49)

dSj,k

dt
= ∆j,kS + αρ̄j,k − ϑSj,k. (50)

To evolve this semi discrete scheme through time, we chose to use a second order
adaptive Runge-Kutta scheme [42].

5.2. Parameters

The system has a couple of parameters we have to determine namely, α the pro-
duction rate of the chemoattractant, ϑ the degradation rate, µ the turning rate, Ds the
diffusion rate of the chemoattractant, and the forms of the distributions ρ(x, 0), q(x, v), and
b(x, v). With the purpose of looking at vascular assembly, we can find the constant param-
eters, ϑ−1 = 3600 s, α = 1 from Reference [6], Ds = 10−7cm2/s from Reference [43], and
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µ = 1785.71/s from Reference [44]. We take the initial condition to be a linear combination
of Gaussian’s

ρ0(x, y) =
1

4π2

W

∑
k=1

e
(x−xl )

2+(y−yl )
2

2σ2 , (51)

where {(xl , yl)}W
l=1 is a sequence of random numbers drawn from the uniform distribution

on [0, N]2. This initial condition represents a random distribution of cells on a petri dish,
which have a radius of σ. From available data of molecular radii [45,46], we can estimate
the radius of a cell to be σ = 0.003 cm. With the general parameters defined, we can move
onto the numerical experiments.

5.3. Scheme Test

In this numerical experiment, we attempt to show that our scheme’s significant
features are present for varying grid sizes. To show the invariance with respect to grid
sizes, we take a single Gaussian in the center as the initial condition. As for the fiber and
sensing directions, we use the von Mises distribution for q (11) and the quadratic form for
b (18), as discussed earlier.

q(v) =
1

4π I0(k)

(
ekv·u + e−kv·u

)
, b(v) =

3
200π

+ vT Av,

with diagonal anisotropy

A =

(
0 1

2
1
2 0

)
, u =

( 1√
2

1√
2

)
.

Calculating the variances (35) and (40), we find

Vq =
1
2
I+ 1

2
I2(k)
I0(k)

(
0 1
1 0

)
, Vb =

1
50

I+ 2πs
3

(
0 1
1 0

)
, (52)

where the max velocity s = 3
20π

cm
s , and the concentration parameter is k = 10.

In Figure 2, we show the initial condition in Figure 2a and two simulations at time
= 0.5 with different grid sizes. The grid size in Figure 2b is 100× 100, and, in Figure 2c, it
is 200× 200. The two computations are qualitatively identical. These computations show
the two main properties of our system. First, the cell density diffuses anisotropically along
the main diagonal direction, which results from our choice of Vq. Secondly, the peak splits
into two aggregations near the center, which results from the chemotactic mixing Vb at
highly dense regions. In the following numerical experiments, we will further explore
these aspects of the system and show that they lead to network formation.

5.4. Vascular Network Formation

In this numerical experiment, we are interested in replicating previous models’ results
in looking at vascular network formation as considered in Serini et al. [6,7]. In their
experiments, they took the randomly distributed cells, with b being constant. For the
distribution q, the choice is a little more complicated. In Serini et al. [6,47], they propose a
pressure term p(ρ) = ρ3 to deal with cell compression. They derived their models through
the moment closure taking the form

ρt +∇(Ep̂ρ) = 0, (53)

(Ep̂ρ)t +∇
(
Ep̂ET

p̂ ρ + ρ3I
)
= ρ∇S, (54)

where Ep̂ is the first moment of the pressure p. We match the pressure term with the
strength of our anisotropic diffusion by setting Vq = ρ3I. One of the critical findings of
References [6,47] was that the formation of networks arises only for cell densities larger or
equal to a critical value. For the above parameters, this value is 100 cells/mm2
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(a)

(b) (c)

Figure 2. Numerical test. (a) Initial condition as a Gaussian centered in the domain. (b) Grid size of
100× 100, numerical result at time t = 0.5. (c) Grid size of 200× 200, numerical result at t = 0.5.

To try to recreate the experiment in Reference [6], we evolve the Equation (34) from
the initial condition (51) with the parameters

ϑ−1 = 3600 s, α = 1, Ds = 10−7 cm/s2, µ = 1785.71/s; (55)

in addition, we take
Vq = ρ3I, Vb = I. (56)

In Figure 3, we show simulations of network formation for increasing total cell density.
The top row shows the random initial condition, while the second row shows a snap-shot
at time t = 1.5. In all three cases, localized structures are forming. For cell densities
of 100 cells/ mm2, the patterns still appear as local aggregates; however, for larger cell
densities of 200 and 400, larger-scale structures arise that resemble networks. Notably, we
were able to obtain qualitatively similar results to those in References [6,47], despite using
a different class of equations. One explanation lies in a moment closure approach that can
be performed in the model of (53) and (54). Doing the moment closure in their model will
lead to our macroscopic Equation (34) in the isotropic case (i.e., q and b are uniform in v).
Details on moment closure methods are discussed elsewhere and are not part of our study
here (see References [28,47]).

5.5. Anisotropic Diffusion

For this numerical experiment, we are interested in looking at the effects of anisotropic
diffusion. We evolve the Equation (34) from the initial condition (51) with the parameters
(55), and to explore anisotropic diffusion, we take

q(v) =
1

4π I0(k)

(
ekv·u + e−kv·u

)
, b =

1
50

, (57)
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with dominant direction along the main diagonal, i.e., u = ( 1√
2

, 1√
2
), which means that the

variance matrices (35) and (40) take the form

Vq =
1
2
I+ 1

2
I2(k)
I0(k)

(
0 1
1 0

)
, Vb =

1
50

I. (58)

Cell density cells/mm2

100 200 400

t = 0

t = 1.5

Figure 3. Formation of networks: The first row shows random initial conditions with cell densities of 100, 200, 400 cells/mm2.
The second row shows the solution at time t = 1.5 s for cell density of 100, 200, 400 cells/mm2, respectively.

From Figure 4, we can see that inclusion of anisotropy in direction of u = ( 1√
2
, 1√

2
)

severely changes the system dynamics. There is still network formation, but now it is
biased into the direction of anisotropy. As we increase the concentration parameter k, there
is a tighter and tighter spread along the diagonal. We can also localize anisotropic effects
to certain regions of the domain by taking the concentration parameter to be a function of
x. For example, in the third column in Figure 4, we keep anisotropy in the center of the
domain while removing it towards the boundary, i.e.,

k(x) = 10 exp

(
−
(x− L

2 )
2 + (y− L

2 )
2

(8σ)2

)
. (59)

We clearly see the effect of anisotropy in the domain center, while the regions near the
boundaries behave isotropic.

5.6. Chemotactic Mixing

In this numerical experiment, we evolve the Equation (34) from the initial condition
(51) with the parameters (55), and we are going to explore mixing of the chemotactic
velocities through an anisotropy term in b. As seen at the end of Section 4, chemotactic
mixing is where the chemotactic gradient in one direction affects the movement in all
directions. For this effect to occur, we require non-zero off-diagonal components to Vb;
therefore, we take

b(x, v) = β + vT Av, A =

(
0 1

2
1
2 0

)
,

with variance given in (40), with the choice of

β =
3

200π
and s =

3
20π

cm
s
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yielding the variance

Vb(x) =
1
50

I+ 2πs
3

(
A + AT

)
. (60)

Concentration parameter
k = 5 k = 10 k = k(x) Equation (59)

t = 0

t=0.32

Figure 4. Inclusion of anisotropy for different values of the concentration parameter k. Cell densities are shown at time
t = 0 (first row) and time t = 0.32 (second row), where the total cell density is 200 cells/mm2 in each of the plots.

From Figure 5, we can see that the effect of the chemotaxis mixing is comparable to the
effect of non-uniform diffusion as we have seen in the previous numerical experiment. The
difference is that the chemotactic mixing seems to affect the diffusion along the diagonal
(−1, 1), but the chemotaxis term usually acts as a deterrent, reducing movement away
from high-density regions. Therefore, we hypothesize that the chemotaxis term is not
promoting movement along the (−1, 1) direction, but discouraging diffusion along (1, 1),
while leaving diffusion along (−1, 1) unimpeded, giving the structures in Figure 5.

(a) (b)
Figure 5. Velocity mixing. (a) Initial condition with cell density of 200 cells/mm2. (b) Solution at
0.32 s.

5.7. Anisotropic Diffusion vs. Chemotactic Mixing

Now, we wish to examine the interaction between the fiber distributions q and the
chemotactic velocity mixing. For this, we consider the q in (57) with the concentration
parameter k = 5, and b in (18). According to the previous numerical experiments, these
choices of distributions should act in opposition to each other, q along (1, 1), and b along
(−1, 1). We take the same initial condition as in previous numerical experiments.

From the time series in Figure 6, we can see two regimes. The first regime is where the
anisotropic diffusion dominates, and we see the orientation of the cells along the positive
diagonal. The second regime occurs at the end of the simulation, where the higher density
regions are pulled towards the (−1, 1) diagonal, and the lower density regions continue
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on their path. The split in dominance occurs because the chemotaxis terms’ strength is
dependent on the density and time. Since the chemoattractant concentration starts at zero,
the anisotropic diffusion initially takes control. This state of affairs continues until the
anisotropic diffusion squeezes the solution enough to reach a cell density critical point.
The chemotaxis terms dominate for intermediate cell densities inducing movement along
the orthogonal diagonal. The result is this crisscrossing knitting pattern. To investigate this
effect further, we look at the magnitude of the chemotactic and anisotropic fluxes, given by

FS = ρ(1− ρ)Vb∇S, Fq =
1
µ
∇
(
Vqρ

)
.

The chemotactic flux FS is proportional to ρ(1− ρ); hence, it is maximal for ρ = 1/2.
It is also proportional to the chemotactic gradient ∇S. The anisotropic flux Fq has no ρ
dependence in the amplitude, but a ρ dependence inside the divergence term. We plot
|Fq(x, t)| and |FS(x, t)| for three time points in Figure 7 for the same parameter values as
in Figure 6.

t = 0 t = 0.15509

t = 0.32

Figure 6. Anisotropic diffusion and anisotropic chemotaxis at different times. The cell density is
200 cells/mm2.

Initially (at t = 0), we see the initial condition for the anisotropy q in the first row, and
since there is no chemical concentration S yet, FS = 0. Note that the first row in Figure 7
only shows the magnitude of Fq. The dominant direction is always the diagonal (1, 1). At
the time t = 0.0262, we are in the regime where Fq continues to diffuse in mainly the (1, 1)
direction, whereas FS has just appeared. We see already torus-like structures, which
indicate that the chemotactic flux FS is maximal for an intermediate cell density 1/2 and
declines again as ρ ≈ 1. As we continue to time t = 0.32, the amplitude of the two fluxes
are essentially the same. However, the anisotropic flux is still in the dominant direction
(1, 1), while the chemotactic flux is in direction (−1, 1). Hence, we see the competition in
those two directions.
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time
t = 0 t = 0.0262 t = 0.32

|Fq|

|FS|

Figure 7. Time series of the magnitude of the fluxes Fq (top row) and FS, (bottom row) in the criss-cross regime. Here, we
use the same parameter values as in Figure 6.

We see numerically fascinating patterns that have, to our knowledge, never been
reported in a chemotaxis system. The effects of anisotropy and chemotaxis interact in
complicated ways.

5.8. Entrapment by Fibres

For this numerical simulation, we are interested if we can trap a group of cells behind
a fiber wall, with some food on the other side to incentivize attempts to escape. We take a
horizontally aligned fiber wall as

q(v) =
1

4π I0(k(x, y))

(
ek(x,y)v·u + e−k(x,y)v·u

)
, b = 1/50, (61)

with
u = (1, 0).

The variance matrices (35) and (40) take the form

Vq =
1
2

 1 + I2(k)
I0(k)

0

0 1− I2(k)
I0(k)

 Vb =
1
50

. (62)

We consider a domain of [0, 250]2 and assume the linear feature is concentrated at
y = 125 with concentration parameter

k(x, y) = 5e−
(

y−125
10

)2

.

This choice of k(x, y) causes anisotropy on the line centered at y = 125 along the
x-axis and isotropic in other directions. For initial conditions, we take the same Gaussian
bumps as before but only place them above the fiber (Figure 8a), and we place a large
concentration of the chemoattractant below the fiber wall (Figure 8b). We want to see the
cells can transfer through this barrier and find the chemotactic signal.
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(a) (b) (c) (d)

Figure 8. (a) The initial condition of cells above the fiber wall at y = 125, (b) the initial condition of the chemoattractant, (c)
the final state without anisotropy, and (d) the final state with anisotropy.

From Figure 8c, we can see that most of the cells continue their normal development
as seen in the other simulations, and only a small portion of the cells gets attracted to the
fiber wall. They start moving along the fiber wall while a fraction (3.76%) manages to cross
and aggregate below the fiber wall. If we increase the amount of chemoattractant, we see
more escape, and if we decrease the amount, fewer cells cross the fiber wall. In Figure 8d,
we included chemotactic mixing of gradient and anisotropy. For the chemotactic mixing
case, we took (18) with the same matrix A, and with s = 3/100π. In that case, the cell
movement is aligned in the diagonal direction, and the crossing appears more effective, as
4.3% of the population can cross.

6. Discussion

In this paper, we analyzed two effects that can lead to directional orientation of moving
particles: chemotaxis and anisotropy. The influence of chemotaxis on particle movement,
particle aggregations, pattern formation and blow-up has been studied extensively over
the past decades. Comprehensive reviews can be found in Horstmann 2003 [48,49], Hillen
and Painter 2009 [14], and Bellomo et al. 2015 [16]. If chemotaxis is combined with tissue
anisotropy, then new effects arise. For example, Kumar et al. [19] show that the combination
of repulsive Ph-taxis and tissue anisotropy can lead to palisade formation, as found in
glioma histologies. We show here that anisotropic chemotaxis can explain vasculogenesis
as in experiments of Serini et al. [6], that it produces new types of criss-cross patterns, and
that it can be used to study the effect of trapping of chemotactic populations through linear
features of the tissue.

The anisotropic chemotaxis model (34) was derived from a mesoscopic description
using kinetic transport equations. This framework includes cell-specific characteristics,
such as cell velocity, turning rates, tissue anisotropy, and chemotactic mixing. All these
terms are informed from individual particle tracking. Finally, through a parabolic scaling
technique, the macroscopic anisotropic chemotaxis model (34) is derived. The numerical
solution of the anisotropic chemotaxis model shows new challenges through the presence
of the anisotropic terms. To address this challenge, we use a powerful reaction-advection-
diffusion solver of Chertock et al. [21] and modify it to include anisotropy. We can do
this without the inclusion of additional diagonal grid points (as done in Kumar [19], for
example), rather, using a smart averaging over grid points that are already defined (see the
details in Section 5). Using this numerical scheme, we went through numerous simulations;
the first numerical experiment we did was to recreate the vascular network assembly results
in Serini et al. [6]. We were able to match our solutions to theirs qualitatively; our ability to
do this suggests that the flux rapidly relaxes to the equilibrium in their hyperbolic model (2).
For the other numerical experiments, we explored the effects of anisotropic diffusion and
chemotactic velocity mixing. For the anisotropic diffusion, the effect is essentially smearing
the cells along the fiber direction since movement along those directions is favored. The
chemotactic velocity had the opposite effect. The mixing dissuaded movement along those
directions, but unaffected diffusion along its complement, retrieving similar results as the
anisotropic diffusion. Subsequently, we experimented numerically on the inclusion of
both the anisotropic diffusion and the chemotactic mixing, which lead to a mixed regime
setup. In regions with low cell density, the anisotropic diffusion would dominate, but the
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chemotactic velocity would govern the motion in high-density regions. Finally, we were
interested if chemotactic mixing would help cells move past a fiber wall. We found that the
population gets partially trapped by linear tissue features.

The following steps ask for a complete analysis of the observed pattern formation
mechanism. It is unknown what type of bifurcation would lead to network patterns and/or
criss-cross patterns. It is our plan for future research to investigate the underlying instabilities.

Overall, we show that tissue anisotropy can profoundly affect chemotactic orientation,
explaining new biological phenomena.
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